


Factory Physics Principles 
Law (Little's Law): 

WIP=THxCT 

Law (Best-Case Performance): The minimum cycle time for a given WIP level w is given by 

I
To if w S Wo 

CTbest = w 
otherwise 

rb 

The maximum throughput for a given WIP level w is given by 

{ w 
if w S Wo 

THbest = 
To 

rb otherwise 

Law (Worst-Case Performance): The worst-case cycle time for a given WIP level w is given by 

CT worst = W To 

The worst-case throughput for a given WIP level w is given by 

1 
THworst =

To 

Definition (Practical Worst-Case Performance): The practical worst-case (PWC) cycle time for a given WIP 
level w is given by 

w -1 
CTpwe = To + -

rb 

The PWC throughput for a given WIP level w is given by 

w 
THpwe = 

rb 
Wo +w-1 

Law (Labor Capacity): The maximum capacity of a line staffed by n cross-trained operators with identical 
work rates is 

n 
THmax =-

To 

Law (CONWIP with Flexible Labor): In a CONWIP line with n identical workers and w jobs, where w 2: n, 
any policy that never idles workers when unblocked jobs are available will achieve a throughput level TH(w) 
bounded by 

THew(n) S TH(w) S THew(w) 

where THew (x ) represents the throughput of a CONWIP line with all machines staffed by workers and x jobs in 
the system. 

Law (Variability): Increasing variability always degrades the performance of a production system. 

Corollary (Variability Placement): In a line where releases are independent of completions, variability early in 
a routing increases cycle time more than equivalent variability later in the routing. 

Law (Variability Buffering): Variability in a production system will be buffered by some combination of 

1. Inventory 

2. Capacity 

3. Time 



re effective rate, or capacity, of a station. 

rb bottleneck rate of a line, defined as the rate of the station with the highest utilization. 

RMI raw material inventory, consisting of the physical inputs at the start of a production process. 

s service level. In make-to-order systems, s is measured as the fraction of jobs for which cycle time 

is less than or equal to lead time. In make-to-stock systems, s is measured as the fill rate, or fraction 

of demands that are filled from stock. 

(To standard deviation of natural (no detractors) process time at a station. 

(Te standard deviation of the effective process time at a station. 

(TCT standard deviation of the cycle time in a line. 

TH throughput, measured as the average output of a production process (machine, station, line, plant) 

per unit time. 

To raw process time, which is the sum of the mean effective process times of the stations in a line. 

to average natural (no detractors) process time at a station. 

ta average time between arrivals to a line or station. At any station, TH = llta. 

te mean effective process time (average time required to do one job) including all "detractors" such as 

setups, downtime, etc. It does not include time the station is starved for lack of work or blocked by 

busy downstream stations. 

u utilization, defined as the fraction of time a station is not idle for lack of parts. u = THte I m, where 

m is the number of parallel machines at the station. 

WIP work in process, which consists of inventory between the start and end points of a routing. 

WIP q average WIP in queue at a station. 

Wo critical WIP level for a line, which is the WIP required for a line with no variability to achieve 

maximum throughput (rb) with minimum cycle time (To). For a line with parameters, rb and To, 

Wo = rbTo· 



FACTORY PHYSICS
Third Edition





FACTORY PHYSICS
Third Edition

Wallace J. Hopp
University of Michigan

Mark L. Spearman
Factory Physics, Inc.

WAVELAND

PRESS, INC.
Long Grove, Illinois



For information about this book, contact:
Waveland Press, Inc.
4180 IL Route 83, Suite 101
Long Grove, IL 60047-9580
(847) 634-0081
info@waveland.com
www.waveland.com

Copyright © 2008 by Wallace J. Hopp and Mark C. Spearman
Reissued 2011 by Waveland Press, Inc.

10-digit ISBN 1-57766-739-5
13-digit ISBN 978-1-57766-739-1

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without permission in writing from the publisher.

Printed in the United States of America

7 6 5 4 3







P R E F A C E

Origins of Factory Physics

In 1988 we were working as consultants at the IBM circuit board plant in Austin, Texas,

helping to devise more effective production control procedures. Each time we suggested

a course of action, our clients would, quite reasonably, ask why it would work. Being

professors, we typically responsed by launching into a theoretical lecture, replete with

outlandish metaphors and impromptu graphs. After several semicoherent attempts at

explaining ourselves, our sponsor, Mr. Jack Fisher, suggested we organize the essentials

of what we were saying into a one-day course.

We did our best to put together a structured description of basic plant behavior. While

doing this, we realized that certain very fundamental relations—for example, the relation

between throughput and WIP, and several other basic results of Part II of this book—were

not well known and were not covered in any standard operations management text. Our

six offerings of the course at IBM were well received by audiences ranging from machine

operators to midlevel managers. During one offering, a participant observed, “Why, this

is like physics of the factory.” Since both of us have bachelor’s degrees in physics and

keep a soft spot in our hearts for the subject, the name stuck. Factory Physics was born.

Buoyed by the success of the IBM course, we developed a 2-day industry short course

on short-cycle manufacturing, using Factory Physics as the organizing framework. Our

focus on cycle time reduction forced us to strengthen the link between fundamental re-

lations and practical improvement policies. Teaching to managers and engineers from a

variety of industries helped us extend our coverage to more general production environ-

ments.

In 1990, Northwestern University initiated the Master of Management in Manufac-

turing (MMM) program, for which we were asked to design and teach courses in man-

agement science and operations management. By this time we had enough confidence

in Factory Physics to forgo traditional problem-based and anecdote-based approaches

to these subjects. Instead, we concentrated on building intuition about basic manufac-

turing behavior as a means for identifying areas of leverage and comparing alternative

control policies. For completeness and historical perspective, we added coverage of con-

ventional topics, which ultimately became Part I of this book. We received enthusiastic

support from the MMM students for the Factory Physics approach. Also, because they

had substantial and varied industry experience, they constructively challenged our ideas

and helped us sharpen our presentation.

vii
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In 1993, after having taught the MMM courses and the industry short course several

times, we began writing out our approach in book form. This proved to be a slow process

because it revealed a number of gaps between our presentation of concepts and their

implementation in practice. Several times we had to step back and draw upon our own

research and that of many others, to develop practical discussions of key manufacturing

management problem areas. This became Part III of this book.

Factory Physics has grown a great deal since the days of our terse tutorials at IBM

and continues to expand and mature. Indeed, this third edition contains several new

developments and changes of presentation from the first edition. But while details will

change, we are confident that the fundamental insight behind Factory Physics—that there

are principles governing the behavior of manufacturing systems, and understanding them

can improve management practice—will remain the same.

Intended Audience

Factory Physics is intended for four principal audiences:

1. Manufacturing/supply chain management students: in a core operations course.

2. MBA students: in a second operations management course that would follow a

general survey course.

3. BS and MS industrial engineering students: in a production control course.

4. Manufacturing managers and engineers: for use as a reference.

Although we wrote it primarily as a text, we have been surprised and delighted by

the number of senior managers who find the book useful. Although it is neither short

nor easy, we have had many industry people contact us and say that Factory Physics is

exactly what they have been looking for. Evidently, in this environment of buzzwords

and hype, even professionals need something that brings manufacturing management

back to the basics.

How to Use this Book

After a brief introductory chapter, the book is organized into three parts: I The Lessons

of History, II Factory Physics, and III Principles in Practice. In our own teaching, we

generally cover Parts I, II, and III in order, but vary the selection of specific topics

depending on the course. One instructor we know who teaches in industry always starts

with the last chapter first. Although that chapter clearly demonstrates why we are not

professional writers of fiction, it does set the stage for what the book is trying to cover.

Regardless of the audience, we try to cover Part II completely, as it represents the

core of the Factory Physics approach. Because it makes extensive use of pull production

systems, we find it useful to cover Chapter 4, “From the JIT Revolution to Lean Manu-

facturing,” prior to beginning Part II. Finally, in order to provide an integrated framework

for carrying the Factory Physics concepts into the real world, we regard Chapter 13, “A

Pull Planning Framework,” as extremely important. Beyond this, the individual instruc-

tor can select historical topics from Part I, applied topics from Part III, or additional

topics from supplementary readings to meet the needs of a specific audience.

The instructor is also faced with the choice of how much mathematical depth to use.

To assist readers who want general concepts without mathematical detail, we have set

off certain sections as Technical Notes. These sections, which are labeled and indented

in the text, present justification, examples, or methodologies that rely on elementary
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mathematics (although higher than simple calculus). These sections can be skipped
completely without loss of continuity.

In teaching this material to both engineering and management students, we have
found, understandably, that management students are less interested in the mathematical
aspects of Factory Physics than are engineering students. However, it has not been our
impression that management students are averse to doing mathematics; it is math without
a concrete purpose to which they object. When faced with quantitative developments of
core manufacturing ideas, these students not only capable of grasping the math, they are
able to appreciate the practical consequences of the theory.

New to the Third Edition
The basic structure of the third edition is the same as that of the first two editions.
However, a number of enhancements have been made, including:

More problems. The number of exercises at the end of each chapter has been
increased to offer the reader a wider range of practice problems.

More examples. Almost all models are motivated with a practical application
before the development of any mathematics. Generally, these applications are
then used as examples to illustrate how the models are used.

Web support. PowerPoint presentations, case materials, spreadsheets,
derivations, and a solutions manual are now available on the Web. These are
constantly being updated as more material becomes available. Go to
http://www.factoryphysics.com for our website.

Software support: Factory Physics Inc., founded by one of the authors, provides
a “Professor Package” that allows students to use industrial grade Factory
Physics software at no charge. The software provides the means to determine
bottlenecks, compute cycle times, optimize inventories, optimize CONWIP
flows, and optimize product mix by using a linear programming application.
These applications use a common SQL database and do not require any custom
coding. The package also provides case studies and PowerPoint presentations for
the software. Because of the learning curve to use the software, the package is
best suited for a large case study or a capstone design experience. The software
is delivered over the Web at: https:/www.leanphysics.com/lpst. Interested faculty
should send an e-mail to info@factoryphysics.com.

Science of manufacturing: Chapter 6 has been revised to provide a formal
scientific basis for the Factory Physics approach. By describing the essential
production problem as one of aligning transformation with demand, we provide
a framework for the key results of Part II, including the need for buffering
variability. We hope that this framework makes it easier to view the collection of
concepts and models presented in Chapters 7 to 9 as a coherent whole.

Metrics: To connect our science-based approach to operations management to
the “balanced score card” methods popular in practice, we have developed a set
of Factory Physics metrics in Chapter 9. These consist of efficiency measures for
the three variability buffers and support our definition of lean as “achieving” the
fundamental objective with minimal buffering cost.”

Variability pooling: Chapter 8 introduces the fundamental idea that variability
from independent sources can be reduced by combining the sources. This basic
idea is used throughout the book to understand disparate practices, such as how
safety stock can be reduced by stocking generic parts, how finished goods
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inventories can be reduced by “assembling to order,” and how elements of push

and pull can be combined in the same system.
� Sharper variability results: Several of the laws in Chapter 9, “The Corrupting

Influence of Variability,” have been restated in clearer terms, and some important

new laws, corollaries, and definitions have been introduced. The result is a more

complete science of how variability degrades performance in a production

system.
� Optimal batch sizes: Chapters 9 and 15 extend the Factory Physics analysis of

the effects of batching to a normative method for setting batch sizes to minimize

cycle times in multiproduct systems with setups and discuss implications for

production scheduling.
� Shop floor control: Chapter 14 has been modified to describe the parallels and

differences between MRP and CONWIP as job release mechanisms. This

discussion will help managers of systems making use of MRP find ways to

incorporate the operational benefits of pull.
� Inventory/order interface: The discussion of how “push” and “pull” coexist

within most production/supply chain systems has been expanded and refined.

The concept of the inventory/order interface has been introduced to describe the

point in a flow where the system shifts from make-to-stock to make-to-order.
� Supply chain management: Chapters 3 and 5 now describe how materials

requirements planning (MRP) evolved into enterprise resources planning (ERP)

and then supply chain management (SCM). Chapter 17 makes use of the

inventory concepts of Chapter 2 to develop the concepts, tools, and practices that

underlie effective supply chain management.
� Quality management: Chapter 12 has been expanded to cover both the statistical

foundations and organizational elements of the Six Sigma approach to quality

and now includes some laws concerning the behavior of production lines in which

personnel capacity is an important constraint along with equipment capacity.
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C H A P T E R

0 Factory Physics?

Perfection of means and confusion of goals seem to characterize our age.

Albert Einstein

0.1 The Short Answer

What is Factory Physics, and why should one study it?

Briefly, Factory Physics is a systematic description of the underlying behavior of

manufacturing systems. Understanding it enables managers and engineers to work with

the natural tendencies of manufacturing systems to

1. Identify opportunities for improving existing systems.

2. Design effective new systems.

3. Make the trade-offs needed to coordinate policies from disparate areas.

0.2 The Long Answer

The above definition of Factory Physics is concise, but leaves a great deal unsaid. To

provide a more precise description of what this book is all about, we need to describe

our focus and scope, define more carefully the meaning and purpose of Factory Physics,

and place these in context by identifying the manufacturing environments on which we

will concentrate.

0.2.1 Focus: Manufacturing Management

To answer the question of why one should study Factory Physics, we must begin by

answering the question of why one should study manufacturing at all. After all, one

frequently hears that the United States is moving to a service economy, in which the

manufacturing sector will represent an ever-shrinking component. On the surface this

appears to be true: Manufacturing employed as much as 40 percent of the U.S. workforce

in the 1940s, but less than 13 percent by 2006.

1
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But there are two possible explanations for this. One is that manufacturing is being

offshored by moving operations to lower-cost labor markets. The second is that it is

being automated through investments that make labor more productive. Which one is

actually occuring has important consequences for the role of manufacturing managers,

the economy, and for society.

If manufacturing is being offshored, as Cohen and Zysman (1987) warned, the eco-

nomic impact could be dire. The reason, they argued, is that many jobs normally classified

as service (e.g., design and engineering services, payroll, inventory and accounting ser-

vices, financing and insuring, repair and maintenance of plant and machinery, training

and recruiting, testing services and labs, industrial waste disposal, engineering support

services, trucking of semifinished goods, etc.) are tightly linked to manufacturing. If

manufacturing operations were moved to another country, these jobs would tend to fol-

low. They estimated that the number of tightly linked jobs could be as high as twice the

number of direct manufacturing jobs, implying that as much as half of the American

economy was strongly dependent on manufacturing. Clearly, a major shift in such a

big piece of the economy would have major impacts on employment, wages, and living

standards nationwide.

Fortunately, however, despite a great deal of political rhetoric to the contrary, a mass

migration of manufacturing jobs does not seem to have occurred. Figure 0.1 shows that

total manufacturing employment has remained largely stable since WWII, albeit with

dips during recessions, including that of 2001. Simultaneously, manufacturing output

has grown steadily and dramatically, although again with dips in recessions.

This sugggests that the long-term decline in the percentage of people working in

the manufacturing sector is primarily due to productivity increases. These have made it

possible to increase manufacturing output without increasing the size of the workforce.

Since the overall workforce has grown dramatically, direct manufacturing employees

have steadily become a smaller percentage of the workforce. But, since manufacturing

output has continued to rise, tightly linked jobs have presumably remained in the economy

and are accounting for a substantial part of the overall job growth in the postwar era.

25000

20000

15000

10000

5000

0 0

20

40

60

80

100

120

Year

E
m

p
lo

y
m

en
t 

(1
0
0
0
s)

O
u

tp
u

t 
(i

n
d

ex
, 
1
9
9
7
 =

 1
0
0
)

Total employment in manufacturing

Manufacturing output

19
39

19
44

19
49

19
54

19
59

19
64

19
69

19
74

19
79

19
84

19
89

19
94

19
99

20
04

Figure 0.1

Manufacturing

employment and output,

1939–2006.

(Source: Bureau of Labor

Statistics)



Chapter 0 Factory Physics? 3

Of course, one might argue that the short-term decline in the absolute number of

American manufacturing jobs since the mid-1990s is due to a recent offshoring trend.

However, the data does not support this either. While the United States experienced an

11 percent reduction in manufacturing employment between 1995 and 2002, China had

a 15 percent reduction, Brazil had a 20 percent reduction, and globally the decrease was

exactly the same as in the United States—11 percent (Drezner 2004). Hence, it appears

that we are still witnessing a worldwide productivity boom in manufacturing similar

to the one that revolutionized agriculture in the early years of the 20th century. During

the so-called Green Revolution, employment in agriculture declined from 29 percent of

the workforce in 1929 to less than 3 percent by 1985. If the current “Lean Revolution”

in manufacturing continues, we can expect further increases in manufacturing output

accompanied by a decline in total factory jobs around the globe.

The management implications of this are clear. More than ever, manufacturing is a

game of making more with less. Manufacturing managers must continue to find ways to

meet continually elevating customer expectations with ever higher levels of efficiency.

Because the pressure of global competition leaves little room for error and because

manufacturing is becoming increasingly complex, both technologically and logistically,

manufacturing managers must be more technically literate than ever before.

The economic implications of the Lean Revolution are less unclear. When jobs

in agriculture were automated, they were replaced by higher-productivity, higher-pay

manufacturing jobs. It would be nice if manufacturing jobs lost or not created as a result

of productivity advances were replaced by higher-productivity, higher-pay service jobs.

But, while high-pay service jobs exist, as of April 2007 average hourly compensation

was still higher in goods-producing firms than in service-producing firms by a margin of

$18.00 to $16.26 (Bureau of Labor Statistics 2007). This discrepancy may account for the

recent stagnation in growth of real wages. Specifically, from 1970 to 1985 productivity

grew at a pace of 1.9 percent per year and real wages grew 0.87 percent per year, but

from 1985 to 1996 growth in productivity was 2.5 percent while wage growth was only

0.26 percent per year. Reversing this trend may require applying the analogies of “lean”

manufacturing to the service sector to accelerate productivity growth.

Finally, while speaking of manufacturing as a monolithic whole may continue to

make for good political rhetoric, it is important to remember the reality is that perfor-

mance of the manufacturing sector is achieved one firm at a time. Certainly a host of

general policies, from tax codes to educational initiatives, can help the entire sector

somewhat; the ultimate success of each individual firm is fundamentally determined by

the effectiveness of its management. Hence, quite literally, our economy, and our very

way of life in the future, depends on how well American manufacturing managers adapt

to the new globally competitive environment and evolve their firms to keep pace.

0.2.2 Scope: Operations

Given that the study of manufacturing is worthwhile, how should we study it? Our focus

on management naturally leads us to adopt the high-level orientation of “big M” manu-

facturing, which includes product design, process development, plant design, capacity

management, product distribution, plant scheduling, quality control, workforce organi-

zation, equipment maintenance, strategic planning, supply chain management, interplant

coordination, as well as direct production—“little m” manufacturing—functions such

as cutting, shaping, grinding, and assembly.

Of course, no single book can possibly cover all big M manufacturing. Even if

one could, such a broad survey would necessarily be shallow. To achieve the depth
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needed to promote real understanding, we must narrow our scope. However, to preserve

the “big picture” management view, we cannot restrict it too much; highly detailed

treatment of narrow topics (e.g., the physics of metal cutting) would constitute such a

narrow viewpoint that, while important, would hardly be suitable for identifying effective

management policies. The middle ground, which represents a balance between high-level

integration and low-level details, is the operations viewpoint.

In a broad sense, the term operations refers to the application of resources (capital,

materials, technology, and human skills and knowledge) to the production of goods and

services. Clearly, all organizations involve operations. Factories produce physical goods.

Hospitals produce surgical and other medical procedures. Banks produce checking ac-

count transactions and other financial services. Restaurants produce food and perhaps

entertainment. And so on.

The term operations also refers to a specific function in an organization, distinct

from other functions such as product design, accounting, marketing, finance, human re-

sources, and information systems. Historically, people involved in the operations function

are housed in departments with names like production control, manufacturing engineer-

ing, industrial engineering, and planning, and are responsible for the activities directly

related to the production of goods and services. These typically include plant schedul-

ing, inventory control, quality assurance, workforce scheduling, materials management,

equipment maintenance, capacity planning, and whatever else it takes to get product out

the door.

In this book, we view operations in the broad sense rather than as a specific function.

We seek to give general managers the insight necessary to sift through myriad details

in a production system and identify effective policies. The operations view focuses on

the flow of material through a plant, and thereby places clear emphasis on most of the

key measures by which manufacturing managers are evaluated (throughput, customer

service, quality, cost, investment in equipment and materials, labor costs, efficiency, etc.).

Furthermore, by avoiding the need for detailed descriptions of products or processes,

this view concentrates on generic manufacturing behavior, which makes it applicable to

a wide range of specific environments.

The operations view provides a unifying thread that runs through all the various

big-M manufacturing issues. For instance, operations and product design are linked in

that a product’s design determines how it must flow through a plant and how difficult

it will be to make. Adopting an operations viewpoint in the design process therefore

promotes design for manufacturability. In the same fashion, operations and strategic

planning are closely tied, since strategic decisions determine the number and types of

products to be produced, the size of the manufacturing facilities, the degree of vertical

integration, and many other factors that affect what goes on inside the plant. Embedding

a concern for operations in strategic decision making is essential for ensuring feasible

plans. Other manufacturing functions have analogous relationships to operations, and

hence can be coordinated with the actual production process by addressing them from

an operations viewpoint.

The traditional field in which operations are studied is called operations manage-

ment (OM). However, OM is broader than the scope of this book, since it encompasses

operations in service, as well as manufacturing, organizations. Just as our operations

scope covers only part of (big M) manufacturing, our manufacturing focus includes only

part of operations management. In short, the scope of this book can be envisioned as the

intersection between OM and manufacturing, as illustrated in Figure 0.2.

The operations view of manufacturing may seem a somewhat technical perspective

for a management book. But this is not accidental. Some degree of technicality is required
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Manufacturing

(manufacturing engineering,
product/process design,
production control, etc.)

Operations Management

(service, transportation
 retail, manufacturing, etc.)

Manufacturing Operations

Figure 0.2

Manufacturing and

operations management.

just to accurately describe manufacturing behavior in operations terms. More important,

however, is the reality that in today’s environment, manufacturing itself is technical.

Intense global competition is relentlessly raising market standards, causing seemingly

small details to take on large strategic importance. For example, quality acceptable to

customers in the 1970s may have been possible with relatively unsophisticated systems.

But to meet customer expectations and comply with standards common for vendor certi-

fication today is virtually impossible without rigorous quality systems in place. Similarly,

it was not so long ago when customer service could be ensured by maintaining large

inventories. Today, rapid technological change and smaller profit margins make such

a strategy uneconomical—literally forcing companies into the tighter control systems

necessary to run with low-inventory levels. These shifts are making operations a more

integral, and more technical, component of running a manufacturing business.

The trends of the 1990s may make it appear that the importance of operations is a

new phenomenon. But, as we will discuss in greater depth in Part I, low-level operations

details have always had strategic consequences for manufacturing firms. A relatively

recent reminder of this fact was the experience of Japan in the 1970s and 1980s. As

Chapter 4 describes, Japanese firms, particularly Toyota, were able to carry out a strategy

of low-cost, small-lot production only through intense attention to minute details on the

factory floor (e.g., die changing, statistical process control, material flow control) over

an extended time. The net result was an enormously effective competitive weapon that

permitted Toyota to rise from obscurity to a position as a worldwide automotive leader.

Today, the importance of operations to the health, and even viability, of manufac-

turing firms is greater than ever because of global competition in the following three

dimensions:

1. Cost. This is the traditional dimension of competition that has always been the

domain of operations management. Efficient utilization of labor, material, and

equipment is essential to keeping costs competitive. We should note, however,

that from the customer standpoint it is unit cost (total cost divided by total

volume) that matters, implying that both cost reduction and volume

enhancement are worthy OM objectives.

2. Quality. The 1980s brought widespread recognition in America that quality is a

key competitive weapon. Of course, external quality, that seen by the customer,

has always been a concern in manufacturing. The quality revolution of the

1980s served to focus attention on internal quality at each step in the
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manufacturing process, and its relationship to customer satisfaction. Facets of

operations management, such as statistical process control, human factors, and

material flow control, have loomed large in this context as components of total

quality management (TQM) strategies.

3. Speed. While cost and quality remain critical, the 1990s can be dubbed the

decade of speed. Rapid development of new products, coupled with quick

customer delivery, are pillars of the time-based competition (TBC) strategies

that have been adopted by leading firms in many industries. Bringing new

products to market swiftly requires both performance of development tasks in

parallel and the ability to efficiently ramp up production. Responsive delivery,

without inefficient excess inventory, requires short manufacturing cycle times,

reliable processes, and effective integration of disparate functions (e.g., sales

and manufacturing). These issues are central to operations management, and

they arise repeatedly throughout this book.

These three dimensions are broadly applicable to most manufacturing industries, but

their relative importance obviously varies from one firm to another. A manufacturer of

a commodity (baking soda, machine screws, resistors) depends critically on efficiency,

since low cost is a condition for survival. A manufacturer of premium goods (luxury au-

tomobiles, expensive watches, leatherbound books) relies on quality to retain its market.

A manufacturer of a high-technology product (computers, patent-protected pharmaceuti-

cals, high-end consumer electronics) requires speed of introduction to be competitive and

to maximally exploit potential profit during the limited economic lifetime of the product.

Clearly, the management challenges in these varying environments are different. Since

operations are integral to cost, quality, and speed, however, operations management has

a key strategic role in each.

0.2.3 Method: Factory Physics

So far, we have determined that the focus of this book is manufacturing management, and

the scope is operations. The question now becomes, How can managers use an operations

viewpoint to identify a sensible combination of policies that are both effective now and

flexible enough to adapt to future needs?

In our opinion, some conventional approaches to manufacturing management fall

short:

1. Management by imitation is not the answer. Watching the competition can

provide a company with a valuable source of benchmarking and may help it to

avoid getting stuck in established modes of thinking. But imitation cannot

provide the impetus for a truly significant competitive edge. Bold new ideas

must come from within, not without.

2. Management by buzzword is not the answer. Manufacturing firms have become

inundated with a wave of “revolutions” in recent years. MRP, JIT, TQM, BPR,

TBC (and even a few without three-letter acronyms) have swept through the

manufacturing community, accompanied by soaring rhetoric and passionate

emotion, but with little concrete detail. As we will observe in Part I, these

movements have contained many valuable insights. However, they are very

dangerous as management systems because it is far too easy for managers to

become attached to catchy slogans and trendy buzzwords and lose sight of the
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fundamental objectives of the business. The result can be very poor decisions

for the long run.

3. Management by consultant is, at best, only a partial solution. A good consultant

can make an objective evaluation of a firm’s policies and provide a source of

new ideas. However, as an outsider, the consultant is not in a position to obtain

the support of key people so critical to implementing new management

systems. Additionally, a consultant can never have the intimate familiarity with

the business that an insider has, and is therefore likely to push generic solutions,

rather than customized methods that match the specific needs of the firm. No

matter how good an off-the-shelf technology (e.g., scheduling tools, optical

scanners, AGVs, robots) is, the manufacturing system must be ultimately

designed in-house, if it is to be effective as a whole.

So, what is the answer? In our view, the answer is not what to do about manufac-

turing problems but rather how to think about them. Each manufacturing environment

is unique. No single set of procedures can work well under all conditions. Therefore,

effective manufacturing managers of the future will have to rely on a solid understand-

ing of their systems to enable them to identify leverage points, creatively leapfrog the

competition, and engender an environment of continual improvement. For the student

of manufacturing management, this is something of a “good news–bad news” message.

The bad news is that manufacturing managers will need to know more about the funda-

mentals of manufacturing than ever before. The good news is that the manager who has

developed these skills will be increasingly valuable in industry.

From an operations viewpoint, there are behavioral tendencies shared by virtually all

manufacturing enterprises. We feel that these can be organized into a body of knowledge

to serve as a manufacturing manager’s knowledge base, just as the field of medicine serves

as a physician’s knowledge base. In this book, we employ a spirit of rational inquiry to

seek a science of manufacturing by establishing basic concepts as building blocks,

stating fundamental principles as “manufacturing laws,” and identifying general insights

from specific practices. Our primary goal is to provide the reader with an organized

framework from which to evaluate management practices and develop useful intuition

about manufacturing systems. Our secondary goal is to encourage others to push the

science of manufacturing even further, developing new and better structures than we can

offer at this time.

We use the term Factory Physics to distinguish our long-term emphasis on general

principles from the short-term fixation on specific techniques inherent in the buzzword

approach. We emphatically stress that Factory Physics is not factory magic. Rather, it is

a discipline based on the scientific method that has several features in common with the

field of physics:

1. Problem-solving framework. Just as there are few easy solutions in physics,

there are few in manufacturing management. Physics offers rational approaches

for understanding nature. An understanding of basic physics is critical to the

engineer in building or designing a complex system. Likewise, Factory Physics

provides a context for understanding manufacturing operations that allows the

manufacturing manager or engineer to pose and solve the right problems.

2. Technical approach. Physics is generally viewed as a hard, technical subject.

But, as we noted, OM is a hard, technical subject as well. A presentation of OM

without some technical content is like a newspaper description of an

engineering feat without any physical description—it sounds interesting but the
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reader cannot tell how it is actually done. Such an approach might be legitimate

as a survey of operations management, but is not suited to developing the skills

needed by manufacturing managers and engineers.

3. Role of intuition. Physicists generally have well-developed intuition about the

physical world. Even before writing any mathematical equations to represent a

system, a physicist forms a qualitative feel for the important parameters and

their relationships. Analogously, to make good decisions, a manager needs

sound intuition about system behavior and the consequences of various actions.

Thus, while we will spend a fair amount of time developing concepts with

mathematical models, our real concern is not the analyses themselves, but

rather the general intuition we can draw from them.

In the spirit of Factory Physics, we can summarize the key skills that will be required

by the manager of the future as falling into three distinct categories: basics, intuition,

and synthesis.1 The relation of these to operations management and their role in this

book are as follows:

1. Basics. The language and elementary concepts for describing manufacturing

systems are essential prerequisites for any manufacturing manager. Although

many basics of relevance to the manufacturing manager (e.g., elementary

mathematics, statistics, physics of manufacturing processes) are outside the

realm of OM and therefore the scope of this text, we do present a number of

basic concepts integral to OM, dealing with variability, reliability, behavior of

queueing systems, and so on. These are introduced as needed in Part II. We also

cull valuable basic concepts from traditional OM practices in the historical

survey of Part I.

2. Intuition. The single most important skill of a manufacturing manager is

intuition regarding the behavior of manufacturing systems. Solid intuition

enables a manager to identify leverage points in a plant, evaluate the impacts of

proposed changes, and coordinate improvement efforts. We therefore devote the

bulk of Part II to developing intuition about key types of manufacturing

behavior.

3. Synthesis. Close behind intuition on the list of important skills for a

manufacturing manager is the ability to bring together the disparate

components of a system into an effective whole. In part, this is related to the

ability to understand trade-offs and focus on critical parameters. But it also

depends on the capacity to step back and view the system from a holistic

perspective. We discuss a formal method for problem solving based on this

view—the systems approach—in Chapter 6. A good manufacturing manager

also considers improvements based on many different approaches (e.g., process

changes, logistics changes, personnel policy changes) and is sensitive to the

effects of changes in one area or another. In Part III, we present a production

planning hierarchy that integrates potentially disjointed decisions, and we

describe the interfaces between different functions. Often, the “biggest bang for

the buck” lies at the interfaces, so we highlight them wherever possible

throughout Parts II and III.

1While these categories may be new for a manufacturing book, they are hardly revolutionary. The

Trivium, which constituted the basis for a liberal education in the Middle Ages and consisted of grammar

(the basic rules), logic (rational relationships), and rhetoric (fitting it all together), is virtually identical to our

structure.
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0.2.4 Perspective: Flow Lines

To use the factory physics method to study manufacturing management from an opera-

tions standpoint, we must select a primary perspective through which to view manufac-

turing systems. Without this, environmental differences will tend to obscure common

underlying behavior and make development of a science of manufacturing impossible.

The reason is that even when we adopt an operations view and ignore the low-level

differences in products and processes, manufacturing environments vary greatly with

respect to their process structure, that is, the manner in which material moves through

the plant. For instance, a continuous-flow nature of a chemical plant behaves very differ-

ently and hence presents a very different management picture than does a one-at-a-time

artisan-style custom machine shop. Hayes and Wheelwright (1979) classify manufac-

turing environments by process structure into four categories (see Figure 0.3) which can

be summarized as follows:

1. Job shops. Small lots are produced with a high variety of routings through the

plant. Flow through the plant is jumbled, setups are common, and the
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environment has more of an atmosphere of project work than pacing. For

example, a commercial printer, where each job has unique requirements, will

generally be structured as a job shop.

2. Disconnected flow lines. Product batches are produced on a limited number of

identifiable routings (i.e., paths through the plant). Although routings are

distinct, individual stations within lines are not connected by a paced material

handling system, so that inventories can build up between stations. The

majority of manufacturing systems in industry resemble the disconnected flow

line environment to some extent. For example, a heavy equipment (e.g., tank

car) manufacturer will use well-defined assembly lines but, because of the scale

and complexity of the processes at each station, generally will not automate and

pace movement between stations.

3. Connected flow lines. This is the classic moving assembly line made famous

by Henry Ford. Product is fabricated and assembled along a rigid routing

connected by a paced material handling system. Automobiles, where frames

travel along a moving assembly line between stations at which components are

attached, are the classic application of the connected flow line. But, despite the

familiarity and historic appeal of this type of system, automatic assembly lines

are actually much less common than disconnected flow lines in industry.

4. Continuous flow processes. Continuous product (food, chemicals, oil, roofing

materials, fiberglass insulation, etc.) flows automatically down a fixed routing.

Many food processing plants, such as sugar refineries, make use of continuous

flow to achieve high efficiency and product uniformity.

These environments are suited to different types of products. Because a job shop pro-

vides maximum flexibility, it is well suited to low-volume, highly customized products.

However, because a job shop is not very efficient on a unit cost basis, it is unattractive

for higher-volume products. Therefore, most discrete parts manufacturing plants make

at least partial use of some kind of flow line. The decision of how much to automate

and pace the line depends on whether the volume and expected economic life justify

the necessary capital investment. In continuous product manufacturing, the analogous

decision is how far to move from “bench-top” batch production toward a continuous

flow process.

Figure 0.3 presents an often-cited product process matrix that relates process

structure to product type. The basic message of this figure is that higher volumes tend to

go hand in hand with smoother-flow process structures. This suggests that the appropriate

manufacturing environment may depend on the stage of the product in its life cycle.

Newly introduced products are typically produced in small volumes and are subject to

design tinkering during a start-up phase, which makes them well suited to the flexibility

provided by a job shop environment. As the product progresses through growth and

maturation phases, volumes justify a shift to a more efficient (disconnected) flow line. If

the product matures into a commodity (i.e., instead of declining out of the market), even

greater standardization of flow, in an automated assembly line or continuous flow line,

may be justified. This evolution can be viewed as traversing the diagonal of the product

process matrix in Figure 0.3 from the upper left to the lower right over the life of the

product.

While the product process matrix is useful for characterizing differences in process

structures and their relationship to product requirements, it presents only part of the

picture. If manufacturing strategy were simply a matter of noting the type of product

and selecting the appropriate process from such a matrix, we wouldn’t need a science
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of manufacturing (or highly trained manufacturing managers). But, as we have stressed,

customers today want it all: variety, low cost, high quality, and quick responsive de-

livery. A major challenge facing modern manufacturing firms is how to structure the

environment so that it attains the speed and low cost of the high-volume flow lines while

retaining the flexibility and customization potential of a low-volume job shop, all within

an atmosphere of continually improving quality.

In this book, we select as our primary perspective discrete parts production on

disconnected flow lines. We do this in part because such environments are most prevalent

in industry. Additionally, the flow line perspective enables us to identify concepts for

“unjumbling” flow and improving efficiency in job shop environments. Finally, flow lines

provide a logical link between discrete parts production and continuous flow processes,

and hence a vehicle for looking to continuous systems as a source of ideas for smoothing

flow and improving cost efficiency. Thus, the disconnected flow line perspective serves

as the foundation upon which to build a problem-solving framework that is applicable

across a broad range of manufacturing environments.

0.3 An Overview of the Book

The remainder of this book is divided into three major parts:

Part I, The Lessons of History, provides a history of manufacturing in America, along

with a review of traditional operations management techniques, including inventory con-

trol models, material requirements planning (MRP), and just-in-time (JIT). In reviewing

each of these, we identify the essential insights that are necessary components of the

science of manufacturing. Part I concludes with a critical review of why these historical

techniques are, by themselves, inadequate for the future needs of manufacturing.

Part II, Factory Physics, presents the core concepts of the book. We begin with the

basic structure of the science of manufacturing and a discussion of the systems approach

to problem solving. Then we examine key behavioral tendencies of manufacturing plants,

starting with basic relationships between measures (e.g., throughput, inventory, and

cycle time) and working up to the subtle influences of variability. We also examine the

science behind some popular Japanese techniques by comparing push and pull production

systems. For clarity, the main conclusions are stated as “manufacturing laws,” although,

as we will discuss, some of these laws are true laws that always hold, while others are

useful generalities that hold most of the time. We include in Part II a brief discussion

of critical human issues in manufacturing systems to emphasize the essential point that

manufacturing is more than just machinery and logistics—it is people, too. We also

identify key links between logistics and quality, to provide some science behind TQM

practices.

Part III, Principles in Practice, treats specific manufacturing management issues in

detail. By applying the lessons of Part I and the laws of Part II, we contrast and compare

different approaches to problems commonly encountered in running a manufacturing

facility. These include shop floor control, sequencing and scheduling, long-range aggre-

gate planning, workforce planning, capacity management, and coordination of planning

and control across levels in a hierarchical system. The focus is on choosing the right

measures and controls and providing a framework within which to build solutions. We

illustrate problem-solving procedures by providing explicit “how-to” instructions for

selected problems. The purpose of these detailed solutions is not so much to provide

user-ready tools, but rather to help the reader visualize how general concepts of Part II

can be applied to specific problems.
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This three-part approach roughly parallels the three categories of skills required

by manufacturing managers and engineers: basics, intuition, and synthesis. Part I con-

centrates on basics, by providing a historical perspective and introducing traditional

terms and techniques. Part II focuses on intuition, by describing fundamental behavior

of manufacturing systems. Part III addresses synthesis, by developing a framework for

integrating disparate manufacturing planning problems. A manufacturing professional

with mastery of these three skills can identify the essential problems in a factory and do

something about them.

And now, on to Factory Physics.



P A R T

I The Lessons of History

Those who cannot remember the past are condemned to repeat it.

George Santayana



C H A P T E R

1 Manufacturing

in America

What has been will be again, what has been done will be done again; there is nothing

new under the sun.

Ecclesiastes

1.1 Introduction

A fundamental premise of this book is that to manage something effectively, one must

first understand it. But manufacturing systems are complex entities that can be viewed

in many ways,1 many of which are integral to sound managerial insight. A particularly

important perspective, which provides an organizing framework for all others, is that of

history.

A sense of history is fundamental to manufacturing managers for two main reasons.

First, in manufacturing, as in all walks of life, the ultimate test of an idea is the test of time.

Since short-term success may be the result of luck or exogenous circumstances, we can

only identify concepts of lasting value by taking the long-term view. Second, because

the requirements for success in business change over time, it is critical for managers

to make decisions with the future in mind. One of the very best tools for consistently

anticipating the future is a sound appreciation of the past.

The history of American manufacturing, which follows its rise from meager colonial

beginnings to undisputed worldwide leadership by mid-20th century, through a period

of serious decline in the 1970s and 1980s, and into a revitalization in the complex global

environment of the 1990s, is a fascinating story. Sadly, we have neither the space nor

the expertise to offer comprehensive coverage here. Instead, we highlight major events

and trends with emphasis on themes that will be crucial later in the book. We hope

the reader will be sufficiently interested in these historical issues to pursue more basic

sources. The following are attractive starting points. Wren (1987) provides an excellent

general overview from a management perspective. Boorstin in The Americans trilogy

1For example, to a mechanical engineer a manufacturing system is a set of physical processes for altering

material, to an operations manager it is a logistical network of product flows, to an organization behavior

specialist it is a community of people with shared concerns, to an accountant it is a collection of interrelated

cash flows, and so on.

14
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(1958, 1965, 1973) offers a number of highly readable insights into American business

in a cultural context. Chandler (1977, 1990) gives a towering treatment of the evolution

of large-scale management in America, as well as Germany and Great Britain. We have

drawn heavily on these works, and their references, in what follows.

1.2 The American Experience

In many ways, America began with a clean slate. A vast, wide-open continent offered

unparalleled resources and unlimited opportunities for development. Unshackled by the

traditions of the Old World, Americans were free to write their own rules. Government,

law, cultural practices, and social mores were all choices to be made as part of the grand

American experiment.

Naturally, these choices reflected the times in which they were made. In 1776,

antimonarchist sentiment, which would soon fuel the French Revolution, was on the

rise in both the Old World and the New. America chose democracy. In 1776, Scotsman

Adam Smith (1723–1790) proclaimed the end of the old mercantilist system and the

beginnings of modern capitalism in his Wealth of Nations, in which he articulated the

benefits of the division of labor and explained the workings of the “invisible hand” of

capitalism.2 America chose the free market system. In 1776, James Watt (1736–1819)

sold his first steam engine in England and began the first industrial revolution in earnest.

America embraced the new factory system, evolved a unique style of manufacturing,

and eventually led the transportation and communications breakthroughs that sparked

the second industrial revolution. In 1776, English common law was the standard for the

civilized world. America adapted this tradition, borrowed from Roman law and the Code

Napoléon, and rapidly became the most litigious country in the world.3

In almost all cases, Americans did not invent revolutionary concepts from scratch.

Rather, they borrowed freely (and even stole) ideas from the Old World and adapted

them to the New. Because the needs of the New World were different, because they were

not bound by Old World customs and traditions, and, quite frankly, because they were

naive, the social and economic institutions that resulted were uniquely American.

The very fact that America had the opportunity to create itself has done much to shape

its national identity. Unlike the countries of the Old World, which coalesced as nations

long after they had acquired a national spirit, the United States of America achieved

nationhood as a composite of colonies with little sense of common identity. Hence,

Americans actively sought an identity in the form of cultural symbols. The strongest

and most uniquely American cultural icon was that of the rugged individualist seeking

freedom on the frontier. This spawned the wild comic legends about Davy Crockett and

Mike Fink and later played a large part in transforming Abraham Lincoln into a revered

national icon as the “rail splitter” president. Even after the frontier was gone, the myth

of the frontier lived on in popular literature and cinema about the cowboys, ranchers,

gunfighters, and prospectors of the Old West.

In more recent times, the myth of the frontier evolved into the myth of the self-

made person, which has roots stretching back to the aphorisms of Benjamin Franklin

(1706–1790) and the essays of Ralph Waldo Emerson (1803–1882), and which found

fertile ground in the Protestant work ethic. This myth made heroes out of successful

2It is not coincidence that Henry Ford, one of the men most visibly associated with capitalism, would

write a book 150 years after Smith’s and with the penultimate chapter entitled “The Wealth of Nations.”
3Two-thirds of the world’s lawyers practice in the United States where there are 1,000 lawyers to every

100 engineers. Japan, on the other hand, has 1,000 engineers to every 100 lawyers (Lamm 1988, 17).
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industrialists of the 19th century (e.g., Carnegie, Rockefeller, Morgan) and provided

cultural support for the unvarnished pursuit of wealth by the corporate raiders of the

1980s. The terms that referred to the players in the takeover games of that “decade of

greed”—gunslinger, white knight, masters of the universe—were not accidental. Nor is

the fact that marketing and finance have consistently been more popular in American

business schools than operations management. The perception has been that in finance

and marketing, one can do something “big” or “bold” by starting daring new ventures or

launching exciting new products, while in operations management one can only strug-

gle to save a few pennies on the cost side—necessary, perhaps, but not very exciting.

Attention to detail may be a virtue in Europe or Japan, where resource limits have long

been a fact of life; it is decidedly dull in the land of the cowboy.

A third cultural force permeating the American identity is an underlying faith in the

scientific method. From the period of the Enlightenment, which in America took the form

of the popular science of Franklin and then the pragmatic inventions of Whitney, Bell,

Eastman, Edison, and others, Americans have always embraced the rational, reductionist,

analytical approach of science. The first uniquely American management system became

known as scientific management.4 The notion of “managing by the numbers” has deep

roots in our cultural propensity for things scientific.

The reductionist method favored by scientists analyzes systems by breaking them

down into their component parts and studying each one. This was a fundamental tenet

of scientific management, which worked to improve overall efficiency by decomposing

work into specific tasks and then improving the efficiency of each task. Today’s industrial

engineers and operations researchers still use this approach almost exclusively and are

very much a product of the scientific management movement.

While reductionism can be an extremely profitable paradigm for analyzing complex

systems—and certainly Western science has attained many triumphs via this approach—

it is not the only valid perspective. Indeed, as has become obvious from the huge gap

between academic research and actual practice in industry, too much emphasis on indi-

vidual components can lead to a loss of perspective for the overall system.

In contrast to the reductionism of the West, Far Eastern societies seem to maintain

a more holistic or systems perspective. In this approach, individual components are

viewed much more in terms of their interactions with other subsystems and in the light

of the overall goals of the system. This systems perspective undoubtedly influenced the

development of just-in-time (JIT) systems in Japan, as we will discuss more thoroughly

in Chapter 4.

The difference between the reductionist and holistic perspectives is starkly illus-

trated by the differing responses taken by the Americans and the Japanese to the prob-

lem of setups in manufacturing operations. Setup time is required for changeover of

a machine from making one product to making another. In the American industrial

engineering/operations research literature, for decades, setup times were regarded as

constraints, leading to the development of all sorts of complex mathematical models for

determining “optimal” lot sizes that would balance setup costs against inventory carrying

costs. This view made perfect sense from a reductionist perspective, in which the setups

were a given for the subsystem under consideration. In contrast, the Japanese, looking at

manufacturing systems in the more holistic sense, recognized that setup times were not

a given—they could be reduced. Moreover, from a systems perspective, there was clear

4This is in spite of the fact that its developer, Frederick W. Taylor, himself preferred the terms task

management or the Taylor system.
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value in reducing setup times. Clever use of jigs, fixtures, off-cycle preparations, and the

like, which became known as single minute exchange of die, or SMED (Shingo 1985),

enabled some Japanese factories to realize significantly shorter setup times than those

in comparable American plants. In particular, the Japanese automobile industry became

among the most productive in the world. These plants became simpler to manage and

more flexible than their American counterparts.

Of course, the Japanese system had its weak points as well. Its convoluted pricing

and distribution systems made Japanese electronic devices cheaper in New York than in

Tokyo. Competition was tightly regulated by a traditional corporate network that kept

out newcomers and led to bad investments. Strong profits of the 1980s were plowed into

overvalued stocks and real estate. When the bubble burst in the 1990s, Japan found itself

mired in an extended recession that precipitated the “Asian crisis” throughout the Pacific

Rim.

1.3 The First Industrial Revolution

Prior to the first industrial revolution, production was small-scale, for limited markets,

and labor- rather than capital-intensive. Work was carried out under two systems, the

domestic system and craft guilds. In the domestic system, material was “put out” by

merchants to homes where people performed the necessary operations. For instance, in

the textile industry, different families spun, bleached, and dyed material, with merchants

paying them on a piecework basis. In the craft guilds, work was passed from one shop to

another. For example, leather was tanned by a tanner, passed to curriers, then passed to

shoemakers and saddlers. The result was separate markets for the material at each step

of the process.

The first industrial revolution began in England during the mid-18th century in the

textile industry. This revolution, which dramatically changed manufacturing practices

and the very course of human existence, was stimulated by several innovations that

helped mechanize many of the traditional manual operations. Among the more prominent

technological advances were the flying shuttle developed by John Kay in 1733, the

spinning jenny invented by James Hargreaves in 1765 (Jenny was Mrs. Hargreaves), and

the water frame developed by Richard Arkwright in 1769. By facilitating the substitution

of capital for labor, these innovations generated economies of scale that made mass

production in centralized locations attractive for the first time.

The single most important innovation of the first industrial revolution, however, was

the steam engine, developed by James Watt in 1765 and first installed by John Wilkinson

in his iron works in 1776. In 1781 Watt developed the technology for transforming the

up-and-down motion of the drive beam to rotary motion. This made steam practical as

a power source for a host of applications, including factories, ships, trains, and mines.

Steam opened up far greater freedom of location and industrial organization by freeing

manufacturers from their reliance on water power. It also provided cheaper power, which

led to lower production costs, lower prices, and greatly expanded markets.

It has been said that Adam Smith and James Watt did more to change the world

around them than anyone else in their period of history. Smith told us why the modern

factory system, with its division of labor and “invisible hand” of capitalism, was de-

sirable. Watt, with his engines (and the well-organized factory in which he, his partner

Matthew Boulton, and their sons built them), showed us how to do it. Many features of

modern life, including widespread employment in large-scale factories, mass production
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of inexpensive goods, the rise of big business, the existence of a professional managerial

class, and others, are direct consequences of their contributions.

1.3.1 The Industrial Revolution in America

England had a decided technological edge over America throughout the 18th century, and

protected her competitive advantage by prohibiting export of models, plans, or people

that could reveal the technologies upon which her industrial strength was based. It was not

until the 1790s that a technologically advanced textile mill appeared in America—and

that was the result of an early case of industrial espionage!

Boorstin (1965, 27) reports that Americans made numerous attempts to invent ma-

chinery like that in use in England during the later years of the 18th century, going

so far as to organize state lotteries to raise prize money for enticing inventors. When

these efforts failed repeatedly, Americans tried to import or copy English machines.

Tench Coxe, a Philadelphian, managed to get a set of brass models made of Arkwright’s

machinery; but British customs officers discovered them on the dock and foiled his

attempt. America finally succeeded in its efforts when Samuel Slater (1768–1835)—

who had been apprenticed at the age of 14 to Jedediah Strutt, the partner of Richard

Arkwright (1732–1792)—disguised himself as a farmer and left England secretly, with-

out even telling his mother, to avoid the English law prohibiting departure of anyone

with technical knowledge. Using the promise of a partnership, Moses Brown (for whom

Brown University was named), who owned a small textile operation in Rhode Island with

his son-in-law William Almy, enticed Slater to share his illegally transported technical

knowledge. With Brown and Almy’s capital and Slater’s phenomenal memory, they built

a cotton-spinning frame and in 1793 established the first modern textile mill in America

at Pawtucket, Rhode Island.

The Rhode Island system, as the management system used by the Almy, Brown,

and Slater partnership became known, closely resembled the British system on which

it was founded. Focusing only on spinning fine yarn, Slater and his associates relied

little on vertical integration and much on direct personal supervision of their operations.

However, by the 1820s, the American textile industry would acquire a distinctly different

character from that of the English by consolidating many previously disparate operations

under a single roof. This was catalyzed by two factors.

First, America, unlike England, had no strong tradition of craft guilds. In England,

distinct stages of production (e.g., spinning, weaving, dying, printing in cotton textile

manufacture) were carried out by different artisans who regarded themselves as engaged

in distinct occupations. Specialized traders dealt in yarn, woven goods, and dyestuffs.

These groups all had vested interests in not centralizing or simplifying production. In

contrast, America relied primarily on the domestic system for textile production through-

out its colonial period. Americans of this time either spun and wove for themselves or

purchased imported woolens and cottons. Even in the latter half of the 18th century, a

large proportion of American manufacturing was carried out by village artisans without

guild affiliation. As a result, there were no organized constituencies to block the move

toward integration of the manufacturing process.

Second, America, unlike England, still had large untapped sources of water power

in the late 18th and early 19th centuries. Thus, the steam engine did not replace water

power in America on a widespread basis until the Civil War. With large sources of water

power, it was desirable to centralize manufacturing operations. This is precisely what

Francis Cabot Lowell (1775–1817) did. After smuggling plans for a power loom out

of Britain (Chandler 1977, 58), he and his associates built the famous cotton textile
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factories at Waltham and Lowell, Massachusetts, in 1814 and 1821. By using a single

source of water power to drive all the steps necessary to manufacture cotton cloth, they

established an early example of a modern integrated factory system. Ironically, because

steam facilitated power generation in smaller units, its earlier introduction in England

served to keep the production process smaller and more fragmented in England than in

water-reliant America.

The result was that Americans, faced with a fundamentally different environment

than that of the technologically and economically superior British firms, responded

by innovating. These steps toward vertical integration in the early-19th-century textile

industry were harbingers of a powerful trend that would ultimately make America the

land of big business. The seeds of the enormous integrated mass production facilities

that would become the norm in the 20th century were planted early in our history.

1.3.2 The American System of Manufacturing

Vertical integration was the first step in a distinctively American style of manufacturing.

The second and more fundamental step was the production of interchangeable parts in

the manufacture of complex multipart products. By the mid-19th century it was clear

that the Americans were evolving an entirely new approach to manufacturing. The 1851

Crystal Palace Exhibition in London saw the first use of the term American system

of manufacturing to describe the display of American products, such as the locks of

Alfred Hobbs, the repeating pistol of Samuel Colt, and the mechanical reaper of Cyrus

McCormick, all produced by using the method of interchangeable parts.

The concept of interchangeable parts did not originate in America. The Arsenal of

Venice was using some standard parts in the manufacture of warships as early as 1436.

French gunsmith Honore LeBlanc had shown Thomas Jefferson musket components

manufactured by using interchangeable parts in 1785; but the French had abandoned his

approach in favor of traditional craft methods (Mumford 1934, Singer et al. 1958). It

fell to two New Englanders, Eli Whitney (1765–1825) and Simeon North, to prove the

feasibility of interchangeable parts as a sound industrial practice. At Jefferson’s urging,

Whitney was contracted to produce 10,000 muskets for the American government in

1801. Although it took him until 1809 to deliver the last musket, and he made only

$2,500 on the job, he established beyond dispute the workability of what he called his

“Uniformity System.” North, a scythe manufacturer, confirmed the practicality of the

concept and devised new methods for implementing it, through a series of contracts

between 1799 and 1813 to produce pistols with interchangeable parts for the War De-

partment. The inspiration of Jefferson and the ideas of Whitney and North were realized

on a large scale for the first time at the Springfield Armory between 1815 and 1825,

under the direction of Colonel Roswell Lee.

Prior to the innovation of interchangeable parts, the making of a complex machine

was carried out in its entirety by an artisan, who fabricated and fitted each required

piece. Under Whitney’s uniformity system, the individual parts were mass-produced to

tolerances tight enough to enable their use in any finished product. The division of labor

called for by Adam Smith could now be carried out to an extent never before achievable,

with individual workers producing single parts rather than completed products. The

highly skilled artisan was no longer necessary.

It is difficult to overstate the importance of the idea of interchangeable parts, which

Boorstin (1965) calls “the greatest skill-saving innovation in human history.” Imag-

ine producing personal computers under the skilled artisan system! The artisan would

first have to fabricate a silicon wafer and then turn it into the needed chips. Then the
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printed-circuit boards would have to be produced, not to mention all the components

that go into them. The disk drives, monitor, power supply, and so forth—all would have

to be fabricated. Finally, all the components would be assembled in a handmade plastic

case. Even if such a feat could be achieved, personal computers would cost millions of

dollars and would hardly be “personal.” Without exaggeration, our modern way of life

depends on and evolved from the innovation of interchangeable parts. Undoubtedly, the

Whitney and North contracts were among the most productive uses of federal funds to

stimulate technological development in all of American history.

The American system of manufacturing, emphasizing mass production through

use of vertical integration and interchangeable parts, started two important trends that

impacted the nature of manufacturing management in this country to the present.

First, the concept of interchangeable parts greatly reduced the need for specialized

skills on the part of workers. Whitney stated his aim as to “substitute correct and effec-

tive operations of machinery for that skill of the artist which is acquired only by long

practice and experience, a species of skill which is not possessed in this country to any

considerable extent” (Boorstin 1965, 33). Under the American system, workers without

specialized skills could make complex products. An immediate result was a difference

in worker wages between England and America. In the 1820s, unskilled laborers’ wages

in America were one-third or one-half higher than those in England, while highly skilled

workers in America were only slightly better paid than in England. Clearly, America

placed a lower premium on specialized skills than other countries from a very early point

in her history. Workers, like parts, were interchangeable. This early rise of the undifferen-

tiated worker contributed to the rocky history of labor relations in America. It also paved

the way for the sharp distinction between planning (by management) and execution (by

workers) under the principles of scientific management in the early 20th century.

Second, by embedding specialization in machinery instead of people, the American

system placed a greater premium on general intelligence than on specialized training.

In England, unskilled meant unspecialized; but the American system broke down the

distinction between skilled and unskilled. Moreover, machinery, techniques, and prod-

ucts were constantly changing, so that open-mindedness and versatility became more

important than manual dexterity or task-specific knowledge. A liberal education was

useful in the New World in a way that it had never been in the Old World, where an

education was primarily a mark of refinement. This trend would greatly influence the

American system of education. It also very likely prepared the way for the rise of the

professional manager, who is assumed able to manage any operation without detailed

knowledge of its specifics.

1.4 The Second Industrial Revolution

In spite of the notable advances in the textile industry by Slater in the 1790s and the

practical demonstration of the uniformity system by Whitney, North, and Lee in the early

1800s, most industry in pre-1840 America was small, family-owned, and technologically

primitive. Before the 1830s, coal was not widely available, so most industry relied on

water power. Seasonal variations in the power supply, due to drought or ice, plus the lack

of a reliable all-weather transportation network, made full-time, year-round production

impractical for many manufacturers. Workers were recruited seasonally from the local

farm population, and goods were sold locally or through the traditional merchant network

established to sell British goods in America. The class of permanent industrial workers

was small, and the class of industrial managers almost nonexistent. Prior to 1840, there
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were almost no manufacturing enterprises sophisticated enough to require anything more

than traditional methods of direct factory management by the owners.

Before the Civil War, large factories were the exception rather than the rule. In

1832, Secretary of the Treasury Louis McLane conducted a survey of manufacturing in

10 states and found only 36 enterprises with 250 or more workers, of which 31 were

textile factories. The vast majority of enterprises had assets of only a few thousand

dollars, had fewer than a dozen employees, and relied on water power (Chandler 1977,

60–61). The Springfield Armory, often cited as the most modern plant of its time—it used

interchangeable parts, division of labor, cost accounting techniques, uniform standards,

inspection/control procedures, and advanced metalworking methods—rarely had more

than 250 employees.

The spread of the factory system was limited by the dependence on water power until

the opening of the anthracite coal fields in eastern Pennsylvania in the 1830s. From 1840,

anthracite-fueled blast furnaces began providing an inexpensive supply of pig iron for

the first time. The availability of energy and raw material prompted a variety of industries

(e.g., makers of watches, clocks, safes, locks, pistols) to build large factories using the

method of interchangeable parts. In the late 1840s, newly invented technologies (e.g.,

sewing machines and reapers) also began production using the interchangeable-parts

method.

However, even with the availability of coal, large-scale production facilities did not

immediately arise. The modern integrated industrial enterprise was not the consequence

of the technological and energy innovations of the first industrial revolution. The mass

production characteristic of large-scale manufacturing required coordination of a mass

distribution system to facilitate the flow of materials and goods through the economy.

Thus, the second industrial revolution was catalyzed by innovations in transportation

and communication—railroad, steamship, and telegraph—that occurred between 1850

and 1880. Breakthroughs in distribution technology in turn prompted a revolution in

mass production technology in the 1880s and 1890s, including the Bonsack machine for

cigarettes, the “automatic-line” canning process for foods, practical implementation of

the Bessemer steel process and electrolytic aluminum refining, and many others. During

this time, America visibly led the way in mass production and distribution innovations

and, as a result, by World War II had more large-scale business enterprises than the rest

of the world combined.

1.4.1 The Role of the Railroads

Railroads were the spark that ignited the second industrial revolution for three reasons:

1. They were America’s first big business, and hence the first place where

large-scale management hierarchies and modern accounting practices were

needed.

2. Their construction (and that of the telegraph system at the same time) created a

large market for mass-produced products, such as iron rails, wheels, and spikes,

as well as basic commodities such as wood, glass, upholstery, and copper wire.

3. They connected the country, providing reliable all-weather transportation for

factory goods and creating mass markets for products.

Colonel John Stevens received the first railroad charter in America from the New

Jersey legislature in 1815 but, because of funding problems, did not build the 23-mile-

long Camden and Amboy Railroad until 1830. In 1850 there were 9,000 miles of track
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extending as far as Ohio (Stover 1961, 29). By 1865 there were 35,085 miles of railroad

in the United States, only 3,272 of which were west of the Mississippi. By 1890, the

total had reached 199,876 miles, 72,473 of which were west of the Mississippi. Unlike

in the Old World and in the eastern United States, where railroads connected established

population centers, western railroads were generally built in sparsely populated areas,

with lines running from “Nowhere-in-Particular to Nowhere-at-All” in the anticipation

of development.

The capital required to build a railroad was far greater than that required to build a tex-

tile mill or metalworking enterprise. A single individual or small group of associates was

rarely able to own a railroad. Moreover, because of the complexity and distributed nature

of its operations, the many stockholders or their representatives could not directly manage

a railroad. For the first time, a new class of salaried employees—middle managers—

emerged in American business. Out of necessity the railroads became the birthplace of

the first administrative hierarchies, in which managers managed other managers.

A pioneer of methods for managing the newly emerging structures was Daniel Craig

McCallum (1815–1878). Working for the New York and Erie Railroad Company in the

1850s, he developed principles of management and a formal organization chart to convey

lines of authority, communication, and division of labor (Chandler 1977, 101). Henry

Varnum Poor, editor of the American Railroad Journal, widely publicized McCallum’s

work in his writings and sold lithographs of his organization chart for $1 each. Although

the Erie line was taken over by financiers with little concern for efficiency (i.e., the

infamous Jay Gould and his associates), Poor’s publicity efforts ensured that McCallum’s

ideas had a major effect on railroad management in America.

Because of their complexity and reliance on a hierarchy of managers, railroads

required large amounts of data and new types of analysis. In response to this need,

innovators like J. Edgar Thomson of the Pennsylvania Railroad and Albert Fink of

the Louisville & Nashville invented many of the basic techniques of modern accounting

during the 1850s and 1860s. Specific contributions included introduction of standardized

ratios (e.g., the ratio between a railroad’s operating revenues and its expenditures, called

the operating ratio), capital accounting procedures (e.g., renewal accounting), and unit

cost measures (e.g., cost per ton-mile). Again, Henry Varnum Poor publicized the new

accounting techniques and they rapidly became standard industry practice.

In addition to being the first big businesses, the railroads, along with the telegraph,

paved the way for future big businesses by creating a mass distribution network and

thereby making mass markets possible. As the transportation and communication systems

improved, commodity dealers, purchasing agricultural products from farmers and selling

to processors and wholesalers, began to appear in the 1850s and 1860s. By the 1870s

and 1880s, mass retailers, such as department stores and mail-order houses, followed

suit.

1.4.2 Mass Retailers

The phenomenal growth of these mass retailers provided a need for further advances

in the management of operations. For example, Sears and Roebuck’s sales grew from

$138,000 in 1891 to $37,789,000 in 1905 (Chandler 1977, 231). Otto Doering developed

a system for handling the huge volume of orders at Sears in the early years of the 20th

century, a system that used machinery to convey paperwork and transport items in the

warehouse. But the key to his process was a complex and rigid scheduling system that

gave departments a 15-minute window in which to deliver items for a particular order.
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Departments that failed to meet the schedule were fined 50 cents per item. Legend has

it that Henry Ford visited and studied this state-of-the-art mail-order facility before

building his first plant (Drucker 1954, 30).

The mass distribution systems of the retailers and mail-order houses also produced

important contributions to the development of accounting practices. Because of their

high volumes and low margins, these enterprises had to be extremely cost-conscious.

Analogously to the use of operating ratios by the railroads, retailers used gross margins

(sales receipts less cost of goods sold and operating expenses). But since retailers, like

the railroads, were single-activity firms, they developed specific measures of process

efficiency unique to their type of business. Whereas the railroads concentrated on cost

per ton-mile, the retailers focused on inventory turns or “stockturn” (the ratio of annual

sales to average on-hand inventory). Marshall Field was tracking inventory turns as early

as 1870 (Johnson and Kaplan 1987, 41), and maintained an average of between five and

six turns during the 1870s and 1880s (Chandler 1977, 223), numbers that equal or better

the performance of some retail operations today.

It is important to understand the difference between the environment in which Amer-

ican retailers flourished and the environment prevalent in the Old World. In Europe and

Japan, goods were sold to populations in established centers with strong word-of-mouth

contacts. Under such conditions, advertising was largely a luxury. Americans, on the

other hand, marketed their goods to a sparse and fluctuating population scattered across

a vast continent. Advertising was the lifeblood of firms like Sears and Roebuck. Very

early on, marketing was more important in the New World than in the Old. Later on,

the role of marketing in manufacturing would be further reinforced when makers of new

technologies (sewing machines, typewriters, agricultural equipment) found they could

not count on wholesalers or other intermediaries to provide the specialized services

necessary to sell their products, and formed their own sales organizations.

1.4.3 Andrew Carnegie and Scale

Following the lead of the railroads, other industries began the trend toward big business

through horizontal and vertical integration. In horizontal integration, a firm bought up

competitors in the same line of business (steel, oil, etc.). In vertical integration, firms

subsumed their sources of raw material and users of the product. For instance, in the steel

industry, vertical integration took place when the steel mill owners purchased mining and

ore production facilities on the upstream end and rolling mills and fabrication facilities

on the downstream end.

In many respects, modern factory management first appeared in the metal making

and working industries. Prior to the 1850s, the American iron and steel industry was

fragmented into separate companies that performed the smelting, rolling, forging, and

fabrication operations. In the 1850s and 1860s, in response to the tremendous growth of

railroads, several large integrated rail mills appeared in which blast furnaces and shaping

mills were contained in a single works. Nevertheless, in 1868, America was still a minor

player in steel, producing only 8,500 tons compared with Britain’s production of 110,000

tons.

In 1872, Andrew Carnegie (1835–1919) turned his hand to the steel industry.

Carnegie had worked for J. Edgar Thompson on the Pennsylvania Railroad, rising

from telegraph operator to division superintendent, and had a sound appreciation for

the accounting and management methods of the railroad industry. He combined the new

Bessemer process for making steel with the management methods of McCallum and
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Thompson, and he brought the industry to previously unimagined levels of integration

and efficiency. Carnegie expressed his respect for his railroad mentors by naming his

first integrated steel operation the Edgar Thompson Works. The goal of the E. T. Works

was “a large and regular output,” accomplished through the use of the largest and most

technologically advanced blast furnaces in the world. More importantly, the E. T. Works

took full advantage of integration by maintaining a continuous work flow—it was the

first steel mill whose layout was dictated by material flow. By relentlessly exploiting his

scale advantages and increasing velocity of throughput, Carnegie quickly became the

most efficient steel producer in the world.

Carnegie further increased the scale of his operations by integrating vertically into

iron and coal mines and other steel-related operations to improve flow even more. The

effect was dramatic. By 1879, American steel production nearly equaled that of Britain.

And by 1902, America produced 9,138,000 tons, compared with 1,826,000 for Britain.

Carnegie also put the cost accounting skills acquired from his railroad experience

to good use. A stickler for accurate costing—one of his favorite dictums was, “Watch

the costs and the profits will take care of themselves”—he instituted a strict accounting

system. By doggedly focusing on unit cost, he became the low-cost producer of steel

and was able to undercut competitors who had a less precise grasp of their costs. He

used this information to his advantage, raising prices along with his competition during

periods of prosperity and relentlessly cutting prices during recessions.

In addition to graphically illustrating the benefits from scale economies and high

throughput, Carnegie’s was a classic story of an entrepreneur who made use of minute

data and prudent attention to operating details to gain a significant strategic advantage

in the marketplace. He focused solely on steel and knew his business thoroughly, saying

I believe the true road to preeminent success in any line is to make yourself master in that

line. I have no faith in the policy of scattering one’s resources, and in my experience I have

rarely if ever met a man who achieved preeminence in money-making—certainly never one

in manufacturing—who was interested in many concerns. The men who have succeeded are

men who have chosen one line and stuck to it. (Carnegie 1920, 177)

Aside from representing one of the largest fortunes the world had known, Carnegie’s

success had substantial social benefit. When Carnegie started in the steel business in the

1870s, iron rails cost $100 per ton; by the late 1890s they sold for $12 per ton (Chandler

1984, 485).

1.4.4 Henry Ford and Speed

By the beginning of the 20th century, integration, vertical and horizontal, had already

made America the land of big business. High-volume production was commonplace

in process industries such as steel, aluminum, oil, chemicals, food, and tobacco. Mass

production of mechanical products such as sewing machines, typewriters, reapers, and

industrial machinery, based on new methods for fabricating and assembling interchange-

able metal parts, was in full swing. However, it remained for Henry Ford (1863–1947)

to make high-speed mass production of complex mechanical products possible with his

famous innovation, the moving assembly line.

Like Carnegie, Ford recognized the importance of throughput velocity. In an effort to

speed production, Ford abandoned the practice of skilled workers assembling substantial

subassemblies and workers gathering around a static chassis to complete assembly.

Instead, he sought to bring the product to the worker in a nonstop, continuous stream.

Much has been made of the use of the moving assembly line, first used at Ford’s Highland
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Park plant in 1913. However, as Ford noted, the principle was more important than the

technology:

The thing is to keep everything in motion and take the work to the man and not the man to

the work. That is the real principle of our production, and conveyors are only one of many

means to an end. (Ford 1926, 103)

After Ford, mass production became almost synonymous with assembly-line production.

Ford had signaled his strategy to provide cheap, reliable transportation early on with

the Model N, introduced in 1906 for $600. This price made it competitive with much less

sophisticated motorized buggies and far less expensive than other four-cylinder automo-

biles, all of which cost more than $1,000. In 1908, Ford followed with the legendary

Model T touring car, originally priced at $850. By focusing on continual improvement of

a single model and pushing his mass production techniques to new limits at his Highland

Park plant, Ford reduced labor time to produce the Model T from 12.5 to 1.5 hours, and he

brought prices down to $360 by 1916 and $290 by the 1920s. Ford sold 730,041 Model T’s

in fiscal year 1916/17, roughly one-third of the American automobile market. By the early

1920s, Ford Motor Company commanded two-thirds of the American automobile market.

Henry Ford also made his share of mistakes. He stubbornly held to the belief in a

perfectible product and never appreciated the need for constant attention to the process

of bringing new products to market. His famous statement that “the customer can have

any color car as long as it’s black” equated mass production with product uniformity. He

failed to see the potential for producing a variety of end products from a common set

of standardized parts. Moreover, his management style was that of a dictatorial owner.

He never learned to trust his managerial hierarchy to make decisions of importance.

Peter Drucker (1954) points to Henry’s desire to “manage without managers” as the

fundamental cause of Ford’s precipitous decline in market share (from more than 60

percent down to 20 percent) between the early 1920s and World War II.

But Henry Ford’s spectacular successes were not merely a result of luck or timing.

The one insight he had that drove him to new and innovative manufacturing methods was

his appreciation of the strategic importance of speed. Ford knew that high throughput

and low inventories would enable him to keep his costs low enough to maintain an edge

on his competition and to price his product so as to be available to a large segment

of the public. It was his focus on speed that motivated his moving assembly line. But

his concern for speed extended far beyond the production line. In 1926, he claimed,

“Our finished inventory is all in transit. So is most of our raw material inventory.” He

boasted that his company could take ore from a mine and produce an automobile in 81

hours. Even allowing for storage of iron ore in winter and other inventory stocking, he

claimed an average cycle time of not more than 5 days. Given this, it is little wonder that

Taiichi Ohno, the originator of just-in-time systems, of whom we will have more to say

in Chapter 4, was an unabashed admirer of Ford.

The insight that speed is critical, to both cost and throughput, was not in itself re-

sponsible for Ford’s success. Rather, it was his attention to the details of implementing

this insight that set him apart from the competition. The moving assembly line was just

one technological innovation that helped him achieve his goal of unimpeded flow of

materials through the entire system. He used many of the methods of the newly emerg-

ing discipline of scientific management (although Ford had evidently never heard of its

founder, Frederick Taylor) to break down and refine the individual tasks in the assem-

bly process. His 1926 book is filled with detailed stories of technical innovations—in

glass making, linen manufacture, synthetic steering wheels, artificial leather, heat treat-

ing of steel, spindle screwdrivers, casting bronze bushings, automatic lathes, broaching
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machines, making of springs—that evidence his attention to details and appreciation

of their importance. For all his shortcomings and idiosyncrasies, Henry Ford knew his

business and used his intimacy with small issues to make a big imprint on the history of

manufacturing in America.

1.5 Scientific Management

Although management has been practiced since ancient times (Peter Drucker credits the

Egyptians who built the pyramids with being the greatest managers of all time), man-

agement as a discipline dates back to the late 19th century. Important as they were, the

practical experiences and rules of thumb offered by such visionaries as Machiavelli did

not make management a field because they did not result from a systematized method

of critical scrutiny. Only when managers began to observe their practices in the light

of the rational, deductive approach of scientific inquiry could management be termed

a discipline and gain some of the respectability accorded to other disciplines using the

scientific method, such as medicine and engineering. Not surprisingly, the first propo-

nents of a scientific approach to management were engineers. By seeking to introduce

a management focus into the professional fabric of engineering, they sought to give it

some of engineering’s effectiveness and respectability.

Scientific observation of work goes back at least as far as Leonardo da Vinci, who

measured the amount of earth a man could shovel more than 450 years ago (Consiglio

1969). However, as long as manufacturing was carried out in small facilities amenable

to direct supervision, there was little incentive to develop systematic work management

procedures. It was the rise of the large integrated business enterprise in the late 19th

and early 20th centuries that caused manufacturing to become so complex as to demand

more sophisticated control techniques. Since the United States led the drive toward

increased manufacturing scale, it was inevitable that it would also lead the accompanying

managerial revolution.

Still, before American management writers developed their ideas in response to

the second industrial revolution, a few British writers had anticipated the systematizing

of management in response to the first industrial revolution. One such visionary was

Charles Babbage (1792–1871). A British eccentric of incredibly wide-ranging interests,

he demonstrated the first mechanical calculator, which he called a “difference machine,”

complete with a punch card input system and external memory storage, in 1822. He turned

his attention to factory management in his 1832 book On the Economy of Machinery

and Manufactures, in which he elaborated on Adam Smith’s principle of division of

labor and described how various tasks in a factory could be divided among different

types of workers. Using a pin factory as an example, he described the detailed tasks

required in pin manufacture and measured the times and resources required for each.

He suggested a profit-sharing scheme in which workers derive a share of their wages in

proportion to factory profits. Novel as his ideas were, though, Babbage was a writer, not

a practitioner. He measured work rates for descriptive purposes only; he never sought

to improve efficiency. He never developed his computer to commercial reality, and his

management ideas were never implemented.

The earliest American writings on the problem of factory management appear to be

a series of letters to the editor of the American Machinist by James Waring See, writing

under the name of “Chordal,” beginning in 1877 and published in book form in 1880

(Muhs, Wrege, Murtuza 1981). See advocated high wages to attract quality workers,

standardization of tools, good “housekeeping” practices in the shop, well-defined job
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descriptions, and clear lines of authority. But perhaps because his book (Extracts from

Chordal’s Letters) did not sound like a book on business or because he did not interact

with other pioneers in the area, See was not widely recognized or cited in future work

on management as a formal discipline.

The notion that management could be made into a profession began to surface during

the period when engineering became recognized as a profession. The American Society

of Civil Engineers was formed in 1852, the American Institute of Mining Engineers in

1871, and, most importantly for the future of management, the American Society of

Mechanical Engineers (ASME) in 1880. ASME quickly became the forum for debate

of issues related to factory operation and management. In 1886, Henry Towne (1844–

1924), engineer, cofounder of Yale Lock Company, and president of Yale and Towne

Manufacturing Company, presented a paper entitled “The Engineer as an Economist”

(Towne 1886). In it, he held that “the matter of shop management is of equal importance

with that of engineering . . . and the management of works has become a matter of such

great and far-reaching importance as perhaps to justify its classification also as one of the

modern arts.” Towne also called for ASME to create an “Economic Section” to provide

a “medium for the interchange” of experiences related to shop management. Although

ASME did not form a Management Division until 1920, Towne and others kept shop

management issues in prominence at society meetings.

1.5.1 Frederick W. Taylor

It is easy in hindsight to give credit to many individuals for seeking to rationalize the

practice of management. But until Frederick W. Taylor (1856–1915), no one generated

the sustained interest, active following, and systematic framework necessary to plausibly

proclaim management as a discipline. It was Taylor who persistently and vocally called

for the use of science in management. It was Taylor who presented his ideas as a coherent

system in both his publications and his many oral presentations. It was Taylor who, with

the help of his associates, implemented his system in many plants. And it is Taylor who

lies buried under the epithet “father of scientific management.”

Although he came from a well-to-do family, had attended the prestigious Exeter

Academy, and had been admitted to Harvard, Taylor chose instead to apprentice as a

machinist; and he rose rapidly from laborer to chief engineer at Midvale Steel Company

between 1878 and 1884. An engineer to the core, he earned a degree in mechanical

engineering from Stevens Institute on a correspondence basis while working full-time.

He developed several inventions for which he received patents. The most important of

these, high-speed steel (which enables a cutting tool to remain hard at red heat), would

have been sufficient to guarantee him a place in history even without his involvement in

scientific management.

But Taylor’s engineering accomplishments pale in comparison to his contributions to

management. Drucker (1954) wrote that Taylor’s system “may well be the most powerful

as well as the most lasting contribution America has made to Western thought since the

Federalist Papers.” Lenin, hardly a fan of American business, was an ardent admirer of

Taylor. In addition to being known as the father of scientific management, he is claimed

as the “father of industrial engineering” (Emerson and Naehring 1988).

But what were Taylor’s ideas that accord him such a lofty position in the history

of management? On the surface, Taylor was an almost fanatic champion of efficiency.

Boorstin (1973, 363) called him the “Apostle of the American Gospel of Efficiency.”

The core of his management system consisted of breaking down the production process

into its component parts and improving the efficiency of each. In essence, Taylor was
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trying to do for work units what Whitney had done for material units: standardize them

and make them interchangeable. Work standards, which he applied to activities ranging

from shoveling coal to precision machining, represented the work rate that should be

attainable by a “first-class man.”

But Taylor did more than merely measure and compare the rates at which men

worked. What made Taylor’s work scientific was his relentless search for the best way

to do tasks. Rules of thumb, tradition, standard practices were anathema to him. Manual

tasks were honed to maximum efficiency by examining each component separately and

eliminating all false, slow, and useless movements. Mechanical work was accelerated

through the use of jigs, fixtures, and other devices, many invented by Taylor himself.

The “standard” was the rate at which a “first-class” man could work using the “best”

procedure.

With a faith in the scientific method that was singularly American, Taylor sought

the same level of predictability and precision for manual tasks that he achieved with the

“feed and speed” formulas he developed for metal cutting. The following formula for

the time required to haul material with a wheelbarrow, B, is typical (Taylor 1903, 1431):

B =

{

p + [a + 0.51 + (0.0048)distance hauled]
27

L

}

1.27

Here p represents the time loosening 1 cubic yard with the pick, a represents the time

filling a barrow with any material, L represents the load of a barrow in cubic feet, and

all times are in minutes and distances in feet.

Although Taylor was never able to extend his “science of shoveling” (as his op-

ponents derisively termed his work) into a broader theory of work, it was not for lack

of trying. He hired an associate, Sanford Thompson, to conduct extensive work mea-

surement experiments. While he was never able to reduce broad categories of work to

formulas, Taylor remained confident that this was possible:

After a few years, say three, four or five years more, someone will be ready to publish the

first book giving the laws of the movements of men in the machine shop—all the laws, not

only a few of them. Let me predict, just as sure as the sun shines, that is going to come in

every trade.5

Once the standard for a particular task had been scientifically established, it remained

to motivate the workers to achieve it. Taylor advocated all three basic categories of worker

motivation:

1. The “carrot.” Taylor proposed a “differential piece rate” system, in which

workers would be paid a low rate for the first increment of work and a

substantially higher rate for the next increment. The idea was to give a

significant reward to workers who met the standard relative to those who did not.

2. The “stick.” Although he tried fining workers for failure to achieve the standard,

Taylor ultimately rejected this approach. A worker who is unable to meet the

standard should be reassigned to a task to which he is more suited and a worker

who refuses to meet the standard (“a bird that can sing and won’t sing”) should

be discharged.

3. Factory ethos. Taylor felt that a mental revolution, in which management and

labor recognize their common purpose, was necessary in order for scientific

management to work. For the workers this meant leaving the design of their

5Abstract of an address given by Taylor before the Cleveland Advertising Club, March 3, 1915, and

repeated the next day. It was his last public appearance. Reprinted in Shafritz and Ott 1992, 69–80.
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work to management and realizing that they would share in the rewards of

efficiency gains via the piece rate system. The result, he felt, would be that both

productivity and wages would rise, workers would be happy, and there would

be no need for labor unions. Unfortunately, when piecework systems resulted in

wages that were considered too high, it was a common practice for employers

to reduce the rate or increase the standard.

Beyond time studies and incentive systems, Taylor’s engineering outlook led him

to the conclusion that management authority should emanate from expertise rather than

power. In sharp contrast to the militaristic unity-of-command character of traditional

management, Taylor proposed a system of “functional foremanship” in which the tradi-

tional single foreman is replaced by eight different supervisors, each with responsibility

for specific functions. These included the inspector, responsible for quality of work; the

gang boss, responsible for machine setup and motion efficiency; the speed boss, responsi-

ble for machine speeds and tool choices; the repair boss, responsible for machine mainte-

nance and repair; the order of work or route clerk, responsible for routing and scheduling

work; the instruction card foreman, responsible for overseeing the process of instructing

bosses and workers in the details of their work; the time and cost clerk, responsible for

sending instruction cards to the men and seeing that they record time and cost of their

work; and the shop disciplinarian, who takes care of discipline in the case of “insubor-

dination or impudence, repeated failure to do their duty, lateness or unexcused absence.”

Finally, to complete his management system, Taylor recognized that he required

an accounting system. Lacking personal expertise in financial matters, he borrowed and

adapted a bookkeeping system from Manufacturing Investment Company, while working

there as general manager from 1890 to 1893. This system was developed by William D.

Basley, who had worked as the accountant for the New York and Northern Railroad, but

was transferred to the Manufacturing Investment Company, also owned by the owners

of the railroad, in 1892. Taylor, like Carnegie before him, successfully applied railroad

accounting methods to manufacturing.

To Taylor, scientific management was not simply time and motion study, a wage

incentive system, an organizational strategy, and an accounting system. It was a phi-

losophy, which he distilled to four principles. Although worded in various ways in his

writings, these are concisely stated as (Taylor 1911, 130)

1. The development of a true science.

2. The scientific selection of the worker.

3. His scientific education and development.

4. Intimate friendly cooperation between management and the men.

The first principle, by which Taylor meant that it was the managers’ job to pursue a

scientific basis for running their business, was the foundation of scientific management.

The second and third principles paved the way for the activities of personnel and indus-

trial engineering departments for years to come. However, in Taylor’s time there was

considerably more science in the writing about selection and education of workers than

there was in practice. The fourth principle was Taylor’s justification for his belief that

trade unions were not necessary. Because increased efficiency would lead to greater sur-

plus, which would be shared by management and labor (an assumption that organized

labor did not accept), workers should welcome the new system and work in concert with

management to achieve its potential. Taylor felt that workers would cooperate if offered

higher pay for greater efficiency, and he actively opposed the rate-cutting practices by

which companies would redefine work standards if the resulting pay rates were too high.
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But he had little sympathy for the reluctance of workers to be subjected to stopwatch

studies or to give up their familiar practices in favor of new ones. As a result, Taylor

never enjoyed good relations with labor.

1.5.2 Planning versus Doing

What Taylor meant in his fourth principle by “intimate friendly cooperation” was a clear

separation of the jobs of management from those of the workers. Managers should do

the planning—design the job, set the pace, rhythm, and motions—and workers should

work. In Taylor’s mind, this was simply a matter of matching each group to the work for

which it was best qualified.

In concept, Taylor’s views on this issue represented a fundamental observation: that

planning and doing are distinct activities. Drucker described this as one of Taylor’s most

valuable insights, “a greater contribution to America’s industrial rise than stopwatch or

time and motion study. On it rests the entire structure of modern management” (Drucker

1954, 284). Clearly, Drucker’s management by objectives would be meaningless without

the realization that management will be easier and more productive if managers plan their

activities before undertaking them.

But Taylor went further than distinguishing the activities of planning and doing. He

placed them in entirely separate jobs. All planning activities rested with management.

Even management was separated according to planning and doing. For instance, the

gang boss had charge of all work up to the time that the piece was placed in the machine

(planning), and the speed boss had charge of choosing the tools and overseeing the

piece in the machine (doing). The workers were expected to carry out their tasks in the

manner determined by management (scientifically, of course) as best. In essence, this

is the military system; officers plan and take responsibility, enlisted men do the work

but are not held responsible.6 Taylor was adamant about assigning workers to tasks for

which they were suited; evidently he did not feel they were suited to planning.

But, as Drucker (1954, 284) pointed out, planning and doing are actually two parts

of the same job. Someone who plans without even a shred of doing “dreams rather than

performs,” and someone who works without any planning at all cannot accomplish even

the most mechanical and repetitive task. Although it is clear that workers do plan in

practice, the tradition of scientific management has clearly discouraged American work-

ers from thinking creatively about their work and American managers from expecting

them to. Juran (1992, 365) contended that the removal of responsibility for planning by

workers had a negative effect on quality and resulted in reliance by American firms on

inspection for quality assurance.

In contrast, the Japanese, with their quality circles, suggestion programs, and em-

powerment of workers to shut down lines when problems occur, legitimized planning on

the part of the workers. On the management side, the Japanese requirement that future

managers and engineers begin their careers on the shop floor also helped remove the

barrier between planning and doing. “Quality at the source” programs are much more

natural in this environment, so it is not surprising that the Japanese appreciated the ideas

of quality prophets, such as Deming and Juran, long before the Americans did.

Taylor’s error with regard to the separation of planning and doing lay in extending

a valuable conceptual insight to an inappropriate practice. He made the same error by

6Taylor’s functional management represented a break with the traditional management notion of a single

line of authority, which the proponents of scientific management called “military” or “driver” or “Marquis of

Queensberry” management (see, e.g., L. Gilbreth 1914). However, he adhered to, even strengthened, the

militaristic centralization of responsibility with management.
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extending his reduction of work tasks to their simplest components from the planning

stage to the execution stage. The fact that it is effective to analyze work broken down into

its elemental motions does not necessarily imply that it is effective to carry it out in this

way. Simplified tasks could improve productivity in the short term, but the benefits are less

clear in the long term. The reason is that simple repetitive tasks do not make for satisfying

work, and therefore, long-term motivation is difficult. Furthermore, by encouraging

workers to concentrate on motions instead of on jobs, scientific management had the

unintended result of making workers inflexible. As the pace of change in technology

and the marketplace accelerated, this lack of flexibility became a clear competitive

burden. The Japanese, with their holistic perspective and worker empowerment practices,

consciously encouraged their workforce to be more adaptable.

By making planning the explicit duty of management and by emphasizing the need

for quantification, scientific management played a large role in spawning and shaping

the fields of industrial engineering, operations research, and management science. The

reductionist framework established by scientific management is behind the traditional

emphasis by the industrial engineers on line balancing and machine utilization. It is

also at the root of the decades-long fascination by operations researchers with simplistic

scheduling problems, an obsession that produced 30 years of literature and virtually no

applications (Dudek, Panwalker, and Smith 1992). The flaw in these approaches is not

the analytic techniques themselves, but the lack of an objective that is consistent with

the overall system objective. Taylorism spawned powerful tools but not a framework in

which those tools could achieve their full potential.

1.5.3 Other Pioneers of Scientific Management

Taylor’s position in history is in no small part due to the legions of followers he inspired.

One of his earliest collaborators was Henry Gantt (1861–1919), who worked with Tay-

lor at Midvale Steel, Simond’s Rolling Machine, and Bethlehem Steel. Gantt is best

remembered for the Gantt chart used in project management. But he was also an ardent

efficiency advocate and a successful scientific management consultant. Although Gantt

was considered by Taylor as one of his true disciples, Gantt disagreed with Taylor on

several points. Most importantly, Gantt preferred a “task work with a bonus” system,

in which workers were guaranteed their day’s rate but received a bonus for completing

a job within the set time, to Taylor’s differential piece rate system. Gantt was also less

sanguine than Taylor about the prospects for setting truly fair standards, and therefore

he developed explicit procedures for enabling workers to protest or revise the standards.

Others in Taylor’s immediate circle of followers were Carl Barth (1860–1939),

Taylor’s mathematician and developer of special-purpose slide rules for setting “feeds

and speeds” for metal cutting; Morris Cooke (1872–1960), who applied Taylor’s ideas

both in industry and as Director of Public Works in Philadelphia; and Horace Hathaway

(1878–1944), who personally directed the installation of scientific management at Tabor

Manufacturing Company and wrote extensively on scientific management in the technical

literature.

Also adding energy to the movement and luster to Taylor’s reputation were less

orthodox proponents of scientific management, with some of whom Taylor quarreled

bitterly. Most prominent among these were Harrington Emerson (1853–1931) and Frank

Gilbreth (1868–1924). Emerson, who had become a champion of efficiency indepen-

dently of Taylor and had reorganized the workshops of the Santa Fe Railroad, testified

during the hearings of the Interstate Commerce Commission concerning a proposed rail-

road rate hike in 1910–1911 that scientific management could save “a million dollars
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a day.” Because he was the only “efficiency engineer” with firsthand experience in the

railroad industry, his statement carried enormous weight and served to emblazon scien-

tific management on the national consciousness. Later in his career, Emerson became

particularly interested in the selection and training of employees. He is also credited

with originating the term dispatching in reference to shop floor control (Emerson 1913),

a phrase which undoubtedly derives from his railroad experience.

Frank Gilbreth had a somewhat similar background to that of Taylor. Although he had

passed the qualifying exams for MIT, Gilbreth became an apprentice bricklayer instead.

Outraged at the inefficiency of bricklaying, in which a bricklayer had to lift his own body

weight each time he bent over and picked up a brick, he invented a movable scaffold to

maintain bricks at the proper level. Gilbreth was consumed by the quest for efficiency.

He extended Taylor’s time study to what he called motion study, in which he made

detailed analyses of the motions involved in bricklaying in the search for a more efficient

procedure. He was the first to apply the motion picture camera to the task of analyzing

motions, and he categorized the elements of human motions into 18 basic components,

or therbligs (Gilbreth spelled backward, sort of). That he was successful was evidenced

by the fact that he rose to become one of the most prominent builders in the country.

Although Taylor feuded with him concerning some of his work for nonbuilders, he gave

Gilbreth’s work on bricklaying extensive coverage in his 1911 book, The Principles of

Scientific Management.

1.5.4 The Science in Scientific Management

Scientific management has been both venerated and vilified. It has generated both propo-

nents and opponents who have made important contributions to our understanding and

practice of management. One can argue that it is the root of a host of management-related

fields, ranging from organization theory to operations research. But in the final analysis,

it is the basic realization that management can be approached scientifically that is the

primary contribution of scientific management. This is an insight we will never lose, an

insight so basic that, like the concept of interchangeable parts, once it has been achieved

it is difficult to picture life without it. Others intimated it; Taylor, by sheer perseverance,

drove it into the consciousness of our culture. As a result, scientific management deserves

to be classed as the first management system. It represents the starting point for all other

systems. When Taylor began the search for a management system, he made it possible

to envision management as a profession.

It is, however, ironic that scientific management’s legacy is the application of the

scientific method to management, because in retrospect we see that scientific manage-

ment itself was far from scientific. Taylor’s Principles of Scientific Management is a

book of advocacy, not science. While Taylor argued for his own differential piece rate in

theory, he actually used Gantt’s more practical system at Bethlehem Steel. His famous

story of Schmidt, a first-class man who excelled under the differential piece rate, has

been accused of having so many inconsistencies that it must have been contrived (Wrege

and Perroni 1974). Taylor’s work measurement studies were often carelessly done, and

there is no evidence that he used any scientific criteria to select workers. Despite using

the word scientific with numbing frequency, Taylor subjected very few of his conjectures

to anything like the scrutiny demanded by the scientific method.

Thus, while scientific management fostered quantification of management, it did

little to place it in a real scientific framework. Still, to give Taylor his due, by sheer force

of conviction, he tapped into the underlying American faith in science and changed our

view of management forever. It remains for us to realize the full potential of this view.
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1.6 The Rise of the Modern Manufacturing Organization

By the end of World War I, scientific management had firmly taken hold, and the main

pieces of the American system of manufacturing were in place. Large-scale, vertically

integrated organizations making use of mass production techniques were the norm. Al-

though family control of large manufacturing enterprises was still common, salaried

managers ran the day-to-day operations within centralized departmental hierarchies.

These organizations had essentially fully exploited the potential economies of scale for

producing a single product. Further organizational growth would require taking advan-

tage of economies of scope (i.e., sharing production and distribution resources across

multiple products). As a result, development of institutional structures and management

procedures for controlling the resulting organizations was the main theme of American

manufacturing history during the interwar period.

1.6.1 Du Pont, Sloan, and Structure

The classic story of growth through diversification is that of General Motors (GM).

Formed in 1908 when William C. Durant (1861–1947) consolidated his own Buick

Motor Company with the Cadillac, Oldsmobile, and Oakland companies, GM rapidly

became an industrial giant. The flamboyant but erratic Durant was far more interested in

acquisition than in organization, and he continued to buy up units (including Chevrolet

Motor Company) to the point where, by 1920, GM was the fifth largest industrial en-

terprise in America. But it was an empire without structure. Lacking corporate offices,

demand forecasting, and coordination of production, the corporation encountered finan-

cial difficulties whenever sales slowed. Du Pont Company came to Durant’s aid more

than once by investing heavily in GM and finally forced him out in 1920 (Bryant and

Dethloff 1990).

Pierre Du Pont (1870–1954) came out of semiretirement to succeed Durant as pres-

ident with the hope of making the Du Pont Company’s GM investments profitable. A

more capable successor could not possibly have been found. In 1902, he and his cousins

Alfred and Coleman had purchased control of E. I. du Pont de Nemours & Company,

a collection of single-function explosives manufacturers, and had consolidated it into a

centrally governed, multidepartmental, integrated organization (Chandler and Salsbury

1971). Well aware of scientific management principles,7 Du Pont and his associates

installed Taylor’s manufacturing control techniques and accounting system, and intro-

duced psychological testing for personnel selection. Perhaps Du Pont’s most influential

innovation, however, was the refined use of return on investment (ROI) to evaluate the

relative performance of departments. By 1917, Du Pont Powder Company stood as the

first modern American manufacturing corporation.8

When he moved to General Motors, Du Pont quickly identified Alfred P. Sloan

(1875–1966) as his main collaborator and set out to reorganize the company. Du Pont

7A. J. Moxham and Coleman du Pont had hired Frederick Taylor as a consultant at Steel Motor Company,

and were instrumental in implementing Taylor’s system when they later joined Du Pont as executives.
8The other candidate for the first modern manufacturing corporation would be General Electric, formed

in 1892 by the merger of Edison General Electric and Thomson-Houston Electric, both of which were

themselves products of mergers. To manage this first major consolidation of machinery-making companies,

GE set up a modern structure of top and middle management patterned after that used by the railroads.

However, its financial measures were not as sophisticated as those used by Du Pont and, unlike in the modern

American corporation, a board of directors dominated by outside financiers held considerable veto power

(Chandler 1977).
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and Sloan agreed that GM’s activities were too numerous, scattered, and varied to be

amenable to the centralized organization in use at Du Pont Powder Company. With

Du Pont’s support, Sloan crafted a plan to structure the company as a collection of

autonomous operating divisions coordinated (but not run) by a strong general office. The

various divisions were carefully targeted at specific markets (e.g., Cadillac at the high-

priced market, Chevrolet at the low end to compete directly with Ford, and Buick and

Oldsmobile in the middle; Pontiac was introduced between Chevrolet and Oldsmobile

in the mid-1920s) in accordance with Sloan’s goal of “a car for every purse and purpose”

(Cray 1979). Under Sloan’s reorganization, GM’s general office borrowed ROI methods

from Du Pont Powder Company for evaluating units, and also developed sophisticated

new procedures for demand forecasting, inventory tracking, and market share estimation.

These techniques gradually became standard throughout American industry and are still

used in modified form today.

Sloan’s strategy was stunningly effective. In 1921, GM was a distant second with

12.3 percent of the automotive market to Ford’s 55.7 percent. With its targeted product

lines and regular introduction of new models, GM increased its share to 32.3 percent by

1929, while Ford, which waited until 1927 to replace the Model T with the Model A,

fell to 31.3 percent. By 1940, Ford, which was still run by Henry, his son Edsel, and a

tiny group of executives, was in serious trouble, having fallen to 18.9 percent and third

place behind Chrysler’s 23.7 percent share and far behind GM’s 47.5 percent (Chandler

1990). Only a massive reorganization by Henry Ford II, beginning in 1945 and following

the GM model, saved Ford from extinction.

In addition to forging hugely successful firms, Pierre Du Pont and Alfred Sloan

shaped the American manufacturing corporation of the 20th century. While exhibiting

many variations, all large industrial enterprises in the 20th century have used one of two

basic structures. The centralized, functional department organization developed at Du

Pont is used predominantly by firms with a single line of products in a single market.

The multidivisional, decentralized structure developed at GM is the rule for firms with

several product lines or markets. The environment in which we practice manufacturing

today owes its existence to the efforts of these two innovators and their many associates.

1.6.2 Hawthorne and the Human Element

As industrial organizations grew larger and more technologically complex, the role

of the worker took on increased importance. Indeed, the primary goals of scientific

management—motivating workers and matching workers to tasks—were essentially

behavioral. However, Taylor, being a true engineer, seemed to believe that human beings

could be optimized in the same sense as a metal-cutting machine. For example, he

observed that because a worker “strains every nerve to secure victory for his side” in a

baseball game (Taylor 1911, 13), he or she should be capable of similar exertion at work.

Despite the fact that he was an accomplished athlete, Taylor did not show the slightest

appreciation for the psychological difference between work and play. Similarly, while he

could spend countless hours studying and educating workers in the science of shoveling,

he had no patience for a worker’s sentimental attachment to the shovel he had handled for

years. Although his writings certainly indicate a concern for the workers, Taylor never

managed to understand their points of view.

In spite of Taylor’s personal blind spots, scientific management served to catalyze

the behavioral approach to management by systematically raising questions on author-

ity, motivation, and training. The earliest writers in the field of industrial psychology
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acknowledged their debt to scientific management and framed their discussions in terms

consistent with Taylor’s system.

The acknowledged father of industrial psychology was Hugo Munsterberg (1863–

1916). Born and educated in Germany, Munsterberg came to America and established

a famous psychology laboratory at Harvard, where he studied a wide range of psycho-

logical questions in education, crime, and philosophy as well as industry. In his 1913

book Psychology and Industrial Efficiency, he paid tribute to scientific management and

directly addressed it in three parts entitled “The Best Possible Man” (i.e., worker se-

lection), “The Best Possible Work” (i.e., training and working conditions), and “The

Best Possible Effect” (i.e., achieving management goals). Munsterberg’s groundbreak-

ing work paved the way for a steady stream of industrial psychology textbooks and a

psychological testing fad shortly after World War I.

Among the Americans who led the way in the application of psychology to industry

was Walter Dill Scott (1869–1955), who studied worker selection and rating for promo-

tion (Scott 1913). A series of articles he wrote in 1910 to 1911 for System magazine (now

BusinessWeek) under the title “The Psychology of Business” were highly influential in

raising awareness of the field of psychology among managers. He later turned to psy-

chological research in advertising, defined the proper role of the newly arising personnel

management function, and served as president of Northwestern University.

Lillian Gilbreth (1878–1972) was an early and visible proponent of industrial psy-

chology from inside the ranks of scientific management. Wife of scientific management

pioneer Frank Gilbreth and matriarch of the brood made famous by the book Cheaper by

the Dozen (Gilbreth and Carey 1949), Gilbreth was one of the pioneers of the scientific

management movement. In addition to collaborating with her husband on his motion

studies work and carrying on this work after his death, she became one of the first ad-

vocates of psychology in management with her book The Psychology of Management

(1914), based on her doctoral thesis in psychology at Brown University. In this book

she contrasted scientific management with traditional management along various dimen-

sions, including individuality. Her premise was that because of its emphasis on scientific

selection, training, and functional foremanship, scientific management offered ample

opportunity for individual development, while traditional management stifled such de-

velopment by concentrating power in a central figure. Although the details of her work

in psychology read today like an apology for scientific management and have largely

been forgotten, Lillian Gilbreth deserves a place in management history for her early

call for the humanization of the management process.

Mary Parker Follett (1868–1933) belonged chronologically to the scientific man-

agement era, but her thinking on the sociology and psychology of work was far ahead

of its time. Like Lillian Gilbreth, she found in Taylor’s functional foremanship a sound

basis for allocating authority:

One person should not give orders to another person, but both should agree to take their

orders from the situation . . . We have here, I think, one of the largest contributions of scientific

management; it tends to depersonalize orders. (Follett 1942, 59)

However, Follett was repelled by the relegation of the worker to simply carrying out

tasks given and designated by management. She held that “not consent but participation

is the right basis for all social relations” (Follett 1942, 211). By “participation,” Follett

meant to include the workers’ ideas as well as their labor. Her rationale was that the

ideas are valuable in themselves, but more important, the very process of participation

is essential to establishing a functional work environment. Although at times her ideas
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sound idealistic, the depth and range of her work are astonishing and many of her insights

still apply today.

A major episode in the quest to understand the human side of manufacturing was

the series of studies conducted at the Western Electric Hawthorne plant in Chicago

between 1924 and 1932. The studies originally began with a simple question: How does

workplace illumination affect worker productivity? Under sponsorship of the National

Academy of Science, a team of researchers from Massachusetts Institute of Technology

observed groups of coil-winding operators under different lighting levels. They observed

that productivity relative to a control group went up as illumination was increased, as had

been expected. Then, in another experiment, they observed that productivity also went

up when illumination was decreased, even to the level of moonlight (Roethlisberger and

Dickson 1939).

Unable to explain the results, the original team abandoned the illumination studies

and began other tests—of the effects on productivity of rest periods, length of work

week, incentive plans, free lunches, and supervisory styles. In most cases, the trend was

for higher-than-normal output by the groups under study.

Various experts were brought in to study the puzzling Hawthorne data, most notably

George Elton Mayo (1880–1949) from Harvard. Approaching the problem from the per-

spective of the “psychology of the total situation,” he came to the conclusion that the

results were primarily due to “a remarkable change of mental attitude in the group.” In

the legend that subsequently grew up around the Hawthorne studies, Mayo’s interpreta-

tion was reduced to the simple explanation that productivity increased as a result of the

attention received by the workers under study, and this was dubbed the Hawthorne effect.

However, in his writings, Mayo (1933, 1945) was not satisfied with this simple expla-

nation and modified his view beyond this initial insight, arguing that work is essentially

a group activity and that workers strive for a sense of belonging, not simply financial

gain, in their jobs. By emphasizing the need for listening and counseling by managers in

order to improve worker collaboration, the industrial psychology movement shifted the

emphasis of management from technical efficiency, the focus of Taylorism, to a richer,

more complex, human relations orientation.

1.6.3 Management Education

In addition to fostering the human relations perspective, the rise of the modern integrated

business enterprise solidified the position of the professional managerial class. Prior

to 1920, the majority of large-scale businesses were run by owner-entrepreneurs such

as Carnegie, Ford, and Du Pont. Growth and integration after World War I resulted in

systems too large to be run by owners (although Henry Ford tried, with disastrous results).

Consequently, more and more decision-making responsibility was given to managers,

middle and upper, who were without significant holdings in the firm.

In the 19th and early 20th centuries, it was not uncommon for these professional

managers to be drawn from the ranks of the skilled workers (e.g., machinists). But as

the modern business enterprises matured, formal university training became increasingly

necessary. Many managers of this era were educated in traditional engineering disciplines

(e.g., mechanical, electrical, civil, chemical). Some, however, began to seek education

directly related to management, in either business schools or industrial engineering pro-

grams, both of which were emerging in the wake of the scientific management movement

at the turn of the century.

The first American undergraduate business program was established in 1881 at the

University of Pennsylvania’s Wharton School. This was followed by schools at Chicago
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and Berkeley in 1898, and at Dartmouth (with the first master’s level program), New York

University, and Wisconsin in 1900. By 1910 there were more than a dozen separately

organized schools of business at American universities, although the programs were

generally small and had curricula restricted to background (e.g., economics, law, foreign

languages) with anecdotes about the best industrial practices. The leading program of the

time, Harvard, was organized in large part by Arch Shaw who had previously lectured

at Northwestern and, as head of a Chicago publishing house, had published Library

of Factory Management. Shaw relied heavily on outside lecturers from the scientific

management movement (e.g., Frederick Taylor, Harrington Emerson, Carl Barth, Morris

Cooke) and was instrumental in introducing the case method, which became Harvard’s

trademark and would heavily influence business education across America (Chandler

1977).

Between 1914 and 1940, American business schools grew and diversified their

curricula. During this period most of the state universities introduced business programs;

among them were Ohio State (1916); Alabama, Minnesota, North Carolina (1919);

Virginia (1920); Indiana (1921); Kansas and Michigan (1924) (Pierson 1959). As the

number of programs grew, so did the number of degrees granted: from 1,576 BAs and 110

MBAs in 1920, to 18,549 BAs and 1,139 MBAs in 1940 (Gordon and Howell 1959). At

the same time, the functional areas of a business education were being standardized; by

the mid-1920s, more than half of the 34 schools belonging to the American Association of

Collegiate Schools of Business required students to take courses in accounting, business

law, finance, statistics, and marketing. Textbooks supporting this functional orientation

also began to appear (e.g., Hodge and McKinsey 1921 in accounting, Lough 1920 and

Bonneville 1925 in finance, and Cherington 1920 in marketing).

American engineering schools also responded to the need for management education

by introducing industrial engineering (IE) programs. Like the early business schools, the

first IE departments were heavily influenced by the scientific management movement.

Hugo Diemer taught the first shop management course in the mechanical engineering

department of the University of Kansas in 1901 to 1902 and later went on to found the

first IE curriculum at Penn State in 1908. Other engineering schools followed, and by the

end of World War II there were more than 25 IE curricula in American universities. After

the war, growth of the IE field tracked that of the economy; by the 1980s the number of

IE programs had reached about 100 (Emerson and Naehring 1988).

The tools of industrial engineering evolved as the field grew during the interwar

period. In addition to the methods of time and motion study (Gilbreth 1911; Barnes

1937), techniques of cost engineering (Fish 1915; Grant 1930), quality control (Shewhart

1931; Grant and Leavenworth 1946), and production/inventory management (Spriegel

and Lansburgh 1923; Mitchell 1931; Raymond 1931; Whitin 1953) were presented in

textbook form and widely introduced into industrial engineering curricula. By the end

of World War II, all the major components of the IE discipline were in place, with the

exception of the quantitative tools of operations research, which did not appear in a major

way until after the war.

1.7 Peak, Decline, and Resurgence of American Manufacturing

Although the modern American manufacturing enterprise had largely been formed by

the 1920s, the depression of the 1930s and the war of the 1940s prevented the country

from reaping the full benefits of its powerful manufacturing sector. Thus, it was not until

the post–World War II period, in the 1950s and 1960s, that America enjoyed a golden
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era of manufacturing. This era shaped the attitudes of a generation of managers, heavily

influenced business and engineering schools, and set the stage for the not-so-golden era

of manufacturing in the 1980s and 1990s.

1.7.1 The Golden Era

American manufacturing went into World War II in an extremely strong position, having

mastered the techniques of mass production and distribution and management of large-

scale enterprises. It emerged from the war in a position of undisputed global dominance.

In 1945 the American industrial plant was easily the strongest in the world. The American

market was 8 times the size of the next-largest market in the world, giving American

firms a huge scale advantage. American per capita income was 8 times that of Japan

in the 1950s, providing a vast source of capital, despite the fact that savings rates were

lower than those in other countries. The American primary and secondary education

system was the finest in the world. And with the GI Bill added to the land grant college

system, America outpaced the rest of the world in higher education as well. Labor

productivity (measured as gross domestic product per worker-hour) was nearly double

that of any European country, and fully 3 times that of Germany and 7 times that of

Japan (Maddison 1984). With its huge domestic market, ready capital, and well-trained,

productive workforce, America could produce and distribute goods at a pace and scale

unthinkable to anyone else.

In contrast, the rest of the world lay virtually in ruins. The industrial plant in Europe

and Japan had been physically devastated by the war. The scientific establishments

of many countries were in disarray as America inherited some of their best brains.

Furthermore, at the war’s end, because transportation was expensive and trade policies

protectionist, economies were far less global than they are today. Because the primary

market for almost everything was in America, other countries would have been at a huge

disadvantage even without their inferior physical plants and disrupted R&D base.

The resulting postwar boom in American manufacturing was undoubtedly exhil-

arating and was certainly profitable. Americans saw per capita disposable income (in

constant 1996 dollars) rise from $5,912 in 1940 to $12,823 in 1970 (U.S. Department of

Commerce 1972). In 1947, the 200 largest industrial firms in America were responsible

for 30 percent of the world’s value added in manufacturing and 47.2 percent of total

corporate manufacturing assets. By 1963, they accounted for 41 percent of value added

and 56.3 percent of assets. By 1969 the top 200 American industrials accounted for 60.9

percent of the world’s manufacturing assets (Chandler 1977, 482). For a while the living

was easy. But as many of the baby boom generation enjoyed “Leave It to Beaver” lives

in suburbia, the competitive world that would be their inheritance was being shaped as

America’s former enemies and allies recovered from the war.

1.7.2 Accountants Count and Salesmen Sell

During the golden era following World War II, the principal opportunities for American

manufacturing firms were plainly in the areas of marketing, to develop the huge potential

markets for new products, and finance, to fuel growth. As we mentioned earlier, America

already had a stronger history in advertising than the Old World. Moreover, as indicated

by the reliance of Du Pont and GM on financial measures to coordinate their large-scale

enterprises, American manufacturers were well acquainted with the tools of finance. The

manufacturing function itself became of secondary importance. American dominance
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in manufacturing was so formidable that eminent economist John Kenneth Galbraith

proclaimed the problem of production “solved” (Galbraith 1958).

But as the manufacturing boom of the 1950s and 1960s turned into the manufacturing

bust of the 1970s and 1980s, it became plain that something was wrong. The simplest

explanation is that since the details of manufacturing didn’t matter during the golden era,

American firms became lax. Because American goods were the envy of the world, firms

could largely dictate the quality specifications of their products, and managers learned to

take quality for granted. Because of the American technological advantage and the lack

of competition, continual improvement was unnecessary to maintain market share, and

managers learned to take the status quo for granted. When foreign firms, which could

not afford to take anything for granted, recovered sufficiently to present a legitimate

challenge, many American firms lacked the vigor to meet it.

While this simple explanation may be accurate for some firms or industries, it does

not give the whole story. The influences of the golden era on the current condition

of American manufacturing are subtle and complex. Besides promoting a deemphasis

on manufacturing details, the emphasis on marketing and finance in the 1950s and

1960s profoundly influenced today’s American manufacturing firms. Recognizing these

areas as having the greatest career potential, more and more of the “best and brightest”

chose careers in marketing and finance. These became the glamour functions, while

manufacturing and operations were increasingly viewed as dead-end “career breakers.”

This led to the simultaneous rise of the marketing and finance outlooks as dominant

perspectives in American manufacturing firms. We trace some of the consequences

below.

The Marketing Outlook. With top executives and rising stars increasingly preoccu-

pied with selling, the organizations themselves took on more of the marketing outlook.

While there is nothing intrinsically wrong with the marketing outlook for the market-

ing department, it can be an overly conservative perspective for the firm as a whole.

The principal task of marketing is to analyze the introduction of new products. But the

products that are most amenable to analysis tend to be imitative, rather than innovative.

A good case history that illustrates the pitfalls of the marketing outlook is that

of IBM and the xerography process. In the late 1950s, Haloid Company (which had

introduced the first commercial xerographic copier in 1949 and later changed its name

to Xerox) offered IBM the opportunity to jointly develop the first practical office copier.

IBM enlisted Arthur D. Little, a Boston management consulting firm, to conduct a

market study on the potential for such a product. A. D. Little, basing its conclusions on

consumption of carbon paper and assessments of which offices needed to make paper

copies, estimated maximum demand to be no more than 5,000 machines, far less than

necessary to justify the development costs (Kearns and Nadler 1992). IBM declined the

offer, and Xerox went on to make so much money that royalties to Battelle Memorial

Institute, the research laboratory where the process was developed, threatened its not-

for-profit status.

The conclusion is that the marketing outlook will often not justify the high-risk,

high-payoff ventures associated with truly innovative new products. The Xerox machine

created a demand for paper copies that did not previously exist. While hard to analyze,

revolutionary products such as this can be enormously profitable. An overreliance on

marketing may have caused large American manufacturing firms to take on fewer of

these ventures than they should have. As evidence of this, consider that the last major

automotive innovation to appear first on an American car was the automatic transmission

in the 1940s. Four-wheel drive, four-wheel steering, turbocharging, antilock brakes, and
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hybrid gas/electric vehicles were all introduced first by foreign automakers (Dertouzos,

Lester, Solow 1989, 19).

The Finance Outlook. As noted earlier, Du Pont pioneered the use of ROI as a measure

of the effectiveness of capital in a large-scale enterprise shortly after the turn of the

century. However, in the 1910s, Du Pont Powder Company was primarily owned and

managed by the Du Pont family; so there was no question that it was to be managed for

the long-term benefit of its owners. Pierre Du Pont would never have used short-term

ROI to evaluate the performance of individual managers. By the 1950s and 1960s, high-

level managers were no longer owners, and the pervasiveness of the finance outlook

had extended short-term ROI in the form of quarterly reports to a measure of individual

performance.

An overreliance on short-term ROI discouraged managers from pursuing high-risk

or long-term ventures and thus further aggravated the tendency toward the conservatism

promoted by the marketing outlook. Short-term ROI can be artificially inflated for a

while, possibly many years, through reduction in the investment base by forgoing process

upgrades, equipment maintenance, and replacement, and by purchasing less than state-

of-the-art facilities. However, in the long run, such practices can put a firm at a distinct

competitive disadvantage. For instance, Dertouzos, Lester, and Solow (1989, 57) cite

statistics showing that the rate of business-sector capital investment as a percentage

of net output in Japan and West Germany has significantly outpaced that of America

since 1965, precisely the period over which these countries significantly narrowed the

productivity gap between themselves and America.

Moreover, the finance outlook, which views manufacturing management as essen-

tially analogous to portfolio management, implies that the way to minimize risk is to

diversify. The portfolio manager diversifies investments by purchasing various types of

securities. The manufacturing executive diversifies by acquiring businesses outside the

firm’s core activities. As the rest of the world recovered from the war and began to

give American firms serious competition in the 1960s, manufacturing firms increasingly

turned to the financial response of diversification, almost to the point of mania in the

late 1960s. In 1965 there were 2,000 mergers and acquisitions in America; by 1969 the

number had risen to more than 6,000. Moreover, of the assets acquired during the 1963–

1972 merger wave, nearly three-fourths were for product diversification, and one-half

of these were in unrelated products (Chandler 1977). The effect was a dramatic change

in the character of America’s large manufacturing firms. In 1949, 70 percent of the 500

largest American firms earned 95 percent of revenues from a single business. By 1969,

70 percent of the largest firms no longer had a dominant business (Davidson 1990).

Like the marketing outlook, the finance outlook is too restrictive a perspective for the

entire firm. While managers of purely financial portfolios are certainly rational in their

use of diversification to achieve stable returns, manufacturing firms that use the same

strategy are neglecting an important difference between portfolio and manufacturing

management: Manufacturing firms influence their destinies in a far more direct way than

do investors. The profitability of a manufacturing business is a function of many things,

including product design, product quality, process efficiency, customer service, and so

forth. When a firm moves away from its core business, there is a danger that it will fail to

perform on these key measures. This can more than offset any potential advantage from

diversification and can even threaten the existence of the company.

Indeed, the preponderance of statistical evidence paints a negative picture of the ef-

fectiveness of the merger-and-acquisition strategy. A detailed survey by Ravenscraft

and Scherer (1987) of mergers during the 1960s and early 1970s showed that, on
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average, profitability and efficiency of firms decline after they are acquired. Hayes and

Wheelwright (1984, 13) cite further statistics from Fruhan (1979) and Forbes magazine

showing that highly diversified conglomerates tend to underperform relative to firms with

highly focused product markets. In the realm of popular culture, books like Barbarians

at the Gate (Burrough 1990) and Merchants of Debt (Anders 1992) graphically illus-

trate how far pure unbridled greed can take the merger-and-acquisition process from any

consideration of manufacturing effectiveness. Scherer and Ross (1990, 173), in a compre-

hensive survey of firm structure and economic performance, sum up the effectiveness of

the merger-and-acquisition approach with this statement: “The picture that emerges is a

pessimistic one: widespread failure, considerable mediocrity, and occasional successes.”

1.7.3 The Professional Manager

The rapid growth following World War II profoundly shaped the manufacturing manager

in two additional ways. First, strong demand for managers prompted an acceleration of

the promotion process, under the “fast-track manager” system. Second, unable to nurture

enough managers internally, industry increasingly looked to the universities to provide

professional management training. Before the war, MBA-trained managers were still a

rarity; only 1,139 master’s degrees in business were granted in 1940 (Gordon and Howell

1959, 21). After the war, this tripled to 3,357 in 1948 and continued growing steadily, so

that by the end of the 20th century American business schools were turning out roughly

100,000 MBAs per year. The net result has been that the MBA has become the standard

credential for business executives, which has led to changes in the character of both

corporations and business schools.

The Fast-Track Manager. As Hayes and Wheelwright (1984) point out, before the

war, it was traditional for managers to spend considerable time—a decade or more—in

a job before being moved up the managerial ladder. After the war, however, there were

simply not enough qualified people to fill the expanding need for managers. To fill the

gap, business organizations identified rising stars and put them on fast tracks to executive

levels. These individuals did shorter rotations through lower-level assignments—2 or 3

years—on their way to upper-level positions. As a result, top manufacturing managers

who came of age in the 1960s and 1970s were likely to have substantially less depth of

experience at the operating levels than their predecessors.

Worse yet, the concept of a fast-track manager, first introduced to fill a genuine

postwar need, gradually became institutionalized. Once some “stars” had moved up the

promotion ladder quickly, it became impossible to convince those who followed to return

to the slower, traditional pace. A bright young manager who was not promoted quickly

enough would look for opportunities elsewhere. Lifelong loyalty to a firm became a

thing of the past in America, and it became commonplace for top managers in one

industry to have come up from the ranks of an entirely different one.9 American business

schools preached the concept of the professional manager who could manage any firm

regardless of the technological or customer details, and American industry practiced it.10

The days of Carnegie and Ford, owner-entrepreneur-managers who knew the details of

their businesses from the bottom up, were gone.

9For example, John Scully came from Pepsi to head Apple Computer, and Archie McCardle came from

Xerox to head International Harvester.
10For that matter, American government practiced it. When Secretary of the Treasury Donald Regan and

White House Chief of Staff James Baker exchanged jobs during the Reagan administration, there was little

mention of it in the press—except to note the different management styles of the two men.
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Academization of Business Schools. As business schools expanded after the war to

meet the demand for professional managers, their pedagogical approaches came under

increasing scrutiny. In 1959, two influential studies of American business schools, com-

missioned by Ford Foundation (Gordon and Howell 1959) and Carnegie Corporation

(Pierson 1959), were released. These studies criticized American universities for taking

an overly vocational approach to business education and called for an increase in aca-

demic standards and a broadening of emphasis to promote general knowledge, based on

the “fundamental disciplines” of the behavioral sciences, economics, and mathematics

and statistics. The studies advocated an interesting mix of specialization (i.e., emphasis

on more sophisticated analytical techniques11) and generalization (i.e., development of

professional managers who are prepared to deal with virtually any management problem).

Having been on the fringe of academic respectability from their inception, the busi-

ness schools took the studies’ recommendations seriously. They hired faculty specialists

in psychology, sociology, economics, mathematics, and statistics—many without any

business background whatever. They revised curricula to include more courses in these

basic “theoretical” subjects and reduced courses aimed at training students for specific

jobs. Operations research, which had burst onto the scene with some well-publicized

military successes during World War II and was developing rapidly in the 1960s with

the evolution of the digital computer, was quickly absorbed into operations manage-

ment. The concept of the professional manager became the ruling paradigm in American

business education.

This “modernizing” of the business schools did more than produce a generation of

managers long on general theories and short on specific practical skills. It eroded the busi-

ness schools’ traditional, albeit small, role as repositories of the best of industry practice.

With specialists in psychology and mathematics pursuing narrowly focused research in

arcane academic journals, it is hardly surprising that when productivity growth declined

in the late 1970s and early 1980s, industry did not look to the universities for help. In-

stead, it turned to Japanese examples (e.g., Schonberger 1982) and anecdotal surveys of

industry practice by consultants (e.g., Peters and Waterman 1982). Thus, after being ed-

ucated in the “scientific” tools of management, the MBA-trained professional managers

of the 1980s and 1990s were wooed by an endless stream of quick fixes for their man-

agement woes. Fads based on buzzwords, such as theory Z, management by objectives,

zero-based budgeting, decentralization, quality circles, restructuring, “excellence,” man-

agement by walking around, matrix management, entrepreneuring, value chain analysis,

one-minute managing, just-in-time, total quality management, time-based competition,

business process reengineering, and many others, came and went with numbing regular-

ity. While many of these “theories” contain valuable insights, the sheer number of them

is evidence that the fix is not quick.

The ultimate irony occurred in the 1980s when, in a desperate attempt to win back

the trust of students alienated by the almost total disconnect between classroom and

boardroom, many operations management courses began to teach the buzzword fads

themselves. In doing so, business schools gave up their role as arbiter of what works and

what does not. Instead of being trendsetters, they became trend followers.

By the 1990s it was apparent that business schools and corporations had swung far

apart, with industry naively relying on glib buzzword approaches and academia leaning

too far toward specialized research and imitative teaching. It remains to be seen whether

this gap can be closed. To do so, business schools must recover their foundation in

11Presumably this had something to do with the fact that the studies were done in the era of Sputnik—a

time of widespread faith in science.
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practice, in order to focus their tools on problems of real industry interest instead of on

abstract intellectual challenge. Industry must recover its appreciation of the importance of

the technical details of manufacturing and develop the capacity to systematically evaluate

which management practices work, instead of lurching from one bandwagon to the next.

By adjusting the attitudes of both academics and practitioners, we have the potential to

apply the tools and technology developed in the decades since World War II to sustain

manufacturing as a solid base of the American economy well into the 21st century.

1.7.4 Recovery and Globalization of Manufacturing

The 1990s are likely to be remembered as an era of irrational exhuberance in the stock

market and overblown hype of the dot-com sector. But they also represented a dramatic

resurgence of American manufacturing after the decline of the 1970s and 1980s. Annual

productivity increases in manufacturing had returned to a healthy rate above 3 percent

during much of the ’90s and averaged above 4 percent from 2000 to 2003. In 1997,

manufacturing profits were at a 40-year high and unemployment was at its lowest level in

more than 2 decades. Seven years of economic growth had spurred investment in physical

plant, so that nonresidential equipment owned by business nearly doubled between 1987

and 1996 (BusinessWeek, June 9, 1970, 70).

Good times for American manufacturers also extended beyond the domestic market.

The Institute for Management Development in Lausanne, Switzerland, ranked America

as the most globally competitive nation in the world every year during the period 1993

to 1997. A 1993 survey by the Center for the Study of American Business (CSAB) at

Washington University in St. Louis of 48 manufacturing executives found that 90 percent

considered their firms more competitive than they had been 5 years earlier (Chilton 1995).

Large majorities of these executives also reported that quality and product development

time had improved substantially over this same period.

While encouraging, the situation in the mid-1990s was far from a return to that

of the mid-1960s. Total employment in manufacturing increased only modestly (by

700,000 jobs) during the boom years from 1992–1998, and fell substantially (by over

2.5 million jobs) between 1998–2003. The recession in 2001 was partially responsible.

But so were the above–cited productivity increases, which were needed to keep pace with

elevated global competition. For example, despite improved performance of America’s

“big three,” Toyota remained widely regarded as the world’s premier automaker and

steadily gained market share (Taylor 1997). The CSAB survey reported that 75 percent

of manufacturing executives strongly agreed (and an additional 10 percent somewhat

agreed) that the competition they faced in 1993 was much stiffer than that 10 years

earlier, and large majorities agreed that even more improvements in quality and product

development times would be needed in the next 5 years in order to keep pace.

As managers searched frantically for ways to improve their competitiveness, the

1990s became a decade of manufacturing fads. Books, videos, software, and gurus

promised (nearly) instant improvements. While these were often described with dazzling

buzzwords (and acronymns), their substance fell into three basic trends focusing on

efficiency, quality, and integration. While certainly not new concepts, the intensity with

which they were pursued reached new heights as accepted performance standards rose

ever higher.

The efficiency trend is as old as manufacturing itself and was at the core of the

Scientific Management movement of the early 20th century. But it received a substantial

boost in the 1970s and ’90s with the emergence of the Japanese just-in-time (JIT) system,

particularly at Toyota. We will discuss this in more depth in Chapter 4. For now we will
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simply note that a key focus of JIT was elimination of unnecessary inventory (i.e., waste)

in production systems. After some half-hearted copycatting in the 1980s, American

firms flirted with a more radical waste elimination approach labeled business process

reengineering (BPR) (Hammer and Champy 1993). After BPR became discredited as

synonymous with “downsourcing,” the efficiency emphasis of JIT was reborn as lean

manufacturing. Whether the name “lean” persists or not, the efficiency trend will. So,

we will examine the underlying science of lean in Chapter 9.

The quality trend dates back at least to the pioneering work of Shewhart (1931), but

also received an important stimulus in the 1970s and ’80s from Japan under the banner

of total quality management (TQM). After an intense love affair with “qualityspeak” in

the 1980s, many firms became convinced that TQM was being oversold with grandiose

claims such as “quality is free” (Crosby 1979) and the term fell into disfavor. But the

quality trend was soon revived when General Electric borrowed the statistically based Six

Sigma system from Motorola and used it to great success in the 1990s. Again, whether

the “Six Sigma” label lasts or not, quality is here to stay, so we will examine the Japanese

influence of this trend in Chapter 4 and probe it more deeply in Chapter 12.

The integration trend traces its roots back to the increasingly sophisticated meth-

ods needed to manage the vertically integrated large-scale enterprises of Carnegie, Ford,

and Sloan. Attempts to computerize these methods led to the emergence of material

requirements planning (MRP) systems in the 1970s. These steadily grew in scope [and

acquired loftier names, such as manufacturing resources planning (MRP II), business re-

quirements planning (BRP), and enterprise resource planning (ERP)]. But by the 1990s,

the pressure of global competition was inducing many firms to deintegrate by outsourc-

ing noncore processes. This led to an enormous growth in the contract manufacturing

industry.12 The need to coordinate manufacturing and distribution operations that were

increasingly spread around the globe led to the rise of supply chain management (SCM).

The supply chain allure was so strong that many ERP systems were transformed (almost

overnight) into SCM systems. Regardless of the name, the manufacturing integration

problem, and software systems for dealing with it, will be with us for a very long time.

Hence, we study the MRP roots of the (computerized) integration trend in Chapter 3 and

return to it from a supply chain perspective in Chapter 17.

The net effect of globalization is that manufacturing management is a much more

complex and larger-scale activity than it once was. Successful firms must not only master

skills necessary to run effective production facilities, they must also coordinate these

across multiple levels, firms, and cultures. It is safe to say that the “production problem”

Galbraith pronounced solved in 1958 will be with us for some time to come.

1.8 The Future

America’s manufacturing future cannot help but be influenced by its past. The practices

and institutions used today have evolved over the past 200 years. The influences range

from the ramifications of the myth of the frontier to our love affair with finance and

marketing, and they will not evaporate overnight. An appreciation of what has gone

before can at least make us conscious of what we are dealing with (a brief summary of

manufacturing milestones is given in Table 1.1). But history shapes only the possibilities

12For example, electronics manufacturing services (EMS) had become a $140 billion industry by 2003.

The largest EMS firms, such as Solectron and Flextronics, had grown into multi-billion-dollar enterprises

and had expanded well beyond contract manufacturing by providing services throughout the supply chain,

from new product introduction to postsale service, and even management of overall supply chain integration.
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TABLE 1.1 Milestones in the History of Manufacturing 

Date 

4000 B.C. 

1500 
1733 
1765 
1765 
1776 
1776 
1781 
1785 
1793 
1801 
1814 
1832 

1840 
1851 
1854 
1855 

1869 
1870 
1875 

1877 

1880 
1886 

1886 
1910 
1911 
1913 
1913 
1914 
1915 
1916 

1920 
1924 
1931 
1945 

1947 

1953 

Event 

Egyptians coordinate large-scale projects to build pyramids. 

Leonardo da Vinci systematically studies shoveling. 

John Kay invents flying shuttle. 

James Hargreaves invents spinning jenny. 

James Watt invents steam engine. 

Adam Smith publishes Wealth of Nations, introducing the notions of division of labor and the invisible hand of capitalism. 

James Watt sells first steam engine. 

James Watt invents system for producing rotary motion from up-and-down stroke of steam engine. 

Honore LeBlanc shows Thomas Jefferson interchangeable musket parts. 

First modern textile mill in America established in Pawtucket, RI. 

Eli Whitney contracted by U.S. government to produce muskets, using system of interchangeable parts. 

Integrated textile facility established in Waltham, MA. 

Charles Babbage publishes On the Economy of Machinery and Manufactures, dealing with organization and costing procedures 

for factories. 

Opening of anthracite coal fields in eastern Pennsylvania provides first American source of inexpensive nonwater power. 

Crystal Palace Exhibition in London displays "American system of manufacturing." 

Daniel C. McCallum develops and implements earliest large-scale organization management system at New York and Erie Railroad. 

Henry Bessemer patents a process for refining iron into steel that was far better suited to mass production than earlier "puddling" 

processes. 

The first transcontinental railroad, the Union Pacific-Central Pacific, is completed. 

Marshall Field makes use of inventory turns as a measure of retail operation performance. 

Andrew Carnegie opens the Edgar Thompson Steel Works in Pittsburgh, the first integrated Bessemer rail mill built from scratch 

and for decades the largest steel works in the world. 

Arthur Wellington publishes The Economic Theory of the Location of Railways, the first book to present methods of capital 

budgeting. 

American Society of Mechanical Engineers (AS ME) founded. 

Charles Hall of the United States and Paul Heroult in Europe simultaneously invent electrolytic method for reducing bauxite into 

aluminum. 

Henry Towne presents paper at ASME calling for an "Economic Section" devoted to shop management. 

Hugo Diemer publishes Factory Organization and Administration, the first industrial engineering textbook. 

F. W. Taylor publishes The Principles of Scientific Management. 

Henry Ford introduces first moving automotive assembly line in Highland Park, MI. 

Ford W. Harris publishes How Many Parts to Make at Once. 

Lillian Gilbreth publishes The Psychology of Management. 

John C. L. Fish publishes Engineering Economics: First Principles, the first text to present discounted cash flow methods. 

Henri Fayol publishes first overall theory of management as Administration industrielle et generale (not translated into English 

until 1929). 
Alfred P. Sloan reorganizes General Motors to consist of a general office and several autonomous divisions. 

Hawthorne studies begin at Western Electric plant in Chicago; they continue to 1932. 
Walter Shewhart publishes Economic Control of Quality of Manufactured Product, introducing the concept of the control chart. 

ENIAC (Electronic Numerical Integrator and Calculator), the first fully electronic digital computer, is built at the Univeristy of 

Pennsylvania. John Bardeen, Walter Brattain, and William Shockley coinvent the transistor at Bell Labs. 

Herbert Simon publishes Administrative Behavior, marking a change in focus of organization theory from the structure of orga

nizations to the process of decision making. 

Thomson Whitin publishes The Theory of Inventory Management, the first book to develop a theory to underlie the practice of 

inventory control. 

1954 Peter Drucker publishes The Practice of Management, introducing the concept of management by objectives (MBO) on a wide 

scale. 

1964 The IBM 360 becomes the first computer based on silicon chips. 

1975 Joseph Orlicky publishes Material Requirements Planning. 

1977 Introduction of the Apple II starts the personal computer revolution. 

1978 Taichi Ohno publishes Toyota seisan hoshiki on the Toyota production system. 
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for the future, not the future itself. It is up to the next generation of manufacturing 

managers to evolve the American system of manufacturing to its next level. 

W hat will this level be? Although no one can say for sure, it is our belief that the con

cept of the professional manager is intellectually bankrupt. In a world of intense global 

competition, simply setting appropriate general guidelines is not enough. Managers need 

detailed knowledge about their business, knowledge that must include technical de

tails. Unfortunately, the rise of such monolithic software packages as enterprise require

ments planning (the subject of Chapter 3), which purport to encapsulate "best practices," 

may prove to be a giant step backward in terms of managers better understanding their 

practices. 

In the future, survival itself is likely to depend on understanding these details. The 

manufacturing function is no longer a necessary evil that can be taken for granted; it is 

a vital strategic function. In an era when products move from cutting-edge technology 

to commodities in the blink of an eye, inefficient manufacturing is likely to be fatal. 

The economic recovery of the 1990s and the fact that several universities have initiated 

programs in manufacturing management that stress the technical aspects and operating 

details of manufacturing are encouraging signs that we are adjusting to the new era. 

But change will not come uniformly to all of American manufacturing. Some firms 

will adapt-indeed, have already adapted-to the new globally competitive world of 

manufacturing; others will resist change or will continue to seek some kind of tech

nological quick fix. American firms will not rise or fall as a group. Firms that master 

the intricacies of manufacturing under the new world order will thrive. Those that cling 

to the methods evolved under the unique, and long-gone, conditions following World 

War II will not. Those that continue to increase profits by squeezing their employees to 

increase productivity without allowing real wages to rise will also fail (it appears that the 

General Motors strike in the summer of 1998 was a crack in the veneer of new American 

juggernaut). 

To make the transition to the new era of manufacturing, it is crucial to remember 

the lessons of history. Consistently, the key to effective manufacturing has been not 

technology alone, but also the organization in which the technology was used. The only 

way for a manufacturing firm of the future to gain a significant strategic advantage over 

the long term will be to focus and coordinate its manufacturing operation, in conjunction 

with product and market development, with customer needs. The goal of this book is 

to provide the manufacturing manager with the intuition and tools needed to do just 

this. 

1. Before 1900, despite its weaknesses in effective management of workers, manufacturing 

leadership was well provided by top management. They were technological entrepreneurs, 

architects of productive systems, veritable lions of industry. But when they delegated their 

production responsibilities to a second-level department, the factory institution never 

recovered its vitality. The lion was tamed. Its management systems became protective and 

generally were neither entrepreneurial nor strategic. Production managers since then have 

typically had little to do with initiating substantially new process technology-in contrast to 

their predecessors before 1900 (Skinner 1985). 

(a) Do you agree with Skinner? 

(b) What structural differences between manufacturing enterprises before 1890 and after 

1920 contributed to this difference in managerial orientation? 
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(c) Why have manufacturing managers become increasingly seen as "custodians of financial 

assets"? (What were the effects on the role of manufacturing as part of a business 

strategy?) 

(d) How is Japan (or Germany) different from (or the same as) America with regard to this 

trend in manufacturing leadership? 

(e) Taking the structural characteristics of manufacturing enterprises (e.g., scale, complexity, 

pace of technological change) as given, what can be done to revitalize manufacturing 

leadership? 

2. America's industrial rise took place after a war with its principal rival (England); Japan's rise 

also took place after a war with its primary rival (America). America's success could be 

attributed to its system (i.e., interchangeable parts and vertical integration), while Japan's 

success could be attributed to its system (i.e., just-in-time). 

(a) What other parallels can be drawn between the manufacturing stories of America and 

Japan? 

(b) What are key differences? 

(c) What relevance do these similarities and differences have to the manufacturing manager 

and policy maker of today? 

1. What events characterized the first and second industrial revolutions? What effects did these 

changes have on the nature of manufacturing management? 

2. List three key effects of Frederick W. Taylor's scientific management on the practice of 

manufacturing management in America. 

3. Proponents of a service economy for America sometimes compare the recent decline in 

manufacturing jobs to the earlier decline in agriculture jobs. In what way are these two 

declines different? How might this affect the argument that a shift to a service economy will 

not reduce our standard of living? 

4. What are some signs of the decline of American manufacturing? How long has this been 

going on? 

5. Give a counterargument for each of the following "usual answers" as to why American 

manufacturing is in decline: 

(a) Growth of government regulation, taxes, and so forth. 

(b) Deterioration in the American work ethic combined with adversary relationship 

between labor and management. 

(c) Interruptions in supply and price increases in energy since first OPEC oil shock. 

(d) Massive influx of new people into workforce-teenagers, women, and minority 

groups-who had to be conditioned and trained. 

(e) Advent of unusually high capital costs caused by high inflation. 

If the real answer is none of the above, what else is left? 

6. Name two post-World War II trends in management that have contributed to the decline of 

American manufacturing. 

7. Why was it unimportant for a manager to be terribly concerned with production details in 

the 1950s and early 1960s? How did this affect the nature of American business schools 

during this period and their effect on management practices today? 

8. Give some pros and cons of the portfolio management approach to managing a complex 

manufacturing enterprise. 

9. What caused the need for the fast-track manager in the 1950s and 1960s? What potential 

impacts on the perspective of management might this practice have? 
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10. Compare a professional manager (i.e., a manager who is allegedly capable of managing any 

business) to a manager of a purely financial portfolio. List some strengths and weaknesses 

that such a person might bring to the manufacturing environment. 

11. What attitudes does a modem professional manager in America share with the early settlers 

of this country? What negative consequences might this have? 

12. Even in circumstances where it can be documented that innovative designs have had 

markedly better long-term performance, why do many managers pursue imitative designs? 

13. It has been widely claimed that many of the troubles of American manufacturing can be 

traced to an overreliance on short-term financial measures. Name some policies, at both the 

government and firm levels, that might be used to discourage this type of mind-set. 

14. What essential skill does a manufacturing manager need to be able to appreciate the big 

picture and still pay attention to important details without becoming completely 

overwhelmed? 

15. In very rough terms, one could attribute the success of American manufacturing to effective 

competition on the cost dimension (i.e., via economies of scale due to mass production), the 

success of German manufacturing to effective competition on the quality dimension (i.e., 

via a reputation for superior product design and conformance with performance 

specifications), and the success of Japanese manufacturing to effective competition on the 

time dimension (i.e., via short manufacturing cycle times and rapid introduction of new 

products). Of course, each newly ascendant manufacturing power had to compete on the 

dimensions of its predecessors as well, so Germany had to be cost-competitive and Japan 

used cost and quality in addition to time. Thinking in terms of this simple model-that 

represents global competition as a succession of new competitive dimensions-give some 

suggestions for what might be the next important dimension of competition. 
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2 Inventory Control:

From EOQ to ROP

Buy what thou hast no need of, and ere long thou shalt sell thy necessaries.

“Poor Richard”

2.1 Introduction

Scientific management (SM) made the modern discipline of operations management

(OM) possible. Not only did SM establish management as a discipline worthy of study, but

also it placed a premium on quantitative precision that made mathematics a management

tool for the first time. Taylor’s primitive work formulas were the precursors to a host of

mathematical models designed to assist decision making at all levels of plant design and

control. These models became standard subjects in business and engineering curricula,

and entire academic research disciplines sprang up around various OM problem areas,

including inventory control, scheduling, capacity planning, forecasting, quality control,

and equipment maintenance. The models, and the SM focus that motivated them, are

now part of the standard language of business.

Of the operations management subdisciplines that spawned mathematical models,

none was more central to factory management, nor more typical of the American ap-

proach to OM, than that of inventory control. In this chapter, we trace the history of the

mathematical modeling approach to inventory control in America. Our reasons for doing

this are as follows:

1. The inventory models we discuss are among the oldest results of the OM field

and are still widely used and cited. As such, they are essential components of

the language of manufacturing management.

2. Inventory plays a key role in the operations behavior of virtually all

manufacturing systems. The concepts introduced in these historical models will

come back in our factory physics development in Part II and our discussion of

supply chain management in Chapter 17.

3. These classical inventory results are central to more modern techniques of

manufacturing management, such as material requirements planning (MRP),

just-in-time (JIT), time-based competition (TBC), lean production, and agile

manufacturing, and are therefore important as a foundation for the remainder of

Part I.

49
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We begin with the oldest, and simplest, model—the economic order quantity (EOQ),

and we work our way up to the more sophisticated reorder point (ROP) models. For each

model we give a motivating example, a presentation of its development, and a discussion

of its underlying insight.

2.2 The Economic Order Quantity Model

One of the earliest applications of mathematics to factory management was the work

of Ford W. Harris (1913) on the problem of setting manufacturing lot sizes. Although

the original paper was evidently incorrectly cited for many years (see Erlenkotter 1989,

1990), Harris’s EOQ model has been widely studied and is a staple of virtually every

introductory production and operations management textbook.

2.2.1 Motivation

Consider the situation of MedEquip, a small manufacturer of operating-room monitor-

ing and diagnostic equipment, which produces a variety of final products by mounting

electronic components in standard metal racks. The racks are purchased from a local

metalworking shop, which must set up its equipment (presses, machining stations, and

welding stations) each time it produces a “run” of racks. Because of the time wasted

setting up the shop, the metalworking shop can produce (and sell) the racks more cheaply

if MedEquip purchases them in quantities greater than one. However, because MedEquip

does not want to tie up too much of its precious cash in stores of racks, it does not want

to buy too many.

This dilemma is precisely the one studied by Harris in his paper “How Many Parts

to Make at Once.” He put it as follows:

Interest on capital tied up in wages, material and overhead sets a maximum limit to the

quantity of parts which can be profitably manufactured at one time; “set-up” costs on the job

fix the minimum. Experience has shown one manager a way to determine the economical

size of lots. (Harris 1913)

The problem Harris had in mind was that of a factory producing various products

where switching between products entails a costly setup. As an example, he described

a metalworking shop that produced copper connectors. Each time the shop changed

from one type of connector to another, machines had to be adjusted, clerical work had

to be done, and material might be wasted (e.g., copper used up as test parts in the

adjustment process). Harris defined the sum of the labor and material costs to ready the

shop to produce a product to be the setup cost. (Notice that if the connectors had been

purchased, instead of manufactured, then the problem would remain similar, but setup

cost would correspond to the cost of placing a purchase order.)

The basic trade-off in Harris’s copper connector case is the same as that in the

MedEquip example. Large lots reduce setup costs by requiring less frequent changeovers.

But small lots reduce inventory by better synchronizing the arrival of materials with their

use. The EOQ model was Harris’s systematic approach to striking a balance between

these two concerns.

2.2.2 The Model

Despite his claim in the above quote that the EOQ is based on experience, Harris was con-

sistent with the scientific management emphasis of his day on mathematical approaches
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Inventory versus time in

the EOQ model.

to factory management. To derive a lot size formula, he made the following assumptions

about the manufacturing system:1

1. Production is instantaneous. There is no capacity constraint, and the entire lot

is produced simultaneously.

2. Delivery is immediate. There is no time lag between production and availability

to satisfy demand.

3. Demand is deterministic. There is no uncertainty about the quantity or timing of

demand.

4. Demand is constant over time. In fact, it can be represented as a straight line, so

that if annual demand is 365 units, this translates to a daily demand of one unit.

5. A production run incurs a fixed setup cost. Regardless of the size of the lot or

the status of the factory, the setup cost is the same.

6. Products can be analyzed individually. Either there is only a single product or

there are no interactions (e.g., shared equipment) between products.

With these assumptions, we can use Harris’s notation, with slight modifications for

ease of presentation, to develop the EOQ model for computing optimal production lot

sizes. The notation we will require is as follows:

D = demand rate (in units per year)

c = unit production cost, not counting setup or inventory costs (in dollars

per unit)

A = fixed setup (ordering) cost to produce (purchase) a lot (in dollars)

h = holding cost (in dollars per unit per year); if the holding cost consists

entirely of interest on money tied up in inventory, then h = ic, where i is

the annual interest rate

Q = lot size (in units); this is the decision variable

For modeling purposes, Harris represented both time and product as continuous

quantities. Since he assumed constant, deterministic demand, placing orders for Q units

each time the inventory reaches zero results in an average inventory level of Q/2 (see

Figure 2.1). The holding cost associated with this inventory is therefore hQ/2 per year.

The setup cost is A per order, or AD/Q per year, since we must place D/Q orders

per year to satisfy demand. The production cost is c per unit, or cD per year. Thus, the

1The reader should keep in mind that all models are based on simplifying assumptions of some sort. The

real world is too complex to analyze directly. Good modeling assumptions are those that facilitate analysis

while capturing the essence of the real problem. We will be explicit about the underlying assumptions of the

models we discuss in order to allow the reader to personally judge their reasonableness.
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Costs in the EOQ model.

total (inventory, setup, and production) cost per year, which we denote by Y (Q), can be

expressed as

Y (Q) =
hQ

2
+

AD

Q
+ cD (2.1)

Example:

To illustrate the nature of Y (Q), let us return to the MedEquip example. Suppose that de-

mand for metal racks is fairly steady and predictable at D = 1,000 units per year. The unit

cost of the racks is c = $250, but the metalworking shop also charges a fixed cost of A =

$500 per order, to cover the cost of shutting down the shop to set up for a MedEquip run.

MedEquip estimates its opportunity cost or hurdle rate for money at 10 percent per year.

It also estimates that the floor space required to store a rack costs roughly $10 per year in

annualized costs. Hence, the annual holding cost per rack is h = (0.1)(250) + 10 = $35.

Substituting these values into expression (2.1) yields the plots in Figure 2.2.

We can make the following observations about the cost function Y (Q) from Figure 2.2:

1. The holding-cost term hQ/D increases linearly in the lot size Q and eventually

becomes the dominant component of total annual cost for large Q.

2. The setup-cost term AD/Q diminishes quickly in Q, indicating that while

increasing lot size initially generates substantial savings in setup cost, the

returns from increased lot sizes decrease rapidly.

3. The unit-cost term cD does not affect the relative cost for different lot sizes,

since it does not include a Q term.

4. The total annual cost Y (Q) is minimized by some lot size Q. Interestingly, this

minimum turns out to occur precisely at the value of Q for which the holding

cost and setup cost are exactly balanced (i.e., the hQ/D and AD/Q cost curves

cross).
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Harris wrote that finding the value of Q that minimizes Y (Q) “involves higher

mathematics” and simply gives the solution without further derivation. The mathematics

he is referring to (calculus) do not seem quite as high today, so we will fill in some of the

details he omitted in the following technical note. Those not interested in such details

can skip this and subsequent technical notes without loss of continuity.

Technical Note

The standard approach for finding the minimum of an unconstrained function, such as Y (Q),

is to take its derivative with respect to Q, set it equal to zero, and solve the resulting equation

for Q∗. This will find a point where the slope is zero (i.e., the function is flat). If the function is

convex (as we will verify below), then the zero-slope point will be unique and will correspond

to the minimum of Y (Q).

Taking the derivative of Y(Q) and setting the result equal to zero yields

dY (Q)

d Q
=

h

2
−

AD

Q2
= 0 (2.2)

This equation represents the first-order condition for Q to be a minimum. The second-order

condition makes sure that this zero-slope point corresponds to a minimum (i.e., as opposed

to a maximum or a saddle point) by checking the second derivative of Y (Q):

d2Y (Q)

d Q2
= 2

AD

Q3
(2.3)

Since this second derivative is positive for any positive Q (that is, Y (Q) is convex), it follows

that solving (2.2) for Q∗ (as we do in (2.4) below) does indeed minimize Y (Q).

The lot size that minimizes Y (Q) in cost function (2.1) is

Q∗
=

√

2AD

h
(2.4)

This square root formula is the well-known economic order quantity (EOQ), also

referred to as the economic lot size. Applying this formula to the example in Figure 2.2,

we get

Q∗
=

√

2AD

h
=

√

2(500)(1,000)

35
= 169

The intuition behind this result is that the large fixed cost ($500) associated with

placing an order makes it attractive for MedEquip to order racks in fairly large batches

(169).

2.2.3 The Key Insight of EOQ

The obvious implication of the above result is that the optimal order quantity increases

with the square root of the setup cost or the demand rate and decreases with the square

root of the holding cost. However, a more fundamental insight from Harris’s work is the

one he observed in his abstract, namely, the realization that

There is a tradeoff between lot size and inventory.
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Increasing the lot size increases the average amount of inventory on hand, but reduces

the frequency of ordering. By using a setup cost to penalize frequent replenishments,

Harris articulated this trade-off in clear economic terms.

The basic trade-off observed by Harris is incontrovertible. However, the specific

mathematical result (i.e., the EOQ square root formula) depends on the modeling as-

sumptions, some of which we could certainly question (e.g., how realistic is instantaneous

production?). Moreover, the usefulness of the EOQ formula for computational purposes

depends on the realism of the input data. Although Harris claimed that “The set-up cost

proper is generally understood” and “may, in a large factory, exceed one dollar per or-

der,” estimating setup costs may actually be a difficult task. As we will discuss in detail

later in Parts II and III, setups in a manufacturing system have a variety of other effects

(e.g., on capacity, variability, and quality) and are therefore not easily reduced to a single

invariant cost. In purchasing systems, however, where some of these other effects are not

an issue and the setup cost can be cleanly interpreted as the cost of placing a purchase

order, the EOQ model can be very useful.

It is worth noting that we can use the insight that there is a trade-off between lot size

and inventory without even resorting to Harris’s square root formula. Since the average

number of lots per year F is

F =
D

Q
(2.5)

and the total inventory investment is

I =
cQ

2
=

cD

2F
(2.6)

we can simply plot inventory investment I as a function of replenishment frequency F

in lots per year. We do this for the MedEquip example with D = 1,000 and c = $250 in

Figure 2.3. Notice that this graph shows us that the inventory is cut in half (from $12,500

to $6,250) when we produce or order 20 times per year rather than 10 times per year (i.e.,

change the lot size from 100 to 50). However, if we replenish 30 times per year instead

of 20 times per year (i.e., decrease the lot size from 50 to 33), inventory falls only from

$6,250 to $4,125, a 34 percent decrease.

This analysis shows that there are decreasing returns to additional replenishments. If

we can attach a value to these production runs or purchase orders (i.e., the setup cost A),

then we can compute the optimal lot size using the EOQ formula as we did in Figure 2.2.

However, if this cost is unknown, as it may well be, then the curve in Figure 2.3 at least
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gives us an idea of the effect on total inventory of an additional annual replenishment.

Armed with this trade-off information, a manager can select a reasonable number of

changeovers or purchase orders per year and thereby specify a lot size.

2.2.4 Sensitivity

A second insight that follows from the EOQ model is that

The sum of holding and setup costs is fairly insensitive to lot size.

We can see this in Figure 2.2, where the total cost varies only between 7 and 8 for values

of Q between 96 and 306. This implies that if, for whatever reason, we use a lot size

that is slightly different than Q∗, the increase in the holding plus setup costs will not be

large. This feature was qualitatively observed by Harris in his original paper. The earliest

quantitative treatment of it of which we are aware is by Brown (1967, 16).

To examine the sensitivity of the cost to lot size, we begin by substituting Q∗
=

√
2AD/h for Q into expression (2.1) for Y (but omitting the c term, since this is not

affected by lot size), and we find that the minimum holding plus setup cost per unit is

given by

Y ∗
= Y (Q∗) =

hQ∗

2
+

AD

Q∗

=
h
√

2AD/h

2
+

AD
√

2AD/h

=

√

2ADh (2.7)

Now, suppose that instead of using Q∗, we use some other arbitrary lot size Q′,

which might be larger or smaller than Q∗. From expression (2.1) for Y (Q), we see that

the annual holding plus setup cost under Q′ can be written

Y (Q′) =
hQ′

2
+

AD

Q′

Hence, the ratio of the annual cost using lot size Q′ to the optimal annual cost (using

Q∗) is given by

Y (Q′)

Y ∗
=

hQ′
/2 + AD/Q′

√

2ADh

=
Q′

2

√

h2

2ADh
+

1

Q′

√

A2 D2

2ADh

=
Q′

2

√

h

2AD
+

1

2Q′

√

2AD

h

=
Q′

2Q∗
+

Q∗

2Q′

=
1

2

(

Q′

Q∗
+

Q∗

Q′

)

(2.8)
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To appreciate (2.8), suppose that Q′
= 2Q∗, which implies that we use a lot size

twice as large as optimal. Then the ratio of the resulting holding plus setup cost to the

optimum is 1
2
(2 +

1
2
) = 1.25. That is, a 100 percent error in lot size results in a 25 percent

error in cost. Notice that if Q′
= Q∗

/2, we also get an error of 25 percent in the cost

function.

We can get further sensitivity insights from the EOQ model by noting that because

demand is deterministic, the order interval is completely determined by the order quantity.

We can express the time between orders T as

T =
Q

D
(2.9)

Hence, dividing 2.4 by D, we get the following expression for the optimal order interval

T ∗
=

√

2A

h D
(2.10)

and by substituting (2.9) into (2.8), we get the following expression for the ratio of the

cost resulting from an arbitrary order interval T ′ and the optimum cost:

Annual cost under T ′

Annual cost under T ∗
=

1

2

(

T ′

T ∗
+

T ∗

T ′

)

(2.11)

Expression (2.11) is useful in multiproduct settings, where it is desirable to order

such that different products are frequently replenished at the same time (e.g., to facilitate

sharing of delivery trucks). A method for facilitating this that has been widely proposed

in the operations research literature is to order items at intervals given by powers of 2.

That is, make the order interval 1 week, 2 weeks, 4 weeks, 8 weeks, and so forth.2 The

result is that items ordered at 2n-week intervals will be placed at the same time as orders

for items with 2k intervals for all k smaller than n (see Figure 2.4). This will facilitate

sharing of trucks, consolidation of ordering effort, simplification of shipping schedules,

etc.

Moreover, the sensitivity results we derived above for the EOQ model imply that

the error introduced by restricting order intervals to powers of 2 will not be excessive.

To see this, suppose that the optimal order interval for an item T ∗ lies between 2m and

2m+1 for some m (see Figure 2.5). Then T ∗ lies either in the interval [2m
, 2m

√

2] or in

2m T1
* T2

* 2m+12m√2

Figure 2.5

The “root-2” interval.

2To be complete, we must also consider negative powers of 2 or 1
2

week, 1
4

week, 1
8

week, etc. However,

if we use a sufficiently small unit of time as our baseline (e.g., days instead of weeks), this will not be

necessary in practice.
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the interval [2m
√

2, 2m+1]. All points in [2m
, 2m

√

2] are no more than
√

2 times as large

as 2m . Likewise, all points in the interval [2m
√

2, 2m+1] are no less than 2m+1 divided

by
√

2. For instance, in Figure 2.5, 2m is within a multiplicative factor of
√

2 of T ∗

1 ,

and 2m+1 is within a multiplicative factor of 1/

√

2 of T ∗

2 . Hence, the power-of-2 order

interval T ′ must lie in the interval [T ∗
/

√

2,

√

2T ∗] around the optimal order interval T ∗.

Thus, the maximum error in cost will occur when T ′
=

√

2T ∗, or T ′
= T ∗

/

√

2. From

2.11, the error from using T ′
=

√

2T ∗ is

1

2

(

√

2 +
1

√

2

)

= 1.06

and is the same when T ′
= T ∗

/

√

2. Hence, the error in the holding plus setup cost

resulting from using the optimal power-of-2 order interval instead of the optimal order

interval is guaranteed to be no more than 6 percent. Jackson, Maxwell, and Muckstadt

(1985); Roundy (1985, 1986); and Federgruen and Zheng (1992b) give algorithms for

computing the optimal power-of-2 policy and extend the above results to more general

multipart settings.

As a concrete illustration of these concepts, consider once again the MedEquip

problem. We computed the optimal order quantity for racks to be Q∗
= 169. Hence, the

optimal order interval is T ∗
= Q∗

/D = 169/1,000 = 0.169 year, or 0.169 × 52 = 8.78

weeks. Suppose further that MedEquip orders a variety of other parts from the same

supplier. The unit price of $250 for racks is a delivered price, assuming an average

shipping cost. However, if MedEquip combines orders for different parts, total shipping

costs will be lower because items may be able to share the same delivery truck. If the

minimum order interval for any of the products under consideration is 1 week, then the

order interval for racks can be rounded to the nearest power of 2, which is T = 8 weeks or

8/52 = 0.154 year. This implies an order quantity of Q = TD = 0.154(1,000) = 154.

The holding plus order cost of this modified order quantity is

Y (Q) =
hQ

2
+

AD

Q
=

35(154)

2
+

500(1,000)

154
= $5,942

The optimal annual cost (i.e., from using Q∗
= 169) is given by

Y ∗
=

√

2ADh =

√

2(500)(1,000)(35) = $5,916

So the modified order quantity results in less than a 1 percent increase in cost. The

other parts ordered from the same supplier will have similar increases in holding plus

order cost—but none of more than 6 percent. If these increases are offset by the reduced

transportation cost, then the power-of-2 order schedule is worthwhile.

2.2.5 EOQ Extensions

Harris’s original formula has been extended in a variety of ways over the years. One

of the earliest extensions (Taft 1918) was to the case in which replenishment is not

instantaneous; instead, there is a finite, but constant and deterministic, production rate.

This model is sometimes called the economic production lot (EPL) model. If we let P

represent the production rate (and assume that P > D so that the system has capacity to

keep up with demand), then the EPL model results in the following lot size to minimize
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the sum of setup and holding costs:

Q∗
=

√

2AD

h(1 − D/P)
(2.12)

Note that if P = ∞ (i.e., replenishment is infinitely fast), then this formula reduces

to the regular EOQ. Otherwise, it results in a larger lot size to cover for the fact that

replenishment items take time to produce.

Other variations of the basic EOQ include backorders (i.e., orders that are not filled

immediately, but have to wait until stock is available), major and minor setups, and

quantity discounts among others (see Johnson and Montgomery 1974; McClain and

Thomas 1985; Plossl 1985; Silver, Pyke, and Peterson 1998).

2.3 Dynamic Lot Sizing

As we noted above, the EOQ formulation is predicated on a number of assumptions,

specifically,

1. Instantaneous production.

2. Immediate delivery.

3. Deterministic demand.

4. Constant demand.

5. Known constant setup costs.

6. Single product or separable products.

We have already noted that Taft relaxed the assumption of instantaneous production.

Introducing delivery delays is straightforward if delivery times are known and fixed

(i.e., compute order quantities according to the EOQ formula and place the orders at

times equal to desired delivery minus delivery time). If delivery times are uncertain,

then a different approach is required. However, a more prevalent and important source

of randomness than delivery times is in demand. The topic of relaxing the assumption of

deterministic demand will be taken up in the next section on statistical inventory models.

We have already discussed an approach for getting around the specification of a constant

setup cost (i.e., by examining the inventory versus order frequency trade-off). In Chapter

17 we will discuss approaches for handling multiproduct cases where parts cannot be

analyzed separately. This leaves the assumption of constant demand.

2.3.1 Motivation

Consider the situation of RoadHog, Inc., which is a small manufacturer of motorcycle

accessories. It makes a muffler with fins (that does little to suppress engine noise but

looks really cool) on a line that is also used to make a variety of other products. Because

it is costly to set up the line to produce the mufflers, RoadHog has an incentive to produce

them in batches. However, while customer demand is known over a 10-week planning

horizon (because it is entered into a master production schedule and “frozen”), it is not

necessarily constant from week to week. Since this violates a key assumption of the EOQ

model, we need a fundamentally different model to balance the setup and holding costs.

The main historical approach to relaxing the constant-demand assumption is the

Wagner–Whitin model (Wagner and Whitin 1958). This model considers the problem
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of determining production lot sizes when demand is deterministic but time-varying and

all the other assumptions for the EOQ model are valid. The importance of this dynamic

lot-sizing approach is that it has had a substantial impact on the literature in production

control, and later influenced the development of material requirements planning (MRP)

and enterprise resource planning (ERP), as we will discuss in Chapter 3. For these reasons,

we now present an overview of the Wagner–Whitin dynamic lot-sizing procedure.

2.3.2 Problem Formulation

When demand varies over time, a continuous time model, like the EOQ model, is awk-

ward to specify. So, instead, we will clump demand into discrete periods, which could

correspond to days, weeks, or months, depending on the system. A daily production

schedule might make sense for a high-volume system with rapidly changing demand,

while a monthly schedule may be adequate for a low-volume system with demand that

changes more slowly.

To specify the problem and model, we will make use of the following notation,

which represents the dynamic counterpart to the static notation used for the EOQ model:

t = a time period (we will assume a week, but any interval could be used);

the range of time periods is t = 1, . . . , T , where T represents the

planning horizon

Dt = demand in week t (in units)

ct = unit production cost (in dollars per unit), not counting setup or inventory

costs in week t

At = setup (order) cost to produce (purchase) a lot in week t (in dollars)

ht = holding cost to carry a unit of inventory from week t to week t + 1

(in dollars per unit per week); for example, if holding cost consists

entirely of interest on money tied up in inventory, where i is the annual

interest rate, then ht = ict/52

It = inventory (in units) leftover at the end of week t

Qt = lot size (in units) in week t ; there are T such decision variables, one

for each week

Example:

With this notation, we can specify the RoadHog problem precisely. We suppose that the

data for the next 10 weeks are as given in Table 2.1. Note that for simplicity we have

assumed that the setup costs At , the production cost ct , and the holding cost ht are all

constant over time, although this is not necessary for the Wagner–Whitin model. The

basic problem is to satisfy all demands at minimal cost (i.e., production plus setup plus

holding cost). The only controls are the production quantities Qt . However, since all

demands must be filled, only the timing of production is open to choice, not the total

Table 2.1 Data for the RoadHog Dynamic Lot-Sizing Example

t 1 2 3 4 5 6 7 8 9 10

Dt 20 50 10 50 50 10 20 40 20 30

ct 10 10 10 10 10 10 10 10 10 10

At 100 100 100 100 100 100 100 100 100 100

ht 1 1 1 1 1 1 1 1 1 1
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Table 2.2 Lot-for-Lot Solution to the RoadHog Example

t 1 2 3 4 5 6 7 8 9 10 Total

Dt 20 50 10 50 50 10 20 40 20 30 300

Qt 20 50 10 50 50 10 20 40 20 30 300

It 0 0 0 0 0 0 0 0 0 0 0

Setup cost 100 100 100 100 100 100 100 100 100 100 1,000

Holding cost 0 0 0 0 0 0 0 0 0 0 0

Total cost 100 100 100 100 100 100 100 100 100 100 1,000

production quantity. Hence if the unit production cost is constant (that is, ct does not

vary with t), then production cost will be the same regardless of timing and therefore

can be omitted altogether.

The simplest lot-sizing procedure one might think of is to produce exactly what is

required in each week. This is called the lot-for-lot rule, and as we will see in Chapter 3,

it can make sense in some situations. However, in this problem, the lot-for-lot rule implies

that we will have to produce, and hence pay a setup cost, every week. Table 2.2 shows the

production schedule and resulting costs for this policy. Since we never carry inventory,

the total cost is just that of the 10 setups, or $1,000.

Another plausible policy is to produce a fixed amount each time we perform a setup.

This is known as the fixed order quantity lot-sizing rule. Since there are 300 units to

produce, one possible fixed order quantity would be 100 units. This would require us to

produce exactly three times, resulting in three setups, and would not leave any product

leftover at the end of week 10. Table 2.3 illustrates the production schedule and resulting

costs for this policy. Notice that under this policy we frequently produce more than is

required in a given week and therefore pay inventory carrying costs. However, the total

inventory carrying cost is only $400, which, when added to the $300 setup cost, results

in a total cost of $700. This is lower than the cost from the lot-for-lot policy. But can we

do better? We will find out below by developing a procedure that is guaranteed to find

the minimum setup plus inventory cost.

2.3.3 The Wagner–Whitin Procedure

A key observation for solving the dynamic lot-sizing problem is that if we produce items

in week t (and incur a setup cost) for use to satisfy demand in week t + 1, then it cannot

possibly be economical to produce in week t + 1 (and incur another setup cost). Either

it is cheaper to produce all of week t + 1’s demand in week t , or all of it in t + 1; it

is never cheaper to produce some in each. (Notice that we violated this property in the

Table 2.3 Fixed Order Quantity Solution to the RoadHog Example

t 1 2 3 4 5 6 7 8 9 10 Total

Dt 20 50 10 50 50 10 20 40 20 30 300

Qt 100 0 0 100 0 0 100 0 0 0 300

It 80 30 20 70 20 10 90 50 30 0 0

Setup cost 100 0 0 100 0 0 100 0 0 0 300

Holding cost 80 30 20 70 20 10 90 50 30 0 400

Total cost 180 30 20 170 20 10 190 50 30 0 700
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fixed order quantity solution given in Table 2.3.) In more general terms, we can state this

result as follows:

Wagner–Whitin Property

Under an optimal lot-sizing policy either the inventory carried to week t + 1 from a previous

week will be zero or the production quantity in week t + 1 will be zero.

This result greatly facilitates computation of optimal production quantities, as we will

see.3

The Wagner–Whitin property implies that either Qt = 0 or Qt will be exactly enough

to satisfy demand in the current week plus some integer number of future weeks. We

could compute the minimum-cost production schedule by enumerating all possible com-

binations of weeks in which production occurs. However, since we can either produce or

not produce in each week, the number of such combinations is 2N−1, which can be quite

large if many weeks are considered. To be more efficient, Wagner and Whitin (1958)

suggested an algorithm that is well suited to computer implementation. We will describe

this algorithm by means of the RoadHog example in the following technical note:

Technical Note

The Wagner–Whitin algorithm proceeds forward in time, starting with week 1 and finishing

with week N . By the Wagner–Whitin property, we know that we will produce in a week only

if the inventory carried to that week is zero. If this is the case, then our decision can be thought

of in terms of how many weeks of demand to produce. For instance, in a 6-week problem,

there are six possibilities for the amount we can produce in week 1, namely, D1, D1 + D2,

D1 + D2 + D3, . . . , D1 + D2 + D3 + D4 + D5 + D6. If we choose to produce D1 + D2,

then inventory will run out in week 3 and so we will have to produce again in that week. In

week 3, we will have the option of producing for week 3 only; weeks 3 and 4; weeks 3, 4,

and 5; or weeks 3, 4, 5, and 6.

Step 1

We begin the algorithm by looking at the 1-week problem. That is, we act as though the

world ends after 1 week. The optimal policy for this problem is trivial; we produce 20 units

to satisfy demand in week 1, and we are done. Since there is no inventory carried from one

week to another, and we are neglecting production cost, the minimum cost in the 1-week

problem, which we denote by Z∗

1 , is

Z∗

1 = A1 = 100

As we will see as the algorithm unfolds, it is also useful to keep track of the last week in which

production occurs in each problem we consider. Here, obviously, production takes place only

in week 1, so the last week of production in the 1-week problem, which we denote by j∗

1 , is

j∗

1 = 1

Step 2

In the next step of the algorithm we increase the time horizon and consider the 2-week

problem. Now we have two options for the production in week 2; we can cover demand in

3Some pundits have noted that, while useful mathematically, in real systems the Wagner–Whitin property

is either obvious or ridiculous. In essence, it states we should not produce until inventory falls to zero. If one

really accepts all the modeling assumptions, particularly those of known, deterministic demand and

well-defined fixed setup costs, then the property is nearly tautological. However, in real systems where

uncertainty complicates things, one almost always starts production before inventory is exhausted (i.e., to

provide protection against stockouts caused by random disruptions).
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week 2 with production either in week 1 or in week 2. If we produce it in week 1, we will

incur a holding cost associated with carrying inventory from week 1 to week 2. If we produce

it in week 2, we will incur an extra setup cost in week 2. Notice also that if we produce in

week 2, then the cost of satisfying previous demand (i.e., demand in week 1) is given by Z∗

1 .

Since we are trying to minimize cost, the optimal policy is to choose the week with the lower

total cost, that is,

Z∗

2 = min

{

A1 + h1 D2 produce in week 1

Z∗

1 + A2 produce in week 2

}

= min

{

100 + 1(50) = 150

100 + 100 = 200

}

= 150

The optimal decision is to produce for both weeks 1 and 2 in week 1. Therefore, the last week

in which production takes place in an optimal 2-week policy is

j∗

2 = 1

Step 3

Now, we proceed to the 3-week problem. Ordinarily four possible production schedules would

need to be considered: produce in week 1 only, produce in weeks 1 and 2, produce in weeks

1 and 3, or produce in weeks 1, 2, and 3. However, we need to consider only three of these:

one only, one and two, and one and three. This is because we need to consider only when

we are going to produce the demand for week 3. We have already solved the 2- and 1-week

problems. The savings in computation from this observation grow sharply as the number of

weeks grows. For instance, for the 10-week problem we reduce the number of schedules we

must check from 512 to 10. We will reduce these even more with the “planning horizon”

result discussed later.4

If we decide to produce in week 3, then we know from our solution to the 2-week problem

that it will be optimal to produce for weeks 1 and 2 in week 1.

Z∗

3 = min

⎧

⎪

⎨

⎪

⎩

A1 + h1 D2 + (h1 + h2)D3 produce in week 1

Z∗

1 + A2 + h2 D3 produce in week 2

Z∗

2 + A3 produce in week 3

⎫

⎪

⎬

⎪

⎭

= min

⎧

⎪

⎨

⎪

⎩

100 + 1(50) + (1 + 1)(10) = 170

100 + 100 + 1(10) = 210

150 + 100 = 250

⎫

⎪

⎬

⎪

⎭

= 170

Again, it is optimal to produce everything in week 1, so

j∗

3 = 1

4This technique of solving successively longer horizon problems and using the solutions from previous

steps to reduce the amount of computation in each step is known as dynamic programming. Dynamic

programming is a form of implicit enumeration, which allows us to consider all possible solutions without

explicitly computing the cost of each one.
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Step 4

The situation changes when we move to the next step, the 4-week problem. Now there are

four options for the timing of production for week 4, namely, weeks 1 to 4:

Z∗

4 = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A1 + h1 D2 + (h1 + h2)D3 + (h1 + h2 + h3)D4 produce in week 1

Z∗

1 + A2 + h2 D3 + (h2 + h3)D4 produce in week 2

Z∗

2 + A3 + h3 D4 produce in week 3

Z∗

3 + A4 produce in week 4

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

= min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

100 + 1(50) + (1 + 1)(10) + (1 + 1 + 1)(50) = 320

100 + 100 + 1(10) + (1 + 1)(50) = 310

150 + 100 + 1(50) = 300

170 + 100 = 270

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

= 270

This time, it turns out to be optimal not to produce in week 1, but rather to meet week 4’s

demand with production in week 4. Hence,

j∗

4 = 4

If our planning horizon were only 4 weeks, we would be done at this point. We would translate

our results to a lot-sizing policy by reading the j∗

t values backward in time. The fact that

j∗

4 = 4 means that we would produce D4 = 50 units in week 4. This would leave us with a

3-week problem. Since j∗

3 = 1, it would be optimal to produce D1 + D2 + D3 = 80 units in

week 1.

Step 5 and Beyond

But our planning horizon is not 4 weeks; it is 10 weeks. Hence, we must continue the

algorithm. However, before doing this, we will make an observation that will further reduce

the computations we must make. Notice that up to this point, each step in the algorithm has

increased the number of weeks we must consider for the last week’s production. So, by step

4, we had to consider producing for week 4 in all weeks 1 through 4. It turns out that this is

not always necessary.

Notice that in the 4-week problem it is optimal to produce in week 4 for week 4. What

this means is that the cost of setting up in week 4 is less than the cost setting up in week

1, 2, or 3 and carrying the inventory to week 4. If it weren’t, then we would have chosen to

produce in one of these weeks. Now consider what this means for week 5. For instance, could

it be cheaper to produce for week 5 in week 3 than in week 4? Production in weeks 3 and 4

must be held in inventory from week 4 to week 5 and therefore incur the same carrying cost

for that week. Therefore the only question is whether it is cheaper to set up in week 3 and

carry inventory from week 3 to week 4 than it is to set up in week 4. But we already know

the answer to this question. The fact that j∗

4 = 4 tells us that it is cheaper to set up in week

4. Therefore, it is unnecessary to consider producing in weeks 1, 2, and 3 for the demand in

week 5. We need to consider only weeks 4 and 5.

This reasoning can more generally be stated as follows:

Planning Horizon Property

If j∗

t = t̄ , then the last week in which production occurs in an optimal t + 1 week policy must

be in the set t̄, t̄ + 1, . . . , t + 1.
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Using this property, the calculation required to compute the minimum cost for the 5-week

problem is

Z∗

5 = min

{

Z∗

3 + A4 + h4 D5 produce in week 4

Z∗

4 + A5 produce in week 5

}

= min

{

170 + 100 + 1(50) = 320

270 + 100 = 370

}

= 320

Given that we are going to set up in week 4 anyway, it is cheaper to carry inventory from

week 4 to week 5 than to set up again in week 5. Hence,

j∗

5 = 4

We solve the remaining 5 weeks, using the same approach.

We summarize the results of the Wagner–Whitin calculations in Table 2.4. The blank

spaces in the upper right-hand corner of this table are the result of our use of the planning

horizon property. Without this property, we would have had to calculate values for each

of these spaces. The important outputs of the algorithm are the last two rows, which

give the optimal cost Z∗

t and the last week of production j∗

t for problems with planning

horizons equal to t = 1, 2, 3, . . . . We discuss how to convert these into a production

schedule below.

2.3.4 Interpreting the Solution

The Wagner–Whitin algorithm tells us that the minimum total setup plus inventory

carrying cost in the RoadHog example is given in Table 2.4 by Z10 = $580. We note that

this is indeed lower than the cost achieved by either the lot-for-lot or fixed order quantity

solutions we offered earlier. The optimal lot sizes are determined from the j∗

t values.

Table 2.4 Solution to Wagner–Whitin Example

Last week

Planning Horizon t

with Production 1 2 3 4 5 6 7 8 9 10

1 100 150 170 320

2 200 210 310

3 250 300

4 270 320 340 400 560

5 370 380 420 540

6 420 440 520

7 440 480 520 610

8 500 520 580

9 580 610

10 620

Z∗

t 100 150 170 270 320 340 400 480 520 580

j∗

t 1 1 1 4 4 4 4 7 7 or 8 8
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Since these represent the last week of production in a t-week problem, it is optimal to

produce enough to cover the demand from week j∗

t through week t . In the RoadHog

example, we note that j∗

10 = 8, so it is optimal to produce for weeks 8, 9, and 10 in week

8. Doing this leaves us with a 7-week problem. Since j∗

7 = 4, it is optimal to produce for

weeks 4, 5, 6, and 7 in week 4. Hence, Q∗

4 = D4 + D5 + D6 + D7 = 130. This leaves

us with a 3-week problem. Since j∗

3 = 1, we should produce for weeks 1, 2, and 3 in

week 1, so Q∗

1 = D1 + D2 + D3 = 80.

2.3.5 Caveats

Although the calculations underlying Table 2.4 are certainly tedious to do by hand, they

are trivial for a computer. Given this, it is rather surprising that many production and

operations management textbooks have omitted the Wagner–Whitin algorithm in favor

of simpler heuristics that do not always give the optimal solution. Presumably, “simpler”

meant both less computationally burdensome and easier to explain. Given that the algo-

rithm is used only where production planning is computerized, the computational-burden

argument is not compelling. Furthermore, the concepts underlying the algorithm are not

difficult—certainly not so difficult as to prevent practitioners from using commercial

software incorporating it!

However, there are more important concerns about the entire concept of “optimal”

lot sizing whether one is using the Wagner–Whitin algorithm or any of the heuristic

approaches that approximate it.

1. Like the EOQ model, the Wagner–Whitin model assumes setup costs known in

advance of the lot-sizing procedure. But, as we noted earlier, setup costs can be

very difficult to estimate in manufacturing systems. Moreover, the true cost of a

setup is influenced by capacity. For instance, shutting down to change a die is

very costly in terms of lost production when the factory is operating close to

capacity, but not nearly as costly when there is a great deal of excess capacity.

This issue cannot be addressed by any model that assumes independent setup

costs. Thus, it would appear that the Wagner–Whitin model, like EOQ, is better

suited to purchasing than production systems.

2. Also like the EOQ model, the Wagner–Whitin model assumes deterministic

demand and deterministic production. Uncertainties, such as order cancelations,

yield loss, and delivery schedule deviations are not considered. The result is

that the “optimal” production schedule given by the Wagner–Whitin algorithm

will have to be adjusted to meet real conditions (e.g., reduced to accommodate

leftover inventory from order cancelations or inflated for expected yield

loss). The fact that these adjustments will be made on an ad hoc basis, coupled

with the speculative nature of the setup costs, could make this theoretically

optimal schedule perform poorly in practice.

3. Another key assumption is that of independent products, that is, that production

for different products does not make use of common resources. This

assumption is clearly violated in many instances and can be crucial if some

resources are highly utilized.

4. The Wagner–Whitin property leads us to the conclusion that we should produce

either nothing in a week or the demand for an integer number of future weeks.

This property follows from (1) the fact that a fixed setup cost is incurred each

time production takes place and (2) the assumption of infinite capacity. In the

real world, where setups have more subtle consequences and capacity is finite, a
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sensible production plan may be quite different. For instance, it may be

reasonable to produce according to a level production plan (i.e., produce

approximately the same amount in each week), in order to achieve a degree of

pacing or rhythm in the line. Wagner–Whitin, by focusing exclusively on the

trade-off between fixed and holding costs, may actually serve to steer our

intuition away from realistic concerns.

2.4 Statistical Inventory Models

All the models discussed up to this point have assumed that demand is known in advance.

Although there are cases in which this assumption may approximate reality (e.g., when

the schedule is literally frozen over the horizon of interest), often it does not. If demand

is uncertain, then there are two basic approaches to take:

1. Model demand as if it were deterministic for modeling purposes and then

modify the solution to account for uncertainty.

2. Explicitly represent uncertainty in the model.

Neither approach is correct or incorrect in any absolute sense. The real question

is, Which is more useful? In general, the answer depends on the circumstances. When

planning is over a sufficiently long horizon to ensure that random deviations “average

out,” a deterministic model may work well. Also, a deterministic model with appropriate

“fudge factors” to anticipate randomness, coupled with a suitably frequent regeneration

cycle to get back on track, can be effective. However, to determine these fudge factors

or to help design policies for dealing with time frames in which uncertainty is critical, a

model that explicitly incorporates uncertainty may be more appropriate.

Historically, the operations management literature has pursued both approaches. The

most prevalent deterministic model for production scheduling is material requirements

planning (MRP), the subject of Chapter 3. The most prevalent probabilistic models are

the statistical reorder point approaches, which we examine in this section.

Statistical modeling of production and inventory control problems is not new, dating

back at least to Wilson (1934). In this classic paper, Wilson breaks the inventory control

problem into two distinct parts:

1. Determining the order quantity, or the amount of inventory that will be

purchased or produced with each replenishment.

2. Determining the reorder point, or the inventory level at which a replenishment

(purchase or production) will be triggered.

In this section, we will address this two-part problem in three stages.

First, we will consider the situation in which we are interested only in a single

replenishment, so that the only issue is to determine the appropriate order quantity in

the face of uncertain demand. This has traditionally been called the news vendor model

because it could apply to a person who purchases newspapers at the beginning of the

day, sells a random amount, and then must discard any leftovers. This model can also be

applied to periodic review systems (e.g., where inventory is replenished once a week).

Second, we will consider the situation in which inventory is replenished one unit

at a time as random demands occur, so that the only issue is to determine the reorder

point. The target inventory level we set for the system is known as a base stock level,

and hence the resulting model is termed the base stock model.
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Third, we will consider continuous review systems (in which inventory is

monitored in real time) and demands occur randomly. When the inventory level reaches

(or goes below) r , an order of size Q is placed. After a lead time of ℓ, during which

a stockout might occur, the order is received. The problem is to determine appropriate

values of Q and r . The model we use to address this problem is known as the (Q, r )

model.

These models will make use of the concepts and notation found in the field of

probability. If it has been a while since the reader has reviewed these, now might be a

good time to peruse Appendix 2A.

2.4.1 The News Vendor Model

Consider the situation that a manufacturer of Christmas lights faces each year. Demand

is somewhat unpredictable and occurs in such a short burst just prior to Christmas that if

inventory is not on the shelves, sales are lost. Therefore, the decision of how many sets

of lights to produce must be made prior to the holiday season. Additionally, the cost of

collecting unsold inventory and holding it until next year is too high to make year-to-year

storage an attractive option. Instead, any unsold sets of lights are sold after Christmas at

a steep discount.

To choose an appropriate production quantity, the important pieces of information

to consider are (1) anticipated demand and (2) the costs of producing too much or too

little. To develop a formal model, we make the following assumptions:

1. Products are separable. We can consider products one at a time since there are

no interactions (e.g., shared production resources or correlated demand).

2. Planning is done for a single period. We can neglect future periods since the

effect of the current decision on them is negligible (e.g., because inventory is

not carried across periods).

3. Demand is random. We can characterize demand with a known probability

distribution.

4. Deliveries are made in advance of demand. All stock ordered or produced is

available to meet demand.

5. Costs of overage or underage are linear. The charges for having too much or

too little inventory is proportional to the amount of the overage or underage.

We make use of these assumptions to develop a model, using the following notation:

X = demand (in units), a random variable

g(x) = probability density function (pdf) of demand; for this model we will

assume that demand is continuously distributed because it is analytically

convenient, but the results are essentially the same if demand is modeled

as discrete (i.e., restricted to integer values), as we show in Appendix 2B

G(x) = P(X ≤ x) = cumulative distribution function (cdf) of demand

μ = mean demand (in units)

σ = standard deviation of demand (in units)

co = cost (in dollars) per unit of overage (i.e., stock leftover after demand is

realized)

cs = cost (in dollars) per unit of shortage

Q = production or order quantity (in units); this is the decision variable
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Example:

Now consider the Christmas lights example with some numbers. Suppose that a set of

lights costs $5 to make and distribute and sells for $10. Any sets not sold by Christmas

will be discounted to $2.50. In terms of the above modeling notation, this means that the

unit overage cost is the amount lost per excess set, or co = $(5 − 2.50) = $2.50. The

unit shortage cost is the lost profit from a sale, or cs = $(10 − 5) = $5. Suppose further

that demand has been forecast to be 10,000 units with a standard deviation of 1,000 units

and that the normal distribution is a reasonable representation of demand.

The firm could choose to produce 10,000 sets of lights. But recall that the symmetry

(i.e., bell shape) of the normal distribution implies that it is equally likely for demand

to be greater or less than 10,000 units. If demand is less than 10,000 units, the firm will

lose co = $2.50 per unit of overproduction. If demand is greater than 10,000 units, the

firm will lose cs = $5 per unit of underproduction. Clearly, shortages are worse than

overages. This suggests that the firm should produce more than 10,000 units. But how

much more? We develop a model below to answer this question.

To develop a model, observe that if we produce Q units and demand is X units, then

the number of units of overage is given by

Units over = max{Q − X, 0}

That is, if Q ≥ X , then the overage is simply Q − X ; but if Q < X , then there is a

shortage and so the overage is zero. We can calculate the expected overage as

E[units over] =

∫

∞

0

max{Q − x, 0}g(x) dx

=

∫ Q

0

(Q − x)g(x) dx (2.13)

Similarly, the number of units of shortage is given by

Units short = max{X − Q, 0}

That is, if X ≥ Q, then the shortage is simply X − Q; but if X < Q, then there is an

overage and so the shortage is zero. We can calculate the expected shortage as

E[units short] =

∫

∞

0

max{x − Q, 0}g(x) dx

=

∫

∞

Q

(x − Q)g(x) dx (2.14)

Using (2.13) and (2.14), we can express the expected cost as a function of the

production quantity as

Y (Q) = co

∫ Q

0

(Q − x)g(x) dx + cs

∫

∞

Q

(x − Q)g(x) dx (2.15)

We will find the value of Q that minimizes this expected cost in the following technical

note.
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Technical Note

As we did for the EOQ model, we will find the minimum of Y (Q) by taking its derivative

and setting it equal to zero. To do this, however, we need to take the derivative of integrals

with limits that are functions of Q. The tool we require for this is Leibnitz’s rule, which can

be written as

d

dQ

∫ a2(Q)

a1(Q)

f (x, Q) dx =

∫ a2(Q)

a1(Q)

∂

∂ Q
[ f (x, Q)] dx + f (a2(Q), Q)

da2(Q)

dQ

− f (a1(Q), Q)
da1(Q)

dQ

Applying this to take the derivative of Y (Q) and setting the result equal to zero yields

dY (Q)

dQ
= co

∫ Q

0

1g(x) dx + cs

∫

∞

Q

(−1)g(x) dx

= coG(Q) − cs[1 − G(Q)] = 0 (2.16)

Solving (2.16) (which we simplify below in (2.17)) for Q∗ yields the production (order)

quantity that minimizes Y (Q).

To minimize expected overage plus shortage cost, we should choose a production

or order quantity Q∗ that satisfies the following critical fractile formula:

G(Q∗) =
cs

co + cs

(2.17)

First, note that since G(Q∗) represents the probability that demand is less than or equal

to Q∗, this result implies that Q∗ should be chosen such that the probability of having

enough stock to meet demand is cs/(co + cs). Second, notice that since G(x) increases

in x (cumulative distribution functions are always monotonically increasing), so that

anything that makes the right-hand side of (2.17) larger will result in a larger Q∗. This

implies that increasing cs will increase Q∗, while increasing co will decrease Q∗, as we

would intuitively expect.

We can further simplify expression (2.17) if we assume that G is normal. For this

case we can write

G(Q∗) = �

(

Q∗
− μ

σ

)

=
cs

co + cs

where � is the cumulative distribution function (cdf) of the standard normal distribution.5

This means that

Q∗
− μ

σ

= z

where z is the value in the standard normal table (see Table 1 at the end of the book) for

which �(z) = cs/(co + cs). The � function is also built into spreadsheet programs; in

5We are making use of the well-known result that if X is normally distributed with mean μ and standard

deviation σ , then (X − μ)/σ is normally distributed with mean zero and standard deviation 1 (i.e., the

standard normal distribution).
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Excel �(z) = NORMSDIST (z). Hence

Q∗
= μ + zσ (2.18)

Expression (2.18) implies that for the normal case, Q∗ is an increasing function of

the mean demand μ. It is also increasing in the standard deviation of demand σ , provided

that z is positive. This will be the case whenever cs/(co + cs) is greater than one-half,

since �(0) = 0.5 and �(z) is increasing in z. However, if costs are such that cs/(co + cs)

is less than one-half, then the optimal order size Q∗ will decrease as σ increases.

Example:

Now we return to the Christmas lights example. Because demand is normally distributed,

we can compute Q∗ from (2.18). To do this, we must first compute the critical fractile as

cs

co + cs

=
5

2.50 + 5
= 0.67

This tells us that we should order enough lights to have a 67 percent chance of satisfying

demand (or a 33 percent chance of a stockout). To compute the order quantity we consult

a standard normal table to find that �(0.44) = 0.67. Hence z = 0.44 and

Q∗
= μ + zσ = 10,000 + (0.44)1,000 = 10,440

Notice that this answer can be interpreted as telling us to produce 0.44 standard deviations

above mean demand. Therefore, if the standard deviation of demand had been 2,000 units,

instead of 1,000, the answer would have been to produce 0.44 × 2,000 = 880 units above

mean demand, or 10,880 units.

The news vendor problem, and its intuitive critical fractile solution given in (2.17),

can be extended to a variety of applications that, unlike the Christmas lights example,

have more than one period. One common situation is the problem in which

1. A firm faces periodic (e.g, monthly) demands that are independent and have the

same distribution G(x).

2. All orders are backordered (i.e., met eventually).

3. There is no setup cost associated with producing an order.

It can be shown that an “order up to Q” policy (i.e., after each demand, produce enough

to bring the inventory level up to Q) is optimal under these conditions. Moreover, the

problem of finding the optimal order-up-to level Q∗ can be formulated as a news vendor

model (see Nahmias 1993, 291–294). The solution Q∗ therefore satisfies Equation (2.17),

where co represents the cost to hold one unit of inventory in stock for one period and cs

represents the cost of carrying a unit of backorder (i.e., an unfilled order) for one period.

Similarly, under the same conditions, except that sales are lost instead of backordered, the

optimal order-up-to level is found by solving (2.17) for Q∗ with co equal to the one-period

holding cost and cs equal to the unit profit (i.e., selling price minus production cost).

Example:

A sweet shop sells pints of a super premium ice cream for $15. The wholesale cost is

$10 per pint. The shop receives weekly deliveries of the ice cream and can order any

quantity. The owner has kept track over the past several months and has observed that
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weekly demand (including requests when stock has run out) has averaged 25 pints. He

uses a 25 percent interest rate to evaluate holding costs.

From the above discussion, the optimal inventory control policy is an order-up-to

policy. To compute the optimal order-up-to level, the owner needs to characterize the

demand distribution and the shortage/overage costs.

The owner has a good estimate of mean weekly demand. But, since it takes more

data to estimate the standard deviation than it does the mean, it is not uncommon to

lack a good estimate of standard deviation. Therefore, it makes sense to appeal to the

theory of arrival processes to argue that demand is made up of the superposition of

purchases by many individuals and hence should be Poisson distributed. This means that

the standard deviation of weekly demand should equal the square root of mean demand,

so σ =

√

25 = 5.

The shortage and overage costs are straightforward to calculate. If the owner runs

out of ice cream, sales will be lost. Hence the unit shortage cost is the lost profit, which is

cs = 15 − 10 = $5. If the owner buys more ice cream than he sells, then he incurs the cost

of the inventory, which is interest on the wholesale cost, co = 10(0.25/52) = $0.048.

Hence, the critical fractile is

cs

co + cs

=
5

0.048 + 5
= 0.99

Since �(2.326) = 0.99, the optimal order-up-to level is

Q∗
= 25 + 2.326(5) = 36.63 ≈ 37

Therefore, the owner should look at his inventory each week at delivery time and purchase

enough ice cream to bring his stock up to 37 pints. This will strike an optimal balance

between lost sales and inventory holding cost.

We conclude this section by summarizing the basic insights from the news vendor

model:

1. In an environment of uncertain demand, the appropriate production or order

quantity depends on both the distribution of demand and the relative costs of

overproducing versus underproducing.

2. If demand is normally distributed, then increasing mean demand increases the

optimal order (production) quantity.

3. If demand is normally distributed, then increasing the variability (i.e., standard

deviation) of demand increases the optimal order (production) quantity if

cs/(cs + co) > 0.5 and decreases it if cs/(cs + co) < 0.5.

2.4.2 The Base Stock Model

Consider the situation facing Superior Appliance, a store that sells a particular model of

refrigerator. Because space is limited and because the manufacturer makes frequent de-

liveries of other appliances, Superior finds it practical to order replacement refrigerators

each time one is sold. In fact, it has a system that places purchase orders automatically

whenever a sale is made. But because the manufacturer is slow to fill replenishment

orders, the store must carry some stock in order to meet customer demands promptly.

Under these conditions, the key question is how much stock to carry.
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To answer this question, we need a model. To develop one, we make use of a

continuous-time framework and the following modeling assumptions:

1. Products can be analyzed individually. There are no product interactions (e.g.,

shared resources).

2. Demands occur one at a time. There are no batch orders.

3. Unfilled demand is backordered. There are no lost sales.

4. Replenishment lead times are fixed and known. There is no randomness in

delivery lead times. (We will show how to relax this assumption to consider

variable lead times later in this chapter.)

5. Replenishments are ordered one at a time. There is no setup cost or constraint

on the number of orders that can be placed per year, which would motivate

batch replenishment.

6. Demand can be approximated with a continuous distribution. That is, we ignore

integrality and act as though the product is a liquid that could be purchased in

any positive amount. This simplifies the resulting formulas and is a very good

approximation except when demand during replenishment lead time is very

low. Fortunately, this isn’t a practical problem since low-demand systems do

not require much inventory anyway. (We give exact formulas for the case of

discrete Poisson demand in Appendix 2B.)

We will relax the last assumption in the next section on the (Q, r ) model, which allows

ordering in bulk.

We make use of the following notation:

ℓ = replenishment lead time (in days), assumed constant throughout

this section

X = demand during replenishment lead time (in units), a random variable

g(x) = probability density function (pdf) of demand during replenishment lead time

G(x) = P(X ≤ x) = cumulative distribution function (cdf) of demand

during replenishment lead time

θ = E[X ], mean demand (in units) during lead time ℓ

σ = standard deviation of demand (in units) during lead time ℓ

h = cost to carry one unit of inventory for 1 year (in dollars per unit per year)

b = cost to carry one unit of backorder for 1 year (in dollars per unit per year)

r = reorder point (in units), which represents inventory level that triggers

a replenishment order; this is the decision variable

s = r − θ , safety stock level (in units)

S(r ) = fill rate (fraction of orders filled from stock) as a function of r

B(r ) = average number of outstanding backorders as a function of r

I (r ) = average on-hand inventory level (in units) as a function of r

In a base stock system, we monitor inventory continuously and place a replenishment

order every time the inventory position drops to the reorder point r . The inventory

position is defined as

Inventory position = on-hand inventory − backorders + orders (2.19)

where on-hand inventory represents physical inventory in stock, backorders represent

customer demands that have occurred but have not yet been filled, and orders represent
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requests for resupply that have not yet arrived. Thus, inventory position represents in-

ventory owned by the firm but not yet committed to customers.

Notice that in general inventory position could be positive or negative since back-

orders are subtracted. However, in a base stock system we do not allow this to happen.

Since a replenishment order is placed every time the inventory position reaches r , the

inventory position is always maintained at r + 1. This is referred to as the base stock

level. We illustrate this in Figure 2.6, which plots net inventory (on-hand inventory

minus backorders) and orders for a base stock system with a base stock level of five.

In order for these to sum to five at all times, the sum of on-hand inventory and orders

(i.e., inventory owned by the firm) is equal to the base stock level, except when there are

outstanding backorders. When this occurs, the number of orders equals the base stock

level plus the number of backorders.

Each time we place a replenishment order it takes a fixed lead time of ℓ to arrive,

during which time expected demand is θ units. Since there were r items in stock or on

order with which to meet customer demand while we wait for the replenishment order to

arrive, we expect to have r − θ in inventory when it arrives. If s = r − θ > 0, then we

call this the safety stock, since it represents inventory that protects against stockouts due

to fluctuations in demand. Since θ is a constant finding s is equivalent to finding r . Hence,

we can view the problem of controlling a base stock system as one of finding the optimal

reorder point (r ), safety stock level (s = r − θ ) or base stock level (r + 1). For consis-

tency with subsequent models, we will use the reorder point r as our decision variable.

We can approach the problem of finding an optimal base stock level in one of two

ways. We can follow the procedure we have used up to now (in the EOQ, Wagner–Whitin,

and news vendor models) and formulate a cost function and find the reorder point that

minimizes this cost. Or we can simply specify the desired customer service level and find

the smallest reorder point that attains it. We will develop both approaches below. But to

do either we must first characterize the performance measures S(r ), B(r ), and I (r ).

We can derive expressions for the performance measures by looking at Equation

(2.19) and noting that under a base stock policy with reorder point r , the following holds

at all times:

Inventory position = r + 1 (2.20)

Service Level. Consider a specific replenishment order. Once this order is placed, we

have r + 1 more items on hand or on order than we have backorders. Since lead times
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are constant, we know that all the other r items that are on hand or on order will become

available to fill new demands before the order under consideration arrives. Therefore, the

only way the order can arrive after the demand for it has occurred is if demand during the

replenishment lead time is greater than or equal to r + 1 (that is, X ≥ r + 1). Hence, the

probability that the order arrives before its demand (i.e., does not result in a backorder)

is given by 1 − P(X ≥ r + 1) = P(X ≤ r + 1) = G(r + 1). Since all orders are alike

with regard to this calculation, the fraction of demands that are filled from stock is equal

to the probability that an order arrives before the demand for it has occurred, or

S(r ) = G(r + 1) (2.21)

Hence, G(r + 1) represents the fraction of demands that will be filled from stock. This

is normally called the fill rate and represents a reasonable definition of customer service

for many inventory control systems.

If demand is normally distributed, then we can simplify the expression for S(r ) as

follows:

S(r ) = G(r + 1) = �

(

r + 1 − θ

σ

)

(2.22)

where � represents the cumulative distribution function (cdf) of the standard normal

distribution. We can look up the value of �(z) for z = (r + 1 − θ )/σ in a standard

normal table or compute it by using the normal function of a spreadsheet program (e.g.,

�(z) = NORMSDIST(z) in Excel).

Backorder Level. At any point in time, the number of orders is exactly equal to the

number of demands that have occurred during the last ℓ time units. If we let X represent

this (random) number of demands, then from (2.19) and (2.20)

On-hand inventory − backorders = r + 1 − X (2.23)

Notice that on-hand inventory and backorders can never be positive at the same time

(i.e., because if we had both inventory and backorders, we would fill backorders until

either stock ran out or the backorders were all filled). So, at a point where the number

of outstanding orders is X = x , the backorder level is given by

Backorders =

{

0 if x < r + 1

x − r − 1 if x ≥ r + 1

The expected backorder level can be computed by averaging over possible values of x :

B(r ) =

∫

∞

r+1

(x − r − 1)g(x) dx

=

∫

∞

r

(x − r )g(x) dx (2.24)

If demand is normally distributed, then this can be simplified (see Zipkin 2000 for

a derivation) to

B(r ) = (θ − r )[1 − �(z)] + σφ(z) (2.25)
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where z = (r − θ )/σ and � and φ represent the cumulative distribution function (cdf)

and probability density function (pdf) of the standard normal distribution, respectively.

This second form is very useful for spreadsheet analysis, since it does not involve an

integral. Also, since we can express the pdf and cdf of the standard normal in Excel as

φ(z) = NORMDIST(z, 0, 1, FALSE) (2.26)

�(z) = NORMDIST(z, 0, 1, TRUE) (2.27)

we can easily compute B(r ) for any value of r in a single spreadsheet cell.

The B(r ) function is very important and useful in the theory of inventory control.

Because it measures the amount of unmet demand (backorder level), it is sometimes

referred to as a loss function. We will see that it reappears in the more complex (Q, r )

inventory model discussed later in this chapter.

Inventory Level. Taking the expectation of both sides of Equation (2.23) and noting

that I (r ) represents expected on-hand inventory, B(r ) represents expected backorder

level, and E[X ] = θ is the expected lead time demand, we get

I (r ) = r + 1 − θ + B(r ) (2.28)

Example:

We can now analyze the Superior Appliance example. Suppose from past experience we

know that mean demand for the refrigerator under consideration is 10 units per month

and replenishment lead time is 1 month. Therefore, mean demand during lead time is

θ = 10 units. Further suppose that we model demand using the Poisson distribution.6

This means that the standard deviation of demand during replenishment lead time is

equal to the square root of the mean, so σ =

√

10 = 3.16

We can use Equation (2.22) to compute the fill rate for any given reorder point. For

example, if we set r = 13 then

S(13) = �

(

14 − 10

3.16

)

= �(1.26) = 0.896

and if we set r = 14 then

S(14) = �

(

15 − 10

3.16

)

= �(1.58) = 0.942

From these we can conclude that if we want to achieve a fill rate of at least 90 percent,

we must choose the reorder point to be r = 14. This implies that the safety stock will be

s = r − θ = 14 − 10 = 4 units. Since r = 14 implies that z = (15 − 10)/3.16) = 1.58,

we can compute the average number of backorders that will be outstanding at any point

in time, using Equation (2.25), to be

B(15) = (10 − 14 − 1)[1 − �(1.58)] + σφ(1.58)

= −5(1 − 0.942) + 3.16(0.114) = 0.077

6The Poisson distribution is a good modeling choice for demand processes where demands occur one by

one and do not exhibit cyclic fluctuations. It is completely specified by only one parameter, the mean, θ , and

is therefore convenient when one lacks information concerning the variability of demand. Furthermore, as

long as θ is not too small, the Poisson is well-approximated by a normal with mean θ and standard deviation

σ =
√

θ .
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The reason the average backorder level is so low, less than a tenth of a unit, is that there

will seldom be any backorders on the books.

Finally, we can compute the average level of on-hand inventory, using Equation

(2.28), to be

I (r ) = r + 1 − θ + B(r ) = 14 + 1 − 10 + 0.077 = 5.077

If we were to increase the reorder point from 14 to 15, the fill rate would increase to 97

percent, the backorder level would fall to 0.035, and the average inventory level would

increase to 6.035. Whether or not the improved customer service (as measured by fill rate

and backorder level) is worth the additional inventory investment is a value judgment

for Superior Appliance. One way to balance these competing issues is to use a cost

optimization model, as we show below.

In general, the higher the mean demand during replenishment lead time, the higher

the base stock level required to achieve a particular fill rate. This is hardly surprising,

since the reorder point r must contain enough inventory to cover demand while orders are

coming. When demand during lead time is normal, the probability of demand exceeding

θ during the lead time is exactly one-half. Hence, any fill rate greater than one-half will

require r to be greater than θ .

In addition to mean demand, the variability of the demand process affects the choice

of base stock level. We can see how by looking at Equation (2.22). Since �(z) is an

increasing function of z, it follows that fill rate (service) will increase whenever z =

(r + 1 − θ )/σ increases. As long as r + 1 − θ is positive, which will be true as long as

the safety stock s = r − θ is non-negative, z decreases when σ increases. Hence, unless

safety stock is negative, increased demand variability results in decreased service for

a given reorder point. Thus, to retain a target fill rate in the face of increased demand

variability requires an increase in the reorder point (and hence safety stock).

The base stock model has been widely studied in the operations management lit-

erature. This is partly because it is comparatively simple to analyze, but also because

it is easily extended to a range of situations. For instance, base stocks can be used to

control work releases in a multistage production line. In such a system, a base stock level

is established for each inventory buffer in the line (e.g., in front of the workstations).

Whenever an item is removed from the buffer, a replenishment order is triggered. As we

will discuss in Chapter 4, this is essentially what a kanban system does.

Finally, we consider an optimization approach to setting the base stock level. To do

this, we formulate a cost function consisting of the sum of inventory holding costs plus

backorder costs as

Y (r ) = holding cost + backorder cost (2.29)

= hI (r ) + bB(r )

= h(r + 1 − θ + B(r )) + bB(r )

= h(r + 1 − θ ) + (b + h)B(r ) (2.30)

We compute the reorder point r that minimizes Y (r ) in the following technical note.
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Technical Note

Treating r as a continuous variable, we can take the derivative of Y (r ) as follows:

dY(r)

dr
= h + (b + h)

d B(r)

dr

We can differentiate Equation (2.24) to compute d B(R)/d R as

d B(r)

dr
=

d

dr

∫

∞

r+1

(x − r − 1)g(x) dx

= −

∫

∞

r+1

g(x) dx

= −[1 − G(r + 1)]

Setting dY (r )/dr equal to zero yields

dY(r)

dr
= h − (b + h)[1 − G(r + 1)] = 0 (2.31)

Solving (2.31) yields expression (2.32) for the optimal value of r .

The reorder point r that minimizes holding plus backorder cost is given by

G(r∗
+ 1) =

b

b + h
(2.32)

Notice that this formula has the same critical fractile structure that we saw in the news

vendor solution given in (2.17). Since we are assuming that G is normal, we can simplify

expression (2.32) by using same arguments we used earlier to derive expression (2.18),

and conclude that

r∗
+ 1 = θ + zσ (2.33)

where z is the value from the standard normal table for which �(z) = b/(b + h) and θ

and σ are the mean and standard deviation, respectively, of lead-time demand.

Note that r∗ increases in θ and also increases in σ provided that z > 0. This will

be the case as long as b/(b + h) > 0.5, or equivalently b > h. Since carrying a unit of

backorder is typically more costly than carrying a unit of inventory, it is generally the

case that the optimal base stock level is an increasing function of demand variability.

Example:

Let us return to the Superior Appliance example. Recall that lead-time demand is nor-

mally distributed with mean θ = 10 units per month and standard deviation σ =
√

θ =

3.16 units per month. Suppose that the wholesale cost of a refrigerator is $750 and

Superior uses an interest rate of 2 percent per month to charge inventory costs, so that

h = 0.02(750) = $15 per unit per month. Further suppose that the backorder cost is

estimated to be $25 per unit per month, because Superior typically has to offer discounts

to convince customers to buy out-of-stock items.

Then the optimal base stock level can be found from (2.33) by first computing z by

calculating

b

b + h
=

25

25 + 15
= 0.625
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and looking up in a standard normal table to find �(0.32) = 0.625. Hence, z = 0.32 and

r∗
+ 1 = θ + zσ = 10 + 0.32(3.16) = 11.01 ≈ 11

Using Equation (2.22), we can compute the fill rate for this base stock level as

S(r ) = �

(

r + 1 − θ

σ

)

= �

(

11 − 10

3.16

)

= �(0.316) = 0.62

This is a pretty low fill rate, which may indicate that our choice for the backorder cost b

was too low.

If we were to increase the backorder cost to b = $200, the critical fractile would

increase to 0.93, which (because z0.93 = 1.48) would increase the optimal base stock

level to r∗
+ 1 = 10 + 1.48(3.16) = 14.67 ≈ 15. Hence, the reorder point is r∗

= 14,

which is what we got in our previous analysis where we chose the smallest reorder point

that gave a fill rate of 90 percent. We recall that the actual fill rate it achieves is 94.2

percent. Notice that the backorder cost necessary to get a base stock level of 15, and

hence a fill rate greater than 90 percent, is very large ($200 per unit per month!), which

suggests that such a high fill rate may not be economical.7

We conclude by noting that the primary insights from the base stock model are as

follows:

1. Reorder points control the probability of stockouts by establishing safety stock.

2. The required base stock level (and hence safety stock) that achieves a given fill

rate is an increasing function of the mean and (provided that unit backorder cost

exceeds unit holding cost) standard deviation of the demand during

replenishment lead time.

3. The “optimal” fill rate is an increasing function of the backorder cost and a

decreasing function of the holding cost. Hence, if we fix the holding cost, we

can use either a service constraint or a backorder cost to determine the

appropriate base stock level.

4. Base stock levels in multistage production systems are very similar to card

counts in kanban systems, and therefore the above insights apply to those

systems as well.

2.4.3 The (Q, r ) Model

Consider the situation of Jack, a maintenance manager, who must stock spare parts to

facilitate equipment repairs. Demand for parts is a function of machine breakdowns and

is therefore inherently unpredictable. Furthermore, suppose that the cost of placing a

purchase order (for parts obtained from an outside supplier) or the cost of setting up the

production facility (for parts produced internally) are significant enough to make one-at-

a-time replenishment impractical. Thus, the maintenance manager must determine not

7Part of the reason that b must be so large to achieve r = 14 is that we are rounding to the nearest integer.

If instead we always round up, which would be reasonable if we want service to be at least b/(b + h), then a

(still high) value of b = $135 makes b/(b + h) = 0.9 and results in r∗
= 13.05, which rounds up to 14.

Since a continuous distribution is an approximation for demand anyway, it does not really matter whether a

large b or an aggressive rounding procedure is used to obtain the final result. What does matter is that the

user perform sensitivity analysis to understand the solution and its effects.
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with Q = 4, r = 4.

only how much stock to carry (as in the base stock model), but also how many to produce

or order at a time (as in the EOQ and news vendor models). Addressing both of these

issues simultaneously is the focus of the (Q, r ) model.

From a modeling perspective, the assumptions underlying the (Q, r ) model are

identical to those of the base stock model, except that we will assume either

1. There is a fixed cost associated with a replenishment order or

2. There is a constraint on the number of replenishment orders per year

and therefore replenishment quantities greater than one may make sense

The basic mechanics of the (Q, r ) model are illustrated in Figure 2.7, which shows

the net inventory level (on-hand inventory minus backorder level) and inventory posi-

tion (net inventory plus replenishment orders) for a single product being continuously

monitored. Demands occur randomly, but we assume that they arrive one at a time, which

is why net inventory always drops in unit steps in Figure 2.7. When the inventory posi-

tion reaches the reorder point r , a replenishment order for quantity Q is placed. After a

(constant) lead time of ℓ, during which stockouts might occur, the order is received. The

problem is to determine appropriate values of Q and r .

As Wilson (1934) pointed out in the first formal publication on the (Q, r ) model, the

two controls Q and r have essentially separate purposes. As in the EOQ model, the re-

plenishment quantity Q affects the trade-off between production or order frequency and

inventory. Larger values of Q will result in few replenishments per year but high average

inventory levels. Smaller values will produce low average inventory but many replen-

ishments per year. In contrast, the reorder point r affects the likelihood of a stockout. A

high reorder point will result in high inventory but a low probability of a stockout. A low

reorder point will reduce inventory at the expense of a greater likelihood of stockouts.

Depending on how costs and customer service are represented, we will see that Q

and r can interact in terms of their effects on inventory, production or order frequency,

and customer service. However, it is important to recognize that the two parameters

generate two fundamentally different kinds of inventory. The replenishment quantity Q

affects cycle stock (i.e., inventory held to avoid excessive replenishment costs). The

reorder point r affects safety stock (i.e., inventory held to avoid stockouts). Note that

under these definitions, all the inventory held in the EOQ model is cycle stock, while all

the inventory held in the base stock model is safety stock. In a sense, the (Q, r ) model

represents the synthesis of these two models.



80 Part I The Lessons of History

To formulate the basic (Q, r ) model, we combine the costs from the EOQ and base

stock models. That is, we seek values of Q and r to solve either

min
Q,r

{fixed setup cost + backorder cost + holding cost} (2.34)

or

min
Q,r

{fixed setup cost + stockout cost + holding cost} (2.35)

The difference between formulations (2.34) and (2.35) is in how customer service is

represented. Backorder cost assumes a charge per unit time a customer order is unfilled,

while stockout cost assumes a fixed charge for each demand that is not filled from stock

(regardless of the duration of the backorder). We will make use of both approaches in

the analysis that follows.

Notation. To develop expressions for each of these costs, we will make use of the

following notation:

D = expected demand per year (in units)

ℓ = replenishment lead time (in days); initially we assume this is

constant, although we show later how to incorporate variable

lead times

X = demand during replenishment lead time (in units), a random variable

θ = E[X ] = Dℓ/365 = expected demand during replenishment lead

time (in units)

σ = standard deviation of demand during replenishment

lead time (in units)

g(x) = probability density function (pdf) of demand during replenishment

lead time

G(x) = P(X ≤ x) = cumulative distribution function (cdf) of demand

during replenishment lead time

A = setup or purchase order cost per replenishment (in dollars)

c = unit production cost (in dollars per unit)

h = annual unit holding cost (in dollars per unit per year)

k = cost per stockout (in dollars)

b = annual unit backorder cost (in dollars per unit of backorder per

year); note that failure to have inventory available to fill a demand is

penalized by using either k or b but not both

Q = replenishment quantity (in units); this is a decision variable

r = reorder point (in units); this is the other decision variable

s = r − θ = safety stock implied by r (in units)

F(Q, r ) = order frequency (replenishment orders per year) as a function of Q and r

S(Q, r ) = fill rate (fraction of orders filled from stock) as a function of Q and r ;

note that S(1, r ) = S(R) = base stock fill rate

B(Q, r ) = average number of outstanding backorders as a function of Q and r ;

note that B(1, r ) = B(R) = base stock backorder level

I (Q, r ) = average on-hand inventory level (in units) as a function of Q and r ;

note that I (1, r ) = I (r ) = base stock inventory level
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Costs

Fixed Setup Cost. There are two basic ways to address the desirability of having an

order quantity Q greater than one. First, we could simply put a constraint on the number

of replenishment orders per year. Since the number of orders per year can be computed

as

F(Q, r ) =
D

Q
(2.36)

we can compute Q for a given order frequency F as Q = D/F . Alternatively, we could

charge a fixed order cost A for each replenishment order that is placed. Then the annual

fixed order cost becomes F(Q, r )A = (D/Q)A.

Stockout Cost. As we noted earlier, there are two basic ways to penalize poor customer

service. One is to charge a cost each time a demand cannot be filled from stock (i.e., a

stockout occurs). The other is to charge a penalty that is proportional to the length of

time a customer order waits to be filled (i.e., is backordered).

The annual stockout cost is proportional to the average number of stockouts per

year, given by D[1 − S(Q, r )]. We can compute S(Q, r ) by observing from Figure 2.7

that inventory position ranges between r and Q + r .8 In fact, it turns out that over the

long term, inventory position will be uniformly distributed (i.e., equally likely to take

any value) over this range. We can exploit this fact to use our results from the base stock

model in the following analysis (see Zipkin 2000 for a rigorous version of this develop-

ment).

Suppose we look at the system after it has been running a long time and observe

that the current inventory position is x .9 This means that we have sufficient inventory on

hand and on order to cover the next x units of demand. So we ask the question, What

is the probability that the (x + 1)st demand will be filled from stock? The answer to

this question is precisely the same as it was for the base stock model. That is, since all

outstanding orders will have arrived within the replenishment lead time, the (x + 1)st

demand will be filled from stock provided that demand during the replenishment lead

time is less than or equal to x . This has likelihood

P{X ≤ x} = G(x) (2.37)

Since the inventory positions over the range from r to r + Q are equally likely,

the fill rate for the entire system is computed by simply averaging the fill rates over all

possible inventory positions:

S(Q, r ) =
1

Q

∫ r+Q

r

G(x)dx

= 1 −
1

Q
[B(r ) − B(r + Q)] (2.38)

8Strictly speaking, when stock is discrete inventory position can take on only values

r + 1, r + 2, . . . , r + Q. The reason it cannot actually equal r is that whenever it reaches r , another order of

Q is placed immediately. But, since we are approximating demand with the normal distribution and are

treating stock as continuous, we overlook this detail here. However, we do address it in Appendix 2B, where

we present exact expressions for the (Q, r ) model with discrete Poisson demand.
9This technique is called conditioning on a random event (i.e., the value of the inventory position) and is

a very powerful analysis tool in the field of probability.
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where the derivation of the second equality is given in Zipkin (2000). Since we al-

ready showed that the B(r ) function can be easily computed in a spreadsheet by using

expression (2.25), this formula for S(Q, r ) is also simple to compute in a spreadsheet.

However, it is sometimes difficult to use in optimization models. For this reason,

various approximations have been offered. One approximation, known as the base stock

or type I service approximation, is simply the base stock fill rate formula for a base

stock (not reorder point) level of r , which is given by

S(Q, r ) ≈ G(r ) (2.39)

From Equation (2.38) it is apparent that G(r ) underestimates the true fill rate. This is

because the cdf G(x) is an increasing function of x . Hence, we are taking the smallest term

in the average. However, while it can seriously underestimate the true fill rate, it is very

simple to work with because it involves only r and not Q. Because of this, it can be the

basis of a very useful heuristic for computing good (Q, r ) policies, as we will show below.

A second approximation of fill rate, known as type II service, is found by ignoring

the second term in expression (2.38) (Nahmias 1993). This yields

S(Q, r ) ≈ 1 −
B(r )

Q
(2.40)

Again, this approximation tends to underestimate the true fill rate, since the B(r +

Q) term in (2.38) is positive. However, since this approximation still involves both Q and

r , it is not generally simpler to use than the exact formula. But as we will see below, it does

turn out to be a useful intermediate approximation for deriving a reorder point formula.

Backorder Cost. If, instead of penalizing stockouts with a fixed cost per stockout k,

we penalize the time a backorder remains unfilled, then the annual backorder cost will

be proportional to the average backorder level B(Q, r ). The quantity B(Q, r ) can be

computed in a similar manner to the fill rate, by averaging the backorder level for the

base stock model over all inventory positions between r and r + Q:

B(Q, r ) =
1

Q

∫ r+Q

r

B(x + 1)dx (2.41)

This formula can be converted to simpler form for computation in a spreadsheet, by

defining the following function:

β(x) =

∫

∞

x

B(y) dy

=
σ

2

2
{(z2

+ 1)[1 − �(z)] − zφ(z)} (2.42)

where z = (x − θ )/σ (again, see Zipkin 2000 for a derivation of the second equality).

This allows us to simplify the expression for B(Q, r ) to

B(Q, r ) =
1

Q
[β(r ) − β(r + Q)] (2.43)

As with the expression for S(Q, r ), it is sometimes convenient to approximate

B(Q, r ) with a simpler expression that does not involve Q. One way to do this is to
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Expected inventory versus

time in the (Q, r ) model

with Q = 4, r = 4, θ = 2.

use the analogous formula to the type I service formula and simply use the base stock

backorder formula

B(Q, r ) ≈ B(r ) (2.44)

Holding Cost. The last cost in problems (2.34) and (2.35) is the inventory holding

cost, which can be expressed as hI (Q, r ). We can approximate I (Q, r ) by looking

at the average net inventory and acting as though demand were deterministic, as in

Figure 2.8, which depicts a system with Q = 4, r = 4, ℓ = 2, and θ = 2. Demands

are perfectly regular, so that every time inventory reaches the reorder point (r = 4), an

order is placed, which arrives two time units later. Since the order arrives just as the last

demand in the replenishment cycle occurs, the lowest inventory level ever reached is

r − θ + 1 = s + 1 = 3. In general, under these deterministic conditions, inventory will

decline from Q + s to s + 1 over the course of each replenishment cycle. Hence, the

average inventory is given by

I (Q, r ) ≈
(Q + s) + (s + 1)

2
=

Q + 1

2
+ s =

Q + 1

2
+ r − θ (2.45)

In reality, however, demand is variable and sometimes causes backorders to occur. Since

on-hand inventory cannot go below zero, the above deterministic approximation under-

estimates the true average inventory by the average backorder level. Hence, the exact

expression is

I (Q, r ) =
Q + 1

2
+ r − θ + B(Q, r ) (2.46)

Backorder Cost Approach. We can now make verbal formulation (2.34) into a math-

ematical model. The sum of setup and purchase order cost, backorder cost, and inventory

carrying cost can be written as

Y (Q, r ) =
D

Q
A + bB(Q, r ) + hI (Q, r ) (2.47)

Unfortunately, there are two difficulties with the cost function Y (Q, r ). The first is

that the cost parameters A and b are difficult to estimate in practice. In particular, the

backorder cost is nearly impossible to specify, since it involves such intangibles as loss

of customer goodwill and company reputation. Fortunately, however, the objective is not

really to minimize this cost; it is to strike a reasonable balance between setups, service,

and inventory. Using a cost function allows us to conveniently use optimization tools
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to derive expressions for Q and r in terms of problem parameters. But the quality of

the policy must be evaluated directly in terms of the performance measures, as we will

illustrate in the next example. The second difficulty is that the expressions for B(Q, r )

and I (Q, r ) involve both Q and r in complicated ways. So using exact expressions

for these quantities does not lead us to simple expressions for Q and r . Therefore, to

achieve tractable formulas, we approximate B(Q, r ) by expression (2.44) and use this

in place of the true expression for B(Q, r ) in the formula for I (Q, r ) as well. With this

approximation our objective function becomes

Y (Q, r ) ≈ Ỹ (Q, r ) =
D

Q
A + bB(r ) + h

[

Q + 1

2
+ r − θ + B(r )

]

(2.48)

We compute the Q and r values that minimize Ỹ (Q, r ) in the following technical

note.

Technical Note

Treating Q as a continuous variable, differentiating Ỹ (Q, r ) with respect to Q, and setting

the result equal to zero yields

∂Ỹ (Q, r )

∂ Q
=

−DA

Q2
+

h

2
= 0 (2.49)

Differentiating Ỹ (Q, r ) with respect to r , and setting the result equal to zero yields

∂Ỹ (Q, r )

∂r
= (b + h)

d B(r )

dr
+ h = 0 (2.50)

We can compute the derivative of B(r ) by differentiating expression (2.24) to get

d B(r )

dr
=

d

dr

∫

∞

r

(x − r )g(x) dx

= −

∫

∞

r

g(x) dx

= −[1 − G(r )]

and rewrite (2.50) as

−(b + h)[1 − G(r )] + h = 0 (2.51)

Hence, we must solve (2.49) and (2.51) to minimize Ỹ (Q, r ), which we do in (2.52) and

(2.53).

The optimal reorder quantity Q∗ and reorder point r∗ are given by

Q∗
=

√

2AD

h
(2.52)

G(r∗) =
b

b + h
(2.53)
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Notice that Q∗ is given by the EOQ formula and the expression for r∗ is given by the

critical fractile formula for the base stock model. (The latter is not surprising, since

we used a base stock approximation for the backorder level.) If we further assume that

lead-time demand is normally distributed with mean θ and standard deviation σ , then

we can simplify (2.53) as we did for the base stock model in (2.33) to get

r∗
= θ + zσ (2.54)

where z is the value in the standard normal table such that �(z) = b/(b + h).

It is important to remember that because we used some approximations of the

performance values, these values for Q∗ and r∗ are only approximate. So we should

check their performance in terms of order frequency, fill rate, backorder level, and average

inventory by using formulas (2.36), (2.38), (2.43), and (2.46).10 If performance is not

adequate, then the cost parameters can be adjusted. Typically, it makes sense to leave

holding cost h alone and adjust the fixed order cost A and the backorder cost b, since

these are more difficult to estimate in advance. Note that increasing A increases Q∗

and hence reduces average order frequency, while increasing b increases r∗ and hence

reduces stockout rate and average backorder level. We illustrate this in the next example,

which follows the presentation of the case where customer service is characterized by

stockout rate rather than backorder level.

Stockout Cost Approach. As an alternative to the backorder cost approach, we can

make verbal formulation (2.35) into a mathematical model by writing the sum of the

annual setup or purchase order cost, stockout cost, and inventory carrying cost as

Y (Q, r ) =
D

Q
A + kD[1 − S(Q, r )] + hI (Q, r ) (2.55)

As was the case for the backorder model, this cost function involves parameters that are

difficult to specify. In particular, the stockout cost k is dependent on the same intangibles

(lost customer goodwill and company reputation) as is the backorder cost b. Hence,

again, this cost function is merely a means for deriving expressions for Q and r that

reasonably balance setups, service, and inventory. It is not a performance measure in

itself.

Also like the backorder model, the stockout model cost function contains expressions

S(Q, r ) and I (Q, r ) that involve both Q and r and therefore does not lead to simple

expressions. So we will make two levels of approximation to generate closed-form

expressions for Q and r .

First, analogous to what we did in the backorder cost model above, we will assume

that the effect of Q on the fill rate S(Q, r ) and the backorder correction factor B(Q, r )

in the inventory term I (Q, r ) can be ignored. This leads to the familiar EOQ formula for

the order quantity

Q∗
=

√

2AD

h

Second, to compute an expression for the reorder point, we make two approxima-

tions in (2.55). We replace the service S(Q, r ) by type II approximation (2.40) and the

10Technically speaking, these formulas are also approximate, since they assume demand is normally

distributed. More accurate, albeit slightly more tedious to implement in a spreadsheet, would be to use the

corresponding formulas for the Poisson demand case given in Appendix 2B.
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backorder correction term B(Q, r ) in the inventory term by base stock approximation

(2.44). This yields the following approximate cost function

Y(Q,r) ≈ Ỹ (Q,r) =
D

Q
A + kD

B(r )

Q
+ h

[

Q + 1

2
+ r − θ + B(r )

]

(2.56)

Going through the usual optimization procedure (taking the derivative with respect

to r , setting the result equal to zero, and solving for r ) yields the following expression

for the optimal reorder point:

G(r∗) =
kD

kD + hQ
(2.57)

If we further assume that lead-time demand is normally distributed with mean θ and

standard deviation σ , then we can simplify the expression for the reorder point to

r∗
= θ + zσ (2.58)

where �(z) = kD/(kD + hQ).

Notice that unlike formula (2.54), expression (2.58) is sensitive to Q (because z

depends on Q). Specifically, making Q larger makes the ratio kD/(kD + hQ) smaller

and hence reduces r∗. The reason is that a larger Q value serves to increase the fill rate

(because the reorder point is crossed less frequently) and hence requires a smaller reorder

point to achieve a given level of service.

Example:

Jack, the maintenance manager, has collected historical data that indicate one of the

replacement parts he stocks has annual demand (D) of 14 units per year. The unit cost

c of the part is $150, and since the firm uses an interest rate of 20 percent, the annual

holding cost h has been set at 0.2($150) = $30 per year. It takes 45 days to receive a

replenishment order, so average demand during a replenishment lead time is

θ =
14

365
× 45 = 1.726

The part is purchased from an outside supplier, and Jack estimates that the cost of time

and materials required to place a purchase order A is about $15. The one remaining

cost required by our model is the cost of either a backorder or stockout. Although he is

very uncomfortable trying to estimate these, when pressed, Jack made a guess that the

annualized cost of a backorder is about b = $100 per year, and the cost per stockout event

can be approximated by k = $40.11 Finally, Jack has decided that demand is Poisson

distributed, which means the standard deviation is equal to the square root of the mean.12

11Notice that either approach for penalizing backorders or stockouts assumes that the cost is independent

of which machine it affects. Of course, in reality, stockouts for heavily used critical machines are far more

costly than stockouts affecting lightly used machines with excess capacity.
12The Poisson is a good assumption when demand is generated by many independent sources, such as

failures of different machines. However, if demands were generated by a more regular process, such as

scheduled preventive maintenance procedures, the Poisson distribution will tend to overestimate variability

and lead to conservative, possibly excessive, safety stock levels.
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Regardless of whether we use the backorder cost model or the stockout cost model,

the order quantity is computed by using (2.52), which yields

Q∗
=

√

2AD

h
=

√

2(15)(14)

30
= 3.7 ≈ 4

To compute the reorder point, we can use either the backorder cost or the stockout cost

model. To use expression (2.54) from the normal demand version of the backorder model,

we approximate the Poisson by the normal, with mean θ = 1.726 and standard deviation

σ =

√

1.726 = 1.314. The critical fractile is given by

b

b + h
=

100

100 + 30
= 0.769

and from a standard normal table, �(0.736) = 0.769. Hence, z = 0.736 and

r∗
= θ + zσ = 1.726 + 0.736(1.314) = 2.693 ≈ 3

As an alternative to using the backorder cost model, we could have computed the reorder

point by using expression (2.58) from the stockout cost model. The critical fractile in

this formula is

kD

kD + hQ
=

40(14)

40(14) + 30(4)
= 0.824

and from a standard normal table �(0.929) = 0.824 so z = 0.929 and

r∗
= θ + zσ = 1.726 + 0.929(1.314) = 2.946 ≈ 3

Since this policy (Q = 4, r = 3) is the same as that resulting from the backorder

cost model, the performance measures will also be the same. So, in a practical sense, the

backorder and stockout costs chosen by Jack are equivalent. In the single-product case,

either model could be used—increasing either b or k will serve to increase service and

decrease backorder level (at the expense of a higher inventory level). So either model can

be used to generate a set of efficient solutions by varying these cost parameters. But we

will see in Chapter 17 that the two models can behave differently in multiproduct systems.

Using equations (2.36), (2.38), (2.43), and (2.46) we can compute the performance

metrics attained by the policy (Q = 4, r = 3). These show that it will require placing

replenishment orders 3.5 times per year, the fill rate is fairly high (97.1 percent), there

will be few backorders (only 0.017 on average), and on-hand inventory will average a

bit under four units (3.79).13 The decision maker might look at these values and feel that

the policy is just fine. If not, then sensitivity analysis should be used to find variants of

the solution.

For instance, suppose that the decision maker felt that three and one-half replen-

ishment orders per year were too few and that, given the capacity of the purchasing

department, F = 7 orders per year would be manageable. Then we could use

13Recall that these measures have been computed under the approximation of demand by a continuous

normal distribution. If we use the exact formulas for the discrete Poisson demand case, which are given in

Appendix 2B, we get slightly different numbers (F = 3.5, S = 96.3%, B = 0.014, I = 3.79). Note,

however, that even though θ is small, the normal is a good approximation of the Poisson. For larger values of

θ , it is even better. Since demand and cost data are never precise in practice, the difference between these

outcomes is seldom of practical importance.
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Q = D/F = 14/7 = 2. But if we stick with a reorder point of r = 3, then the fill rate

becomes

S(Q,r) = 1 −
1

Q
[B(r) − B(r + Q)] = 1 −

1
2
(0.116 − 0.003) = 0.943

which may be too low for a repair part. If we increase the reorder point to r = 4, then

the fill rate becomes

S(Q,r) = 1 −
1

Q
[B(r ) − B(r + Q)] = 1 −

1
2
(0.022 − 0.0002) = 0.989

For this new policy (Q = 2, r = 4) we can easily compute the backorder level and

average inventory level, using equations (2.43) and (2.46) to be B(Q, r ) = 0.005 and

I (Q, r ) = 3.78. The increased reorder point has lowered the backorder rate, and the

increased order frequency has reduced the average inventory level relative to the original

policy of (Q = 4, r = 3). Of course, the cost of doing this is an additional three and

one-half replenishment orders per year.

An alternative method for doing sensitivity analysis would be to modify the fixed

order cost A until the order frequency F(Q, r ) is satisfactory and then modify the

backorder cost b or the stockout cost k (depending on which model is being used) until

the fill rate S(Q, r ) and/or the backorder level B(Q, r ) is acceptable. In a single-product

problem like this, there is no great advantage to this approach, since we are still searching

over two variables (that is, A and b or k instead of Q and r ). But as we will see in Chapter

17, this approach is much more efficient in multiproduct problems, where one can search

over a single (A, b) or (A, k) pair instead of (Q, r ) values for each product. Furthermore,

since expressions (2.52), (2.54), and (2.58) are simple closed-form equations involving

the problem data, they are extremely simple to compute in a spreadsheet.

Modeling Lead-Time Variability. Throughout our discussion of the base stock and

(Q, r ) models we have assumed that the replenishment lead time ℓ is fixed. All the

uncertainty in the system was assumed to be due to demand uncertainty. However, in

many practical situations, the lead time may also be uncertain. For instance, a supplier of

a part may sometimes be late (or early) on a delivery. The primary effect of this additional

variability is to inflate the standard deviation of the demand during the replenishment

lead time σ . By computing a formula for σ that considers lead-time variability, we can

easily incorporate this additional source of variability into the base stock and (Q, r )

models.

To develop the appropriate formula, we must introduce a bit of additional notation:

L = replenishment lead time (in number of days), a random variable

ℓ = E[L] = expected replenishment lead time (in number of days)

σL = standard deviation of replenishment lead time (in days)

Dt = demand on day t (in units), a random variable. We assume that demand

is stationary over time, so that Dt has the same distribution for each day t ;

we also assume daily demands are independent of one another

d = E[Dt ] = expected daily demand (in units)

σD = standard deviation of daily demand (in units)

As before, we let X represent the (random) demand during the replenishment lead

time. With the above notation, this can be written as

X =

L
∑

t=1

Dt (2.59)
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Because daily demands are independent and identically distributed, we can compute the

expected demand during the replenishment lead time as

E[X ] = E[L]E[Dt ] = ℓd = θ (2.60)

which is what we have been using all along. However, variable lead times change the

variance of demand during replenishment lead time. Using the standard formula for sums

of independent, identically distributed random variables, we can compute14

Var(X ) = E[L] Var(Dt ) + E[Dt ]
2 Var(L) = ℓσ

2
D + d2

σ

2
L (2.61)

Hence, the standard deviation of lead-time demand is

σ =

√

Var(X ) =

√

ℓσ

2
D + d2

σ

2
L (2.62)

To get a better feel for how formula (2.62) behaves, consider the case where demand

is Poisson. This implies that σD =
√

d , since the standard deviation is always the square

root of the mean for Poisson random variables. Substituting this into (2.62) yields

σ =

√

ℓd + d2
σ

2
L =

√

θ + d2
σ

2
L (2.63)

Notice that if σL = 0, which represents the case where the replenishment lead time is

constant, then this reduces to σ =
√

θ , which is exactly what we have been using for the

Poisson demand case. If σL > 0, then formula (2.63) serves to inflate σ above what it

would be for the constant-lead-time case.

To illustrate the use of the above formula in an inventory model, let us return to

the Superior Appliance example from Section 2.4.2. There we assumed that demand for

refrigerators was normally distributed with a mean (θ ) of 10 per month and a standard

deviation (σ ) of 3.16 per month and that lead time (ℓ) was 1 month (30 days). So mean

daily demand is d =
10
30

=
1
3
. Since the standard deviation of monthly demand equals

the square root of mean monthly demand (i.e., the distribution looks like a Poisson),

we can use (2.63) to compute σ . For the same holding and backorder cost as in Section

2.4.2, h = 15 and b = 25, the critical fractile is b/(h + b) = 25/(15 + 25) = 0.625, so

z = 0.32 since �(0.32) = 0.625. The optimal base stock level is therefore

r∗
+ 1 = θ + zσ = θ + z

√

θ + d2
σ

2
L

If σL = 0, then we get r∗
+ 1 = 11.01, which is what we got previously. If σL = 30

(i.e., the variability in replenishment lead time is so large that the standard deviation is

equal to the mean), then we get r∗
+ 1 = 13.34. The additional 3.33 units of inventory

are required to achieve the same service level in the face of higher demand variability.

Formula (2.62) or (2.63) can be used in this same fashion to inflate the reorder

point in the (Q, r ) model in either equation (2.54) or (2.58) to account for variable

replenishment lead times.

14Although the “units” of (2.56) look wrong (the first term appears to have units of time while the second

has units of time-squared), both terms are actually dimensionless. The reason is that L is defined as a random

variable representing the number of periods and not the periods themselves.
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Basic (Q, r ) Insights. Apart from all the mathematical and modeling complexity, the

basic insights behind the (Q, r ) model are essentially those of the EOQ and base stock

models, namely that

Cycle stock increases as replenishment frequency decreases.

and

Safety stock provides a buffer against stockouts.

The (Q, r ) model places these insights into a unified framework.

Historically, the (Q, r ) model (including the special case of the base stock model,

which is just a (Q, r ) model with Q = 1) was one of the earliest attempts to explicitly

model uncertainty in the demand process and provide quantitative understanding of how

safety stock affects service level. In terms of rough intuition, this model suggests that

safety stock, service level, and backorder level are primarily affected by the reorder

point r , while cycle stock and order frequency are essentially functions of replenishment

quantity Q.

However, the mathematics of the model show that the true situation is somewhat

more subtle. As we saw above, the expressions for service and backorder level depend on

Q as well as r . The reason is that if Q is large, so that the part is replenished infrequently

in large batches, then stock level seldom reaches the reorder point and therefore has few

opportunities for stockouts. If, on the other hand, Q is small, then stock level frequently

falls to the reorder point and therefore has a greater chance of stocking out.

Beyond these qualitative observations, the (Q, r ) model offers some quantitative

insight into the factors that affect the optimal stocking policy. From approximate formulas

(2.52), (2.54), and (2.58) we can draw the following conclusions.

1. Increasing the average annual demand D tends to increase the optimal order

quantity Q.

2. Increasing the average demand during a replenishment lead time θ increases the

optimal reorder point r . Note that increasing either the annual demand D or the

replenishment lead time ℓ will serve to increase θ . The implication is that either

high demand or long replenishment lead times require more inventory for

protection.

3. Increasing the variability of the demand process σ tends to increase the optimal

reorder point r .15 The key insight here is that a highly variable demand process

typically requires more safety stock as protection against stockouts than does a

very stable demand process.

4. Increasing the holding cost h tends to decrease both the optimal replenishment

quantity Q and reorder point r . Note that the holding cost can be increased by

increasing the cost of the item, the interest rate associated with inventory, or the

noninterest holding costs (e.g., handling and spoilage). The point is that the

more expensive it is to hold inventory, the less we should hold.

The (Q, r ) model is a happy example of an approach that provides both power-

ful general insights and useful practical tools. As such it is a basic component of any

manufacturing manager’s skill set.

15Note that this is true only if the critical fractile in (2.54) or (2.58) is at least one-half. If this ratio is less

than one-half, then z will be negative and the optimal order point will actually decrease in the standard

deviation of lead-time demand. But this occurs only when the costs are such that it is optimal to set a

relatively low fill rate for the product. So, the case where z is positive is very common in practice.
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2.5 Conclusions

Although this chapter has covered a wide range of inventory modeling approaches, we

have barely scratched the surface of this vast branch of the OM literature. The complex-

ity and variety of inventory systems have spawned a wide array of models. Table 2.5

summarizes some of the dimensions along which these models differ and classifies the

five models we have treated in this chapter (i.e., EOQ, Wagner–Whitin (WW), news ven-

dor (NV), base stock (BS), and (Q, r )), plus the economic production lot (EPL) model

that we mentioned as an EOQ extension. (Notice that some of the entries in Table 2.5

contain dashes, which indicate that the particular modeling decision has been rendered

meaningless by other modeling assumptions and therefore does not apply.) The OM lit-

erature contains models representing all reasonable combinations of these dimensions,

as well as models with features that go beyond them (e.g., substitution between products,

explicit links between spare-parts inventory and utilization of maintenance personnel,

and perishable inventories). In this book, we will return to the important subject of in-

ventory management in Chapter 17, where we will extend some of the models of this

chapter into the important practical environments of multiple products and supply chain

systems. The reader interested in a more comprehensive summary than we can provide

in two chapters is encouraged to consult Graves, Rinnooy Kan, Zipkin (1993); Hadley

and Whitin (1963); Johnson and Montgomery (1974); McClain and Thomas (1985);

Nahmias (1993); Peterson and Silver (1985); Sherbrooke (1992); and Zipkin (2000).

Although some of these models require data that may be difficult or impossible to

obtain, they do offer some basic insights:

1. There is a trade-off between setups (replenishment frequency) and inventory.

The more frequently we replenish inventory, the less cycle stock we will carry.

2. There is a trade-off between customer service and inventory. Under conditions

of random demand, higher customer service levels (i.e., fill rates) require higher

levels of safety stock.

3. There is a trade-off between variability and inventory. For a given

replenishment frequency, if customer service remains fixed (at a sufficiently

high level), then the higher the variability (i.e., standard deviation of demand or

replenishment lead time), the more inventory we must carry.

Table 2.5 Classification of Inventory Models

Model

Modeling Decision EOQ EPL WW NV BS (Q, r )

Continuous (C) or discrete (D) time C C D D C C

Single (S) or multiple (M) products S S S S S S

Single (S) or multiple (M) periods — — M S — —

Backordering (B) or lost sales (L) — — — L B B

Setup or order cost [yes (Y) or no (N)] Y Y Y N N Y

Deterministic (D) or random (R) demand D D D R R R

Deterministic (D) or random (R) production D D D D D D

Constant (C) or dynamic (D) demand C C D — C C

Finite (F) or infinite (I) production rate I F I — I I

Finite (F) or infinite (I) horizon I I F F I I

Single (S) or multiple (M) echelons S S S S S S
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Despite the efforts of some manufacturing “gurus” to deny the existence of such

trade-offs, they are facts of manufacturing life. The commonly heard admonitions “In-

ventory is evil” or “Setups are bad” do little to guide the manager to useful policies.

In contrast, an understanding of the dynamics of inventory, replenishment frequency,

and customer service enables a manager to evaluate which actions are likely to have the

greatest impact. Such intuition can help address such questions as, Which setups are

most disruptive? How much inventory is too much? How much will an improvement in

customer service cost? How much is a more reliable vendor worth? And so on. We will

develop additional insights regarding inventory in Part II and will return to the practical

considerations of inventory in the context of supply chain management in Chapter 17 of

Part III.

The inventory models and insights discussed here also provide a framework for

thinking about higher-level actions that can change the nature of these trade-offs, such as

increased system flexibility, better vendor management, and improved quality. Finding

ways to alter these fundamental relationships is a key management priority that we will

explore more fully in Parts II and III.



Appendix 2A

Basic Probability

Random Experiments and Events

The starting point of the field of probability is the random experiment. A random experiment

is any measurement or determination for which the outcome is not known in advance. Examples

include measuring the hardness of a piece of bar stock, checking a circuit board for short circuits,

or tossing a coin.

The set of all possible outcomes of the experiment is called the sample space. For example,

consider the random experiment of tossing two coins. Let (a, b) denote the outcome of the ex-

periment, where a is H if the first coin comes up heads or T if it comes up tails, with b defined

similarly for the second coin. The sample space is then {(H, H), (H, T), (T, H), (T, T)}.

An event is a subset of the sample space. The individual elements in the sample space are called

elementary events. A nonelementary event in our sample space is “at least one coin comes up

heads,” which corresponds to the set {(H, H), (H, T), (T, H)}. Events are used to make probability

statements. For instance, we can ask, What is the probability that no tails appear?

Once the set of events has been defined, we can make statements concerning their probability.

Definitions of Probability

Over the years, three basic definitions of probability have been proposed: (1) classical or a priori

probability, (2) frequency or a posteriori probability, and (3) subjective probability. The different

definitions are useful for different types of experiments.

A priori probability is appropriate when the random experiment has a sample space composed

of n mutually exclusive and equally likely outcomes. Under these conditions, if event A is made

up of n A of these outcomes, we define the probability of A occurring as n A/n. This definition is

useful in describing games of chance. For example, the question regarding the probability of no

tails occurring when two coins are tossed can be interpreted in this way. Clearly, all the outcomes

in the sample space are mutually exclusive. If the coins are “fair,” then no particular outcome

is “special” and therefore cannot be more likely to occur than any other. Thus, there are four

mutually exclusive and equally likely outcomes. Only one of these contains no tails. Therefore the

probability of no tails is 1

4
, or 0.25.

The second definition of probability, frequency or a posteriori probability, is also couched

in terms of a random experiment, but after the experiment instead of before it. To describe this

definition, we imagine performing a number of experiments, say N , of which M result in event

E . Then we define the probability of E to be the number p to which the ratio of M/N converges

as N becomes larger and larger. For instance, suppose p = 0.75 is the long-run fraction of good

chips produced on a line in a wafer fabrication. Then we can consider p to be the probability of

producing a good wafer on any given try.

Subjective probability can be used to describe experiments that are intrinsically impossible

to replicate. For instance, the probability of rain at the company picnic tomorrow is a meaningful

number, but is impossible to determine experimentally since tomorrow cannot be repeated. So

when the weather forecaster says that the chance of rain tomorrow is 50 percent, this number

represents a purely subjective estimate of likelihood.

Fortunately, regardless of the definition of probability used, the tools and techniques for an-

alyzing probability problems are the same. The first step is to assign probabilities to events by

means of a probability function. A probability function is a mathematical function that takes as

input an event and produces a number between zero and one (i.e., a probability).

For example, consider again the two-coin toss experiment. Suppose P is the corresponding

probability function. Since there is nothing unique about any of the outcomes listed above, they

should be equally likely. Thus, we can write

P{(H, T)} =
1

4

93
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Also, since the events (H, T) and (T, H) are mutually exclusive, their probabilities are additive, so

P{(H, T) or (T, H)} =
1

4
+

1

4
=

1

2

Similarly, the probability of the “sure event” (i.e., that (H, H), (H, T), (T, H), or (T, T) will occur)

must be one. Probability functions provide a useful shorthand for making statements regarding

random events.

Random Variables and Distribution Functions

The majority of probability results turn on the concept of a random variable. Unfortunately, the

term random variable is a misnomer since it is neither random nor a variable. Like a probability

function, a random variable is a function. But instead of defining probabilities to events, it assigns

numbers to outcomes of a random experiment. This greatly simplifies notation by replacing clumsy

representations of outcomes like (H, T) with numbers.

For example, a random variable for the two-coin experiment can be defined as

Outcome Value of Random Variable

(H, H) 0
(H, T) 1
(T, H) 2
(T, T) 3

A random variable for the experiment to measure the hardness of bar stock might be the out-

put of a device that applies a known pressure to the bar and reads out the Rockwell hardness

index. A random variable for the circuit-board experiment might be simply the number of short

circuits.

Random variables can be either continuous or discrete. Continuous random variables assign

real numbers to their associated outcomes. The hardness experiment is one such example. Discrete

random variables, on the other hand, assign outcomes to integers. Examples of discrete random

variables are the random variable defined above for the coin toss experiment and the number of

short circuits on a circuit board.

Random variables are also useful in defining events. For instance, all the outcomes of the

circuit-board experiment with no more than five short circuits constitute an event. The linkage

between the event referenced by a random variable and the probability of the event is given by

its associated distribution function, which we will denote by G. For instance, let X denote the

hardness of a piece of steel with an associated distribution function G. Then the probability that

the hardness is less than or equal to some value x can be written as

P{X ≤ x} = G(x)

If the event of interest is that the hardness is in some range of values, say from x1 to x2, we can

write

P{x1 < X ≤ x2} = G(x2) − G(x1)

Note that since X is continuous, it can take on values with an infinite number of decimal places of

accuracy. Thus, the probability of X being exactly any number in particular (say, X = 500.0000 . . .)

is zero. However, we can talk about the probability density function f as the probability of X

lying in a small interval divided by the size of the interval, so that

g(x) �x = P{x ≤ X ≤ x + �x}
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Of course, to be precise, g(x) is defined only in the limit as �x goes to zero. But for practical

purposes, as long as �x is small, this expression is almost exact. For instance,

P[4.9999 ≤ X ≤ 5.0001] ≈ f (5) · 0.0002

to a high degree of accuracy.

For continuous random variables defined for positive real numbers, g and G are related by

G(x) =

∫ x

0

g(x) dx

Analogously to the probability density functions of continuous random variables, discrete

random variables have probability mass functions. We typically denote these functions by p(x)

to distinguish them from density functions. For instance, in the two-coin experiment, the event of

two heads coming up is the same as the event {X = 0}. Its associated probability is

P{two heads} = P{X = 0} = p(0) =
1

4

Notice that, unlike in the continuous case, in the discrete case there is a finite probability of

particular values of the random variable.

In many cases, discrete random variables are defined from zero to positive infinity. For these

discrete distributions, the relationship between p and G is given by

G(x) =

x
∑

i=0

p(i)

Using the distribution function G for the two-coin experiment, we can write the probability of one

or fewer tails as

P{one or fewer tails} = P[X ≤ 2] = G(2) = p(0) + p(1) + p(2)

Expectations and Moments

The probability density and mass functions can be used to compute the expectation of a random

variable, which is also known as the first moment, mean, or average and is often denoted by μ.

For a discrete random variable X defined from zero to infinity with probability mass function p,

the expected value of X , frequently written E[X ], is given by

μ = E[X ] = p(1) + 2p(2) + 3p(3) + · · · =

∞
∑

x=0

xp(x)

For a continuous random variable with density g, the expected value is defined analogously as

μ = E[X ] =

∫

∞

0

xg(x) dx

Note that it follows from these definitions that the mean of the sum of random variables is the

sum of their means. For example, if X and Y are random variables of any kind (e.g., discrete or

continuous, independent or not), then

E[X + Y ] = E[X ] + E[Y ]

In addition to computing the expectation, one can compute the expected value of virtually any

function of a random variable, although only a few are commonly used. The most important func-

tion of a random variable, which measures its dispersion or spread, is (X − E[X ])2. Its expectation
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is called the variance, usually denoted as σ

2, and is given by

σ

2
= E[(X − E[X ])2] = E[X 2

− 2X E[X ] − E[X ]2] = E[X 2] − E[X ]2

=

∞
∑

x=0

x2 p(x) − μ

2

for the discrete case and by

σ

2
= E[(X − E[X ])2] = E[X 2] − E[X ]2

=

∫

∞

0

x2g(x) dx − μ

2

for the continuous case. The standard deviation is defined as the square root of the variance. Note

that the standard deviation has the same units as the mean and the random variable itself.

In Chapters 8 and 9, both the mean and the standard deviation are used extensively to describe

many important random variables associated with manufacturing systems (e.g., capacity, cycle

time, and quality).

Conditional Probability

Beyond simply characterizing the likelihood of individual events, it is often important to describe

the dependence of events on one another. For example, we might ask, What is the probability that

a machine is out of adjustment given it has produced three bad parts in a row? Questions like these

are addressed via the concept of conditional probability.

The conditional probability that event E1 occurs, given event E2 has occurred, written

P[E1|E2], is defined by

P[E1|E2] =
P[E1 and E2]

P[E2]

To illustrate this concept, consider the following questions related to the experiment with two

coins: What is the probability of two heads, given the first coin is a head? and What is the

probability of two heads, given there is at least one head?

To answer the first question, let E1 be the event “two heads” and let E2 be the event “the first

coin is a head.” Note that the event “E1 and E2” is equivalent to the event E1 (the only way to

have two heads and the first coin to be a head is to have two heads). Hence,

P[E1 and E2] = P[E1] =
1

4

Since there are two ways for the first coin to be a head [(H, H) and (H, T)], the probability of E2

is one-half, so

P[E1|E2] =
P[E1 and E2]

P[E2]
=

1

4

1

2

=
1

2

One way to think about conditioning is that the information of knowing an event has occurred

serves to reduce the “effective” sample space. In the above example, knowing that “the first coin

is a head” eliminates the outcomes (T, H) and (T, T), leaving only (H, H) and (H, T). Since the

event “two heads” [(H, H)] corresponds to one-half of the remaining outcomes, its probability is

one-half.

To answer the second question, let E2 be the event “at least one head.” Again, the event “E1

and E2” is equal to the event E1 and has probability of one-fourth. However, there are three ways
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to have at least one head [(H, H), (H, T), and (T, H)], so P[E2] =
3

4
and

P[E1|E2] =
P[E1 and E2]

P[E2]
=

1

4

3

4

=
1

3

This time, knowing that “at least one head” occurred eliminates only the outcome (T, T),

which leaves the outcome (H, H) as one of three equally likely outcomes, which therefore has a

probability of one-third.

As another example, consider a random experiment involving the tossing of two dice. The

sample space of the experiment is given by {(d1, d2)}, where di = 1, 2, . . . , 6 is the number of dots

on die i . There are 36 different points in the sample space; by symmetry, these are all equally likely.

Now let X be a random variable equal to the sum of the number of spots on the dice. Note that

the number of possible values of X is 11 and that these do not have equal probability. To compute

the probability of any particular value of X , we must count the number of ways it can result (i.e., the

number of outcomes making up the event) and divide by the total number of outcomes in the sample

space. Thus, the probability of rolling a 6 is found by noting there are five outcomes that result in

a 6—{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}—out of 36 possible outcomes, so P[X = 6] =
5

36
.

Computing the conditional probability of rolling a 6 given that the first die is 3 or less is a

bit more complicated. Let E1 be the event “rolling a 6” and E2 be the event “the first die is 3 or

less.” The event corresponding to E1 and E2 corresponds to three outcomes in the sample space—

{(1, 5), (2, 4), (3, 3)}—so that P[E1 and E2] =
3

36
=

1

12
. Event E2 corresponds to 18 outcomes in

the sample space

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}

so P[E2] =
18

36
=

1

2
. Thus, the conditional probability of rolling a 6 given that the first die is 3 or

less is

P[E1|E2] =
P[E1 and E2]

P[E2]
=

1

12

1

2

=
1

6

Independent Events

Conditional probability allows us to define the notion of stochastic independence or, simply,

independence. Two events E1 and E2 are defined to be independent if

P[E1 and E2] = P[E1]P[E2]

Notice that this definition implies that if E1 and E2 are independent and P(E2) > 0, then

P[E1|E2] =
P[E1 and E2]

P[E2]
=

P[E1]P[E2]

P[E2]
= P[E1]

Thus, events E1 and E2 are independent if the fact that E2 has occurred does not influence the

probability of E1.

If two events are independent, then the random variables associated with these events are also

independent. Independent random variables have some nice properties. One of the most useful is

that the expected value of the product of two independent random variables is simply the product

of the expected values. For instance, if X and Y are independent random variables with means of

μx and μy , respectively, then

E[XY ] = E[X ]E[Y ] = μxμy

This is not true in general if X and Y are not independent.
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Independence also has important consequences for computing the variance of the sum of

random variables. Specifically, if X and Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y )

Again, this is not true in general if X and Y are not independent.

An important special case of this variance result occurs when random variables X i , i =

1, 2, . . . , n, are independent and identically distributed (i.e., they have the same distribution func-

tion) with mean μ and variance σ

2, and Y , another random variable, is defined as
∑n

i=1 X i . Then

since means are always additive, the mean of Y is given by

E[Y ] = E

[

n
∑

i=1

X i

]

= nμ

Also, by independence, the variance of Y is given by

Var(Y ) = Var

(

n
∑

i=1

X i

)

= nσ

2

Note that the standard deviation of Y is therefore
√

nσ , which does not increase with the sample

size n as fast as the mean. This result is important in statistical estimation, as we note later in this

appendix.

Special Distributions

There are many different types of distribution functions that describe various kinds of random

variables. Two of the most important for modeling production systems are the (discrete) Poisson

distribution and the (continuous) normal distribution.

The Poisson Distribution. The Poisson distribution describes a discrete random variable that

can take on values 0, 1, 2, . . . . The probability mass function (pmf) is given by

p(i) =
e−μ

μ

i

i!
i = 0, 1, 2, . . .

and the cumulative distribution function (cdf) is given by

G(x) =

x
∑

i=0

p(i)

The mean (expectation) of the Poisson is μ, and the standard deviation is
√

μ. Notice that this

implies that the Poisson is a “one-parameter distribution” because specifying the mean automati-

cally specifies the standard deviation.

To illustrate the use of the Poisson pmf and cdf, suppose the number of customers who place

orders at a particular facility on any given day is Poisson-distributed with a mean of 2. Then the

probability of zero orders being placed is given by

p(0) =
e−220

0!
= e−2

= 0.135

The probability of exactly one order on a given day is

p(1) =
e−221

1!
= e−2

× 2 = 0.271
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The probability of two or more orders on a given day is 1 minus the probability of one or fewer

orders, which is given by

1 − G(1) = 1 − p(0) − p(1) = 1 − 0.135 − 0.271 = 0.594

Part of the reason that the Poisson distribution is so important is that it arises frequently in

practice. In particular, counting processes that are composed of a number of independent counting

processes tend to look Poisson. For example, in the situation used for the numerical calculations

above, the underlying counting process is the number of customers who place orders. This is

made up of the sum of the separate counting processes representing the number of orders placed

by individual customers. To be more specific, if we let N (t) denote the total number of orders

that have been placed on the plant by time t , we let Ni (t) denote the number of orders placed by

customer i by time t (which may or may not be Poisson), and we let M denote the total number

of potential customers, then clearly

N (t) = N1(t) + · · · + NM (t)

As long as M is “large enough” (say 20 or more, the exact number depends on how close the Ni (t)

are to Poisson) and the times between counts for processes Ni (t) are independent, identically

distributed, random variables for each i , then N (t) will be a Poisson process. (Note that the

interarrival times between orders need only be identically distributed for each given customer;

they do not need to be the same for different customers. So it is entirely permissible to have

customers with different rates of ordering.)

If N (t) is a Poisson process with a rate of λ arrivals per unit time, then the number of arrivals

in t units of time is Poisson-distributed with mean λt . That is, the probability of exactly i arrivals

in an interval of length t is

p(i) =
e−λt (λt)i

i!
i = 0, 1, 2, . . .

This situation arises frequently. The historical application of the Poisson process was in char-

acterizing the number of phone calls to an exchange in a given time interval. Since callers tend

to space their phone calls independently of one another, the total number of phone calls received

by the exchange over an interval of time tends to look Poisson. For this same reason, many other

arrival processes (e.g., customers in a bank or a restaurant, hits on a website, demands experienced

by a retailer) are well characterized by the Poisson distribution. A related situation of importance

to manufacturing is the number of failures that a machine experiences. Since complex machinery

can fail for a wide variety of reasons (e.g., power loss, pump failure, jamming, loss of coolant, and

component breakage) and since we do not replace all the components whenever one breaks, we

end up with a set of components having different times to failure and different ages. Thus, we can

think of the failures as “arriving” from a number of different sources. Since these different sources

are often independent, the number of failures experienced during a given interval of operating time

tends to look Poisson.

The Exponential Distribution

One additional important point about the Poisson distribution is that the times between arrivals in

a Poisson process with arrival rate λ are exponentially distributed (Figure 2.9). That is, the time

between the nth and (n + 1)st arrival is a continuous random variable with density function

g(t) = λe−λt
λ ≥ 0

and cumulative distribution function

G(t) = 1 − e−λt
λ ≥ 0
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Normal

Exponential

Figure 2.9

Normal and exponential

density functions with the

same mean.

The mean of the exponential is 1/λ, and the standard deviation is also 1/λ; so, like the Poisson,

the exponential is a one-parameter distribution.

To illustrate the relationship between the Poisson and exponential distributions, let us reconsider

the previous example in which we had a Poisson process with an arrival rate of two orders per

day. The probability that the time until the first order is less than or equal to 1 day is given by the

exponential cdf as

G(1) = 1 − e(−2)(1)
= 0.865

Notice that the probability that the first order arrives within 1 day is exactly the same as the

probability of one or more orders on the first day. This is 1 minus the probability of zero arrivals

on the first day, which can be computed using the Poisson probability mass function as

1 − p(0) = 1 − 0.135 = 0.865

We see that there is a close relationship between the Poisson (which measures the number of

arrivals) and exponential (which measures times between arrivals) distributions. However, it is

important to keep the two distinct, since the Poisson distribution is discrete and therefore suited

to counting processes, while the exponential is continuous and therefore suited to times.

A fascinating fact about the exponential distribution is that it is the only continuous distribution

that possesses the memorylessness property. This property is defined through the failure rate

function, which is also called the hazard rate function and is defined for any random variable X

with cdf G(t) and pdf g(t) as

h(t) =
g(t)

1 − G(t)
(2.64)

To interpret h(t), suppose that the random variable X has survived for t hours. The probability

that it will not survive for an additional time dt is given by

P[X ∈ (t, t + dt)|X > t] =
P[X ∈ (t, t + dt), X > t]

P[X > t]

=
P[X ∈ (t, t + dt)]

P[X > t]

=
g(t) dt

1 − G(t)

= h(t) dt
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Hence, if X represents a lifetime, then h(t) represents the conditional density that a t-year-old

item will fail. If X represents the time until an arrival in a counting process, then h(t) represents

the probability density of an arrival given that no arrivals have occurred before t .

A random variable whose failure rate function h(t) is increasing in t is called increasing failure

rate (IFR) and becomes more likely to fail (or otherwise end) as it ages. A random variable that

has h(t) decreasing in t is called decreasing failure rate (DFR) and becomes less likely to fail as

it ages. Some random variables (e.g., the life of an item that goes through an initial burn-in period

during which it grows more reliable and then eventually goes through an aging period in which it

becomes less reliable) are neither IFR nor DFR.

Now let us return to the exponential distribution. The failure rate function for this distribution

is

h(t) =
g(t)

1 − G(t)
=

λe−λt

1 − (1 − e−λt )
= λ

which is constant! This means that a component whose lifetime is exponentially distributed grows

neither more nor less likely to fail as it ages. While this may seem remarkable, it is actually quite

common because, as we noted, Poisson counting processes, and hence exponential interarrival

times, occur often. For instance, as we observed, a complex machine that fails for a variety of

causes will have failure events described by a Poisson process, and hence the times until failure

will be exponential.

The Normal Distribution

Another distribution that is extremely important to modeling production systems, arises in a

huge number of practical situations, and underlies a good part of the field of statistics is the

normal distribution (Figure 2.9). The normal is a continuous distribution that is described by two

parameters, the mean μ and the standard deviation σ . The density function is given by

g(x) =
1

√

2πσ

e−(x−μ)2
/(2σ

2)

The cumulative distribution function, as always, is the integral of the density function

G(x) =

∫ x

−∞

g(y) dy

Unfortunately, it is not possible to write G(y) as a simple, closed-form expression. But it is possible

to “standardize” normal random variables and compute G(x) from a lookup table of the standard

normal distribution, as we describe below.

A standard normal distribution is a normal distribution with mean 0 and standard deviation

of 1. Its density function is virtually always denoted by φ(z) and is given by

φ(z) =
1

√

2π

e−z2
/2

The cumulative distribution function is denoted by �(z) and is given by

�(z) =

∫ z

−∞

φ(y) dy

There is no closed-form expression for �(z) either, but this function is readily available in lookup

tables, such as Table 1 at the end of this book, and via functions built into scientific calculators

and spreadsheet programs.
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The reason that standard normal tables are so useful is that if a random variable X is normally

distributed with mean μ and standard deviation σ , then the “standardized” random variable

Z =
X − μ

σ

is normally distributed with mean 0 and standard deviation 1.

To illustrate how this property can be exploited, suppose a casting process produces castings

whose weights are normally distributed with mean 1,000 grams and standard deviation 150 grams.

Let X denote the (random) weight of a given casting. Then the probability that the casting will

weigh less than or equal to 850 grams is

G(850) = P(X ≤ 850) = P

(

X − 1,000

150
≤

850 − 1,000

150

)

= P(Z ≤ −1) = �(−1)

From a standard normal table we find that �(−1) = 0.159. (We could also compute this in Excel

as �(−1) = NORMSDIST(−1) = 0.159.) Hence, we would expect 15.9 percent of the castings

to have weights less than 850 grams. Similarly, the probability of the casting having a weight

greater than 1,150 grams is

1 − G(1,150) = 1 − P(X ≤ 1,150) = 1 − P

(

Z ≤
1,150 − 1,000

150

)

= 1 − P(Z ≤ 1) = �(1)

From a standard normal table (or Excel), �(1) = 0.841, so 1 − �(1) = 0.159. Notice that this is

the same as �(−1). The reason is that the standard normal distribution is symmetric (bell-shaped).

Hence, the probability of a random sample 1 standard deviation or more below the mean is equal

to the probability of a random sample 1 standard deviation or more above the mean.

The probability that a randomly chosen casting weighs between 850 and 1,150 grams is given

by 1 − G(1,150) − G(850) = 1 − 0.159 − 0.159 = 0.682. These kinds of calculations are central

to statistical quality control. For instance, if we were to observe less than 68.2 percent of castings

in the weight range between 850 grams and 1,150 grams, then this would be a sign that the process

was no longer producing castings whose weights are normally distributed with mean 1,000 and

standard deviation 150. This could be due to a change in either the mean or the standard deviation

in the underlying process. This type of logic can be used to construct process control charts for

monitoring the behavior of many different types of processes.

A major reason that the normal distribution is so important in practice is that it arises frequently

in nature. This is due to the famous central limit theorem, which states (roughly) that the sum of

a sufficiently large number (say, greater than 30) of random variables will be normally distributed.

To illustrate this, suppose we measure the times between arrivals of phone calls to an exchange.

From our discussion of the Poisson distribution, we know that these times are likely to be expo-

nentially distributed. The exponential is very different from the normal, as we can see from the

density functions shown in Figure 2.9. The normal density is a symmetric, bell-shaped function

with its peak at the mean value μ. The exponential density, on the other hand, is defined only above

zero, takes on its maximum value at zero, and declines exponentially above zero. Also, because

the exponential always has a standard deviation equal to its mean, while the normal generally has

a standard deviation less than its mean, we typically say that exponential random variables are

more variable than normal random variables. We define a measure of variability and discuss this

concept in greater depth in Chapter 8.

But even though the interarrival times between calls are far from normal, the central limit

theorem implies that the sum of these times will tend to look normal. That is, if we add 40

interarrival times, which would represent the time until the 40th arrival, and repeat this many

times to create a histogram, the result will be a bell-shaped curve indistinguishable from that of a

normally distributed random variable.

The central limit theorem is fundamental to statistics because in statistics we frequently compute

means from data. For instance, if we select N individuals randomly from the population of the
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United States and measure their heights, then letting X i represent the (random) height of the i th

individual, we see the mean height of the selected group is

X̄ =
X1 + · · · + X N

N

If we were to repeat this experiment over and over, we would get different values for the N

heights. Hence, the average X̄ is itself a random variable. If N is large enough, X̄ will be normally

distributed. This fact allows us to use the normal distribution to compute the probability that X̄

lies within a given interval (i.e., a confidence interval) and make a variety of statistical tests.

Parameters and Statistics

The true probabilities of events (e.g., the probability that a machine will run without breakdown

for at least 100 hours) and moments of distributions (e.g., the mean time to process a job) are

parameters of the system. These are typically known only to God. We mere humans can only

compute estimates of the true values of parameters. This is the basic task of the field of statistics.

To estimate a parameter, we take a random sample, which represents a collection of inde-

pendent, identically distributed random variables from a given population.16 For instance, since

we cannot measure the hardness of every point on a piece of bar stock, we take a sample of

measurements to give us an indication of the true hardness.

A statistic is simply a function of a random sample that can be computed (i.e., it has no

unknown parameters). Two common statistics (also called estimators) are the sample mean and

the sample variance of a random variable. Consider a sample of n independent and identically

distributed random variables X i , i = 1, 2, . . . , n, each with mean μ and variance σ

2. The sample

mean X̄ is given by the average of the observations, computed as

X̄ =
1

n

n
∑

i=1

X i

Note that the sample mean is itself a random variable. The mean of X̄ is also μ. Estimators,

such as X̄ , whose expectation is equal to the value of the parameter being estimated, are called

unbiased estimators. Because the X i are independent, the variance of X̄ is given by

Var(X̄ ) = Var

(

1

n

n
∑

i=1

X i

)

=
1

n2
Var

(

n
∑

i=1

X i

)

=
1

n2
nσ

2
=

σ

2

n

Hence, while the variance of any single observation is σ

2, the variance of the mean of n

observations is σ

2
/n (so the standard deviation is σ/

√
n). Since this variance decreases with n, the

implication is that larger samples yield better (i.e., tighter) estimates of the true population mean.

This notion is formalized by the concept of a confidence interval. The (1 − α) percent confi-

dence interval for the true mean of the population (i.e., the interval in which we expect the sample

mean to lie (1 − α) percent of the time if we estimate it over and over) is given by

X̄ ±
z
α/2σ
√

n

where z
α/2 is the value in the standard normal table such that �(z

α/2) = 1 − α/2. Notice that as n

grows larger, this interval becomes tighter, meaning that more data yield better estimates.

The above confidence interval assumes that the population variance is known with certainty.

But in general the variance is also unknown and hence must itself be estimated. This is done by

16In a sense, the job of the field of statistics is the reverse of that of the field of probability. In statistics we

use samples to estimate properties of a population. In probability we use properties of the population to

describe the likelihood of samples.
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computing the sample variance s2 which is an unbiased estimator for the true variance and is

given by

s2
=

∑n

i=1(X i − X̄ )2

n − 1

or, in a form that is easier to compute, by

s2
=

∑n

i=1 X 2
i − n X̄ 2

n − 1

The confidence interval for the population mean becomes

X̄ ±
t
α/2;n−1s
√

n

where t
α/2;n−1 is the 1 − α/2 percentile of the t distribution with n − 1 degrees of freedom.17 Since

t
α/2;n−1 > z

α/2, the confidence interval is wider because of the uncertainty introduced by having

to estimate the variance. However, as n grows large, t
α/2;n−1 converges to z

α/2; so for large sample

sizes the two confidence intervals are essentially the same.

For example, suppose we wish to characterize the process times of a new machine. The first job

takes 90 minutes of run time, the second job 40 minutes, and the third job 110 minutes. From these

data, we estimate the mean process time to be X̄ = (90 + 40 + 110)/3 = 80 hours. Similarly,

the estimate of the variance is s2
= [(90 − 80)2

+ (40 − 80)2
+ (110 − 80)2]/2 = 1,300 (so s =

√
1,300 = 36.06). For this particular case (assuming the run times are normally distributed), it

turns out that t
α/2;n−1 = t0.05;2 = 2.92, so the 90 percent confidence interval for the true mean time

between outages is given by

X̄ ±
t
α/2;n−1s
√

n
= 80 ±

2.92(36.06)
√

3
= 80 ± 60.78

Not surprisingly, with only three observations, we do not have much confidence in our estimate.

In this book we are primarily interested in how systems behave as a function of their parameters

(e.g., mean process time, variance of process time) and thus will assume we know these exactly. We

caution the reader, however, that in practice one must use estimates of the true parameters. Often,

these estimates are not very good, so collecting more data is an important part of the analysis.

17The t distribution is very similar to the standard normal distribution, except that it has fatter tails. Tables

of the t distribution are given in statistics texts and are also included as functions in spreadsheets; in Excel

t
α/2;n−1 = T I N V (α, n − 1). As the degrees of freedom grow large, the tails grow smaller and the t

distribution becomes indistinguishable from the standard normal distribution.
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Inventory Formulas

Poisson Demand Case

If demand during replenishment lead time is Poisson-distributed with mean θ , then the probability

mass function (pmf) and cumulative distribution function (cdf) are given by p(i) and G(x),

respectively, where

p(i) =
e−θ

θ

i

i!
i = 0, 1, 2, . . . (2.65)

G(x) =

x
∑

i=0

p(i) x = 0, 1, 2, . . . (2.66)

These are the basic building blocks of all the performance measures. They can be easily entered

as formulas in a spreadsheet, or in some spreadsheets they are already built in. For example, in

Excel

p(i) = POISSON(i, θ, FALSE)

G(x) = POISSON(x, θ, TRUE)

Here θ represents the mean, and TRUE and FALSE are used to toggle between the cdf and the

pmf. We caution the reader, however, that the Poisson functions in Excel are not always stable

for large x , because the formula for p(i) involves the ratio of two large numbers. When θ is large

(and hence the reorder point r is likely to be large), it is often safer to use the normal distribution

(formulas) with mean θ and standard deviation
√

θ .

By using the G(x) function, it is simple to compute the fill rate for the base stock model. As

we noted in Section 2.4.2, the inventory position will be r + 1 immediately after we have placed

a replenishment order. This means that this order will arrive to fill a stockout only if demand (X )

during the lead time (ℓ) is greater than or equal to r + 1. The probability that this does not occur

is therefore

P(X > r + 1) = P(X ≤ r ) = G(r )

Since all orders bring inventory position up to r + 1, this is true for every order and hence the

average number of demands that are filled from stock (i.e., the fill rate) is

S(r ) = G(r ) (2.67)

Notice that this differs slightly from expression (2.22) because we are now accounting for the

discreteness of demand.

Next we compute the loss function B(r ), which represents the average backorder level in a base

stock model with reorder point r . Alternatively, B(r ) can be interpreted as the expected amount

by which lead-time demand exceeds the base stock level r + 1. It can be written in various forms,

including

B(r ) =

∞
∑

x=R

(x − R)p(x)

= θ −

R−1
∑

x=0

[1 − G(x)]

= θp(R) + (θ − R)[1 − G(R)] (2.68)

105
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The last form is the most convenient for use in spreadsheets, since it can be computed without the

use of any sums. However, it holds only for the case of Poisson demand.

Using B(r ), we can compute the average inventory level I (r ) for the base stock model with

reorder point r exactly as we did for the normal demand case in

I (r ) = r + 1 − θ + B(R) (2.69)

Now we turn to the performance measures for the (Q, r ) model under the assumption of Poisson

demand. As we observed in Section 2.4.3, the inventory position in the (Q, r ) model ranges between

r and r + Q. But, because inventory is discrete, inventory position visits r only instantaneously;

when it reaches this reorder point, an order is placed and inventory position immediately jumps

to r + Q. As a result, inventory position is uniformly spread over the (integer) values between

r + 1 and r + Q, which enables us to compute the fill rate by averaging the base stock fill rates

for reorder points from r to r + Q − 1:

S(Q, r ) =
1

Q

r+Q−1
∑

x=r

G(x)

= 1 −
1

Q
[B(r ) − B(r + Q)] (2.70)

The last form, which expresses the fill rate in terms of the B(x) function, is the most convenient

for use in a spreadsheet, since it does not require computation of a sum.

We can use the same type of argument to compute the backorder level for the (Q, r ) model as

the average of the backorder levels of the base stock model for reorder points from r to r + Q − 1:

B(Q, r ) =
1

Q

r+Q−1
∑

x=r

B(x) (2.71)

However, we can write this in a simpler form by defining the following function:

β(x) =

∞
∑

k=x

B(k)

=
1

2
{[(x − θ )2

+ x][1 − G(x)] − θ (x − θ )p(x)} (2.72)

where the last equality holds only for the Poisson case. The function β(x) is sometimes referred

to as a second-order loss function, since it represents the sum of the first-order loss function

B(k) above level x . Using the second form for β(x) makes this expression simpler to compute in

a spreadsheet. Using β(x), we can express the backorder level for the (Q, r ) model as

B(Q, r ) =
1

Q
[β(r ) − β(r + Q)] (2.73)

Finally, once we have B(Q, r ), it is simple to compute the average inventory level in the (Q, r )

model as

I (Q, r ) =
Q + 1

2
+ r − θ + B(Q, r ) (2.74)

We conclude by pointing out that while the above formulas are exact for the case of Poisson

demand, there are a number of reasons that they will not represent real-world cases exactly. These

include:

1. We have assumed that the true mean and standard deviation of demand are known. In

practice these can only be estimated from past observations or forecasting models. Since
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we know that both the performance measures and optimal control parameters are 

sensitive to demand, such estimation errors can substantially influence the effectiveness 

of an inventory control policy. 

2. We have assumed that demand is Poission distributed. While this is theoretically justified 

for cases where demand comes from many independent customers who make unit 

purchases, it is not appropriate when customers buy in bulk. If we use a control policy 

based on the unit demand assumption for a situation where bulk purchases occur, then 

customer service will be worse than predicted. It is easy to see why if we consider that a 

safety stock of three units could be very useful in protecting against variability in 

one-at-a-time demands; it is basically useless if demands occur in batches of six. 

3. We have assumed that the only variability in the system is due to demand variability (and 

perhaps lead-time variability, if we make use of the formulas for variable lead times in 

Section 2.4.3). But in practice customers change orders, supply clerks lose stock, people 

write down the wrong part number, and so on. Obviously, sources of variability that are 

not included in the model but which occur in practice will degrade actual performance 

below theoretical predictions. 

For these and other reasons, inventory management is a complex and sophisticated field. While 

the results of this chapter give the foundations for addressing the key trade-offs, they are far from 

comprehensive. 

l .  Harris, in the original 1913 paper on the EOQ model, suggested that "most managers, 

indeed, have a rather hazy idea as to just what this [setup] cost amounts to." 

(a) Do you think that setup cost, as defined in the EOQ model, is more easily specified 

today than in 19l3? Why or why not? 

(b) Give some examples of costs that might make up this setup cost. 

(c) What might setup cost in the model actually be serving as a surrogate for in the real 

system? 

2. Analogously to item 1 (c) above, what might inventory carrying cost in the EOQ model serve 

as a surrogate for in the real system? With this in mind, comment on the suggestion (once 

fairly common in textbooks) that "a charge of 10 percent on stock is a fair one to cover both 

interest and depreciation." What is another name for this "charge"? 

3. Harris wrote that "higher mathematics" is required to solve the EOQ model. What is the 

name of this branch of mathematics? Who invented it and when? When do most Americans 

study this subject in the current educational system? Was this really "higher mathematics" in 

19l3? 

4. Consider the following situations. Label them as either A for appropriate or L for less 

appropriate for application of the EOQ model. 

(a) Automobile manufacturer ordering screws from a vendor 

(b) Automobile manufacturer deciding on how many cars to paint per batch of a particular 

color 

(c) A job shop ordering bar stock 

(d) Office ordering copier paper 

(e) A steel company deciding how many slabs to move at once between the casting furnace 

and the rolling mill 

5. A basic modeling assumption underlying the EOQ model is constant and level demand over 

the infinite time horizon. Of course, this is never satisfied exactly in practice. What options 

does one have for lot sizing in the face of nonconstant demand? 
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6. What is the key difference in the modeling assumptions between the EOQ and the

Wagner–Whitin models?

7. Does the Wagner–Whitin property offer a fundamental insight into plant behavior? If so,

what is it? What problems are there with this property as a guide for manufacturing

practice?

8. Give at least three criticisms of the validity of the Wagner–Whitin model.

9. What is the key difference between the EOQ model and the (Q, r ) model? Between the base

stock model and the (Q, r ) model?

10. Why is the statement “The reorder point r affects customer service, while the replenishment

quantity Q affects replenishment frequency” true in rough terms but not precisely true?

11. Why does increasing the variability of the demand process tend to require a higher level of

safety stock (i.e., a higher reorder point)?

12. Suppose you are stocking parts purchased from vendors in a warehouse. How could you use

a (Q, r ) model to determine whether a vendor of a part with a higher price but a shorter lead

time is offering a good deal? What other factors should you consider in deciding to change

vendors?

13. In a multiproduct reorder point problem subject to an aggregate service constraint, what will

be the effect of increasing the cost of one of the parts on the fill rate of that part? On the fill

rates of the other parts?

14. A man was discovered trying to carry a bomb onto an airplane. When he was removed, his

excuse was: “Everyone knows that the probability of there being a bomb on an airplane is

extremely low. Imagine how low the probability of two bombs on the airplane must be! I had

no intention of blowing up the plane. By carrying a bomb on board, I was only trying to

make it safer!”

What do you think of the man’s reasoning? (Hint: Use conditional probability.)

Problems

1. Perform the two-coin toss experiment discussed in Appendix 2A by flipping two coins

(a penny and a nickel) 50 times and recording the outcome (H or T for each coin) for each

flip.

(a) Estimate the probability of two heads given at least one head by counting the

number of (H, H) outcomes and dividing by the number of outcomes that have at

least one head. How does this compare to the true value of one-third computed in

Appendix 2A?

(b) Estimate the probability of two heads given that the penny is a head by counting the

number of (H, H) outcomes and dividing by the number of outcomes for which the

penny is a head. How does this compare to the true value of one-half computed in

Appendix 2A?

2. Recall the game show Let’s Make a Deal. You are a contestant and there is a fabulous prize

behind door number 1, door number 2, or door number 3. You have chosen door number 1.

The host of the show opens door number 3 revealing a not-so-fabulous prize, and asks you if

you want to change your mind. You have watched the show for a number of years and have

noticed that the host always offers contestants the option of switching doors. Moreover, you

know that when the host has a choice of doors to open (e.g., the prizes behind both doors 2

and 3 are duds), he chooses randomly. Should you switch to door 2 or stick with door 1 in

order to maximize your chances of winning the fabulous prize?
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3. A gift shop sells Little Lentils—cuddly animal dolls stuffed with dried lentils—at a very

steady pace of 10 per day, 310 days per year. The wholesale cost of the dolls is $5, and the

gift shop uses an annual interest rate of 20 percent to compute holding costs.

(a) If the shop wants to place an average of 20 replenishment orders per year, what order

quantity should it use?

(b) If the shop orders dolls in quantities of 100, what is the implied fixed order cost?

(c) If the shop estimates the cost of placing a purchase order to be $10, what is the optimal

order quantity?

4. Quarter-inch stainless-steel bolts, 1 1

2
inches long are consumed in a factory at a fairly steady

rate of 60 per week. The bolts cost the plant 2 cents each. It costs the plant $12 to initiate an

order, and holding costs are based on an annual interest rate of 25 percent.

(a) Determine the optimal number of bolts for the plant to purchase and the time between

placement of orders.

(b) What is the yearly holding and setup cost for this item?

(c) Suppose instead of small bolts we were talking about a bulky item, such as packaging

materials. What problem might there be with our analysis?

5. Reconsider the bolt example in Problem 4. Suppose that although we have estimated

demand to be 60 per week, it turns out that it is actually 120 per week (i.e., we have a

100 percent forecasting error).

(a) If we use the lot size calculated in the previous problem (i.e., using the erroneous

demand estimate), what will the setup plus holding cost be under the true demand rate?

(b) What would the cost be if we had used the optimum lot size?

(c) What percentage increase in cost was caused by the 100 percent demand forecasting

error? What does this tell you about the sensitivity of the EOQ model to errors in the

data?

6. Consider the bolt example from Problem 4 yet again, assuming that the demand of 60 per

week is correct. Now, however, suppose the minimum reorder interval is 1 month and all

order cycles are placed on a power-of-2 multiple of months (that is, 1 month, 2 months,

4 months, 8 months, etc.) in order to permit truck sharing with orders of other parts.

(a) What is the least-cost reorder interval under this restriction?

(b) How much does this add to the total cost?

(c) How is the effectiveness of powers-of-2 order intervals related to the result of the

previous problem regarding the effect of demand forecasting errors?

7. Danny Steel, Inc., fabricates various products from two basic inputs, bar stock and sheet

stock. Bar stock is used at a steady rate of 1,000 units per year and costs $200 per bar. Sheet

stock is used at a rate of 500 units per year and costs $150 per sheet. The company uses a 20

percent annual holding cost rate, and the fixed cost to place an order is $50, of which $10 is

the cost of placing the purchase order and $40 is the fixed cost of a truck delivery. The

variable (i.e., per unit charge) trucking cost is included in the unit price. The plant runs

365 days per year.

(a) Use the EOQ formula with the full fixed order cost of $50 to compute the optimal order

quantities, order intervals, and annual cost for bar stock and sheet stock. What fraction

of the total annual (holding plus order) cost consists of fixed trucking cost?

(b) Using a week (7 days) as the base interval, round the order intervals for bar stock and

sheet stock to the nearest power of 2. If you charge the fixed trucking fee only once for

deliveries that coincide, what is the annual cost now?

(c) Leave the order quantity for bar stock as in part b, but reduce the order interval for sheet

stock to match that of bar stock. Recompute the total annual cost and compare to part (b).

Explain your result.

(d) On the basis of your observation in part (c), propose an approach for computing a

replenishment schedule in a multiproduct environment like this, where part of the fixed

order cost corresponds to a fixed trucking fee that is only paid once per delivery

regardless of how many different parts are on the truck.
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8. Consider the following table resulting from lot sizing by the Wagner–Whitin algorithm:

Month Demand Min. Cost Order Period

1 69 85 1
2 29 114 1
3 36 186 1
4 61 277 3
5 61 348 4
6 26 400 4
7 34 469 5
8 67 555 8
9 45 600 8

10 67 710 10
11 79 789 10
12 56 864 11

(a) Develop the “optimal” ordering schedule.

(b) What will the schedule be if your planning horizon was only six months?

9. Nozone, Inc., a manufacturer of Freon recovery units (for automotive air conditioner

maintenance), experiences a strongly seasonal demand pattern, driven by the summer air

conditioning season. This year Nozone has put together a 6-month production plan, where

the monthly demands Dt for recovery units are given in the table below. Each recovery unit

is manufactured from one chassis assembly plus a variety of other parts. The chassis

assemblies are produced in the machining center. Since there is a single chassis assembly per

recovery unit, the demands in the table below also represent demands for chassis assemblies.

The unit cost, fixed setup cost, and monthly holding cost for chassis assemblies are also

given in this table. The fixed setup cost is the firm’s estimate of the cost to change over the

machining center to produce chassis assemblies, including labor and materials cost and the

cost of disruption of other product lines.

t 1 2 3 4 5 6

Dt 1,000 1,200 500 200 800 1,000
ct 50 50 50 50 50 50
At 2,000 2,000 2,000 2,000 2,000 2,000
ht 1 1 1 1 1 10

(a) Use the Wagner–Whitin algorithm to compute an “optimal” 6-month production

schedule for chassis assemblies.

(b) Comment on the appropriateness of using monthly planning periods. What factors

should influence the choice of a planning period?

(c) Comment on the validity of using a fixed order cost to consider the capacity constraint at

the machining center.

10. YB Sporting Apparel prints up novelty T-shirts commemorating major sports events (e.g.,

the Super Bowl, the World Series, Northwestern University winning the NCAA Basketball

Tournament). The T-shirts cost $5 to make and distribute and sell for $20. Company policy

is to dispose of any excess inventory after the event by discounting the T-shirts by 80

percent, that is, sell them for $4. In 1994, YB printed shirts for the World Cup soccer
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playoffs in Chicago. It estimated demand at 12,000 shirts, with a significant amount of

uncertainty. Because of this uncertainty, YB printed only 10,000 shirts. What do you think of

this decision? What quantity would you have recommended printing?

11. Slaq Computer Company manufactures notebook computers. The economic lifetime of a

particular model is only 4 to 6 months, which means that Slaq has very little time to make

adjustments in production capacity and supplier contracts over the production run. For a

soon-to-be-introduced notebook, Slaq must negotiate a contract with a supplier of

motherboards. Because supplier capacity is tight, this contract will specify the number of

motherboards in advance of the start of the production run. At the time of contract

negotiation, Slaq has forecasted that demand for the new notebook is normally distributed

with a mean of 10,000 units and a standard deviation of 2,500 units. The net profit from a

notebook sale is $500 (note that this includes the cost of the motherboard, as well as all other

material, production, and shipping costs). Motherboards cost $200 and have no salvage

value (i.e., if they are not used for this particular model of notebook, they will have to be

written off ).

(a) Use the news vendor model to compute a purchase quantity of motherboards that

balances the cost of lost sales and the cost of excess material.

(b) Comment on the appropriateness of the news vendor model for this capacity planning

situation. What factors are not considered that might be important?

12. Tammi’s Truck Stop sells Seat-o-Nails cushions, which are specially designed to keep

drivers awake on the road. Her accessories supplier makes deliveries every Tuesday, at

which times she can get as many cushions as she wants (the supplier always has extras in his

truck). Tammi, who was a statistics major in college, has done some calculations and

estimates that weekly demand for cushions is normally distributed with mean 35 and

standard deviation 10. The cushions cost her $40 wholesale and she sells them for $65.

Tammi uses a 35 percent interest rate to evaluate the cost of holding inventory.

It is Tuesday, she has 12 cushions in stock and the supplier has just arrived.

(a) How many cushions should Tammi buy if sales are lost when she runs out of stock

during the week?

(b) How many cushions should Tammi buy if a customer who wants a cushion will still

buy it when stock has run out, but she has to pay the $5 postage to mail it to the

customer?

13. Enginola, Inc., assembles amplifiers on a two-stage production line. The first stage makes a

chassis and the second stage does the custom assembly. The chassis stage consists of

20 parallel stations, each staffed by an operator; the amplifier stage consists of 15 parallel

stages, each also staffed by a single operator. Because all chassis are identical, the time for

an operator to build one is almost constant, at 15 minutes. But, because there are many

different amplifiers assembled from the standard chassis, the time for an operator to

assemble an amplifier is highly variable, with a mean of 20 minutes Unfortunately, Enginola

does not have precise data on the standard deviation.

Note that the chassis stage has more capacity than the amplifier stage. Because of this

chassis operators have other work they can do when they are not needed to build chassis.

Also, Enginola has implemented a kanban system to ensure that the inventory of completed

chassis waiting at the amplifier stage does not become excessive. This system makes use of

paper cards, which are attached to the finished chassis. Whenever an amplifier operator takes

a chassis out of stock, he/she removes the card and hands it upstream to the chassis stage. It

is given to a chassis operator as a signal to build another chassis. When the operator

completes the chassis, he/she attaches the card to it and delivers the chassis to the stockpoint

at the amplifier stage. Since chassis operators are not allowed to build chassis without a card,

and there are only m cards in the system, the total amount of chassis inventory at the

amplifier stage can never exceed m.

(a) What distribution would be appropriate for representing the number of chassis used by

the amplifier stage per hour? Explain your reasoning.
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(b) Given your answer to (a), what are the mean and standard deviation of the number of

chassis used by the amplifier stage during the 15 minutes it takes the chassis stage to

build a chassis?

(c) If Enginola wants to be sure that the probability of an amplifier operator finding a

chassis in stock when he/she needs one is at least 99 percent, how large should they it

the kanban level m?

14. Chairish-Is-The-Word, Inc., manufactures top-end hardwood chairs that are sold through a

variety of retail outlets. The most popular model sells (wholesale) for $400 per chair and

costs $300 to make. Past data show that average monthly demand is 1,000 chairs with a

standard deviation of 200 chairs and that the normal distribution is a reasonable fit. CITW

uses a 20 percent annual interest charge to estimate inventory carrying costs, so that the cost

to carry one chair in stock for 1 month is $300(0.20)/12 = $5.

(a) If all orders are backlogged and the cost of lost customer goodwill from carrying a

single chair on backorder is $20, what order-up-to (base stock) level should CITW use?

(b) If any order not filled from stock is lost (i.e., the customer buys it from the competition),

what order-up-to level should CITW use?

(c) Explain the reason for the difference between your answers in parts (a) and (b).

15. Jill, the office manager of a desktop publishing outfit, stocks replacement toner cartridges for

laser printers. Demand for cartridges is approximately 30 per year and is quite variable (i.e.,

can be represented by the Poisson distribution). Cartridges cost $100 each and require

3 weeks to obtain from the vendor. Jill uses a (Q, r ) approach to control stock levels.

(a) If Jill wants to restrict replenishment orders to twice per year on average, what batch

size Q should she use? Using this batch size, what reorder point r should she use to

ensure a service level (i.e., probability of having the cartridge in stock when needed) of

at least 98 percent?

(b) If Jill is willing to increase the number of replenishment orders per year to six, how do

Q and r change? Explain the difference in r .

(c) If the supplier of toner cartridges offers a quantity discount of $10 per cartridge for

orders of 50 or more, how does this affect the relative attractiveness of ordering twice

per year versus six times per year? Try to frame your answer in definite economic terms.

16. Moonbeam-Mussel (MM), a manufacturer of small appliances, has a large injection molding

department. Because MM’s CEO, Crosscut Sal, is a stickler for keeping machinery running,

the company stocks quick-change replacement modules for the two most common types of

failure. Type A modules cost $150 each and have been used at a rate of about seven per

month, while type B modules cost $15 and have been used at a rate of about 30 per month,

and for simplicity we assume a month is 30 days. Both modules are purchased from a

supplier; replenishment lead times are 1 month and 1

2
month (15 days) for modules A and B,

respectively.

(a) Suppose MM wishes to follow a base stock policy. Assuming that demand is

Poisson-distributed, what should the base stock levels be for type A and type B modules

in order to ensure a fill rate of at least 98 percent for each module? What are the

expected backorder level and the expected inventory level (in dollars)?

(b) Suppose MM estimates the cost to place a replenishment order (regardless of type) to be

$5 and the holding cost interest rate to be 3 percent per month. Use the EOQ model to

compute order quantities (where the EOQ values are rounded to the nearest integer to

get Q). For these order quantities, what should the reorder points be to achieve a 98

percent fill rate for both modules? How do these reorder points and the resulting average

backorder level and inventory level compare to those in part (a)? Explain any difference.

(c) Suppose MM estimates the cost per month per unit of backorder to be $15. Use

approximation (2.54) to compute reorder points for type A and type B modules (again

rounding to the nearest integer). Using the order quantities from part (b) along with

these new reorder points, compare the average total inventory, backorder level, and fill

rate with those in part (b). Comment on any difference. (Note that the average fill rate is
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computed by (D1 S1 + D2 S2)/(D1 + D2), where D1, D2 are the monthly demand rates

and S1, S2 are the fill rates for type A and type B components, respectively.)

(d) Recompute the reorder points as in part (c), but this time assume that replenishment lead

times are variable with standard deviations of 7 and 15 days for type A and type B

modules, respectively. How much of an effect does this have on the reorder points?

17. Walled-In Books stocks the novel War and Peace. Demand averages 15 copies per month,

but is quite variable (i.e., is well represented by a Poisson distribution). Replenishments

from the publisher require a two-week lead time. The wholesale cost is $12, and Walled-In

uses a weekly holding cost rate of 1

2
percent. It also estimates that the fixed cost of placing

and receiving a replenishment order is $5.

(a) Compute the approximately optimal order quantity, using the EOQ formula and rounding

to the nearest integer. Using this order quantity, find the reorder point that makes the fill

rate at least 90 percent. Compute the resulting average inventory (in dollars).

(b) Using the order quantity computed in part (a), find the reorder point that makes the type

I approximation of fill rate at least 90 percent. Compute the true fill rate and inventory

level resulting from this reorder point and compare to the values in part (a). What does

this say about the accuracy of the type I service approximation?

(c) Using the order quantity computed in part (a), find the reorder point that makes the type

II approximation of fill rate at least 90 percent. Compute the true fill rate and inventory

level resulting from this reorder point, and compare to the values in part (a). What does

this say about the accuracy of the type II service approximation? How does the value of

Q affect the accuracy of the type II approximation?

(d) Cut the order quantity from part (a) in half, and compute the reorder point needed to

make fill rate at least 90 percent. How does the resulting inventory compare to that from

part (a)? Does this imply that the EOQ approximation is poor? Why or why not?
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3 The MRP Crusade

There is nothing new under the sun.

Ecclesiastes

3.1 Material Requirements Planning—MRP

By the early 1960s, many companies were using digital computers to perform routine

accounting functions. Given the complexity and tedium of scheduling and inventory

control, it was natural to try to extend the computer to these functions as well. One of the

first experimenters in this area was IBM, where Joseph Orlicky and others developed what

came to be called material requirements planning (MRP). Although it started slowly,

MRP got a tremendous boost in 1972 when the American Production and Inventory

Control Society (APICS) launched its “MRP Crusade” to promote its use. Since that

time, MRP has become the principal production control paradigm in the United States.

By 1989, sales of MRP software and implementation support exceeded $1 billion.

Since that time, MRP has been a major component of almost every computerized

approach to manufacturing management including manufacturing resources planning

(MRP II), business resources planning (BRP), enterprise resources planning (ERP),

and supply chain management (SCM). Consequently, MRP is at the core of a software

industry that had more than $24 billion in revenue in 2005.

In spite of the hype about new system architecture and features, most of the ERP

and SCM systems have at their heart the same technology developed by Orlicky in

the 1960s—MRP. Because it remains so prevalent, every well-trained manufacturing

manager must have some familiarity with how MRP works (and doesn’t work). Therefore,

in this chapter we describe the MRP paradigm and that of its successors. We also highlight

the basic insights represented by MRP as well as some difficulties it leaves unresolved.

However, we reserve a complete critique of the paradigm for Chapter 5.

3.1.1 The Key Insight of MRP

As we noted in Chapter 2, before MRP, most production control systems were based

on some variant of statistical reorder points. Essentially this meant that production of

any part, finished product, or component was triggered by inventory for that part falling

114
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below a specified level. Orlicky and the other originators of MRP recognized that this

approach is much better suited to final products than components. The reason is that

demand for final products originates outside the system and is therefore subject to un-

certainty. However, because components are used to produce final products, demand for

components is a function of demand for final products and is therefore known for any

given final assembly schedule. Treating the two types of demand equivalently, as is done

in a statistical reorder point system, ignores the dependence of component demand on

final product demand and therefore leads to inefficiencies in scheduling production.

Any demand that originates outside the system is called independent demand. This

includes all demand for final products and possibly some demand for components (e.g.,

when they are sold as replacement parts). Dependent demand is demand for components

that make up independent demand products. Using these terms, the key insight of MRP

can be stated as follows:

Dependent demand is different from independent demand. Production to meet dependent

demand should be scheduled so as to explicitly recognize its linkage to production to meet

independent demand.

As we will see, the basic mechanics of MRP do exactly this. By working backward

from a production schedule of an independent-demand item to derive schedules for

dependent-demand components, MRP adds the link between independent and dependent

demand that is missing from statistical reorder point systems. MRP is therefore called

a push system since it computes schedules of what should be started (or pushed) into

production based on demand. This is in contrast to pull systems, such as Toyota’s kanban

system, that authorize production as inventory is consumed. We will discuss Kanban in

greater detail in Chapter 4 and provide a more complete comparison of push and pull

systems in Chapter 10.

3.1.2 Overview of MRP

The basic function of MRP is revealed by its name—to plan material requirements. MRP

is used to coordinate orders from within the plant and from outside. Outside orders are

called purchase orders, while orders from within are called jobs. The main focus of

MRP is on scheduling jobs and purchase orders to satisfy material requirements generated

by external demand.

MRP deals with two basic dimensions of production control: quantities and timing.

The system must determine appropriate production quantities of all types of items,

from final products that are sold, to components used to build final products, to inputs

purchased as raw materials. It must also determine production timing (i.e., job start times)

that facilitates meeting order due dates.

In many MRP systems, time is divided into buckets, although some systems use

continuous time. A bucket is an interval that is used to break time and demand into

discrete chunks. The demand that accumulates over the time interval (bucket) is all

considered due at the beginning of the bucket. Thus, if the bucket length is 1 week and

during the third week (bucket) there is demand for 200 units on Monday, 250 on Tuesday,

100 on Wednesday, 50 on Thursday, and 350 on Friday, then demand for the third bucket

is 950 units and is due on Monday morning. In the past, when data processing was more

expensive, typical bucket sizes were one week or longer. Today, most modern MRP

systems use daily buckets, although there are still many systems using weeks.

MRP works with both finished products, or end items, and their constituent parts,

called lower-level items. The relationship between end items and lower-level items is
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Figure 3.1

Two bills of material.

described by the bill of material (BOM), as shown in Figure 3.1. Demand for end items

generates dependent demand for lower-level items. As we noted above, all demand for

end items is independent demand, while typically most demand for lower-level items is

dependent demand. However, there can be independent demand for lower-level items in

the form of spare parts, parts for research and quality tests, and so on.

To facilitate the MRP processing, each item in the BOM is given a low-level code

(LLC). This code indicates the lowest level in a bill of material that a particular part

is ever used.1 End items (that are not a part of any other item) have LLCs of 0. A

subassembly that is used only by end items has an LLC of 1. A component that is

used only by subassemblies having an LLC of 1 will have an LLC of 2, and so on. For

example, in Figure 3.1 parts A and B are end items with LLCs of 0. Requirements for

these parts come from independent demand. At first glance, it might appear that part 100

should have an LLC of 1 since it is used directly in part A. However, because it is also

a component part for part 500 (whose LLC is 1), it is assigned an LLC of 2. Similarly,

since part 300 is required to make part B with an LLC of zero, but is also required to

make part 100 that has an LLC of 2, it is given an LLC of 3.

Most commercial MRP packages include a BOM processor that is used to maintain

the bills of material and automatically assign low-level codes. Other functions of the

BOM processor include generating “goes-into” lists (where parts are used) and BOM

printing.

In addition to the BOM information, MRP requires information concerning inde-

pendent demand, which comes from the master production schedule (MPS). The MPS

contains gross requirements, the current inventory status known as on-hand inven-

tory, and the status of outstanding orders (both purchased and manufacturing) known as

scheduled receipts.

The basic MRP procedure is simple. We will discuss each of the steps in detail. But

briefly, for each level in the bill of material, beginning with end items, MRP does the

following for each part:

1. Netting: Determine net requirements by subtracting on-hand inventory and

any scheduled receipts from the gross requirements. The gross requirements for

level-zero items come from the MPS, while those for lower-level items are the

result of previous MRP iterations or are independent demand for those parts

(e.g., spares). If the projected-on-hand becomes less than zero, there is a

material requirement.

1Unfortunately, low-level codes have the property that the lower a part is in the bill of material, the

higher its low-level code.
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Schematic of MRP.

2. Lot sizing: Divide the netted demand into appropriate lot sizes to form jobs.

3. Time phasing: Offset the due dates of the jobs with lead times to determine

start times.

4. BOM explosion: Use the start times, the lot sizes, and the BOM to generate

gross requirements of any required components at the next level(s).

5. Iterate: Repeat these steps until all levels are processed.

As each part in the bill of material is processed, requirements are generated for lower

levels. MRP processes all parts for one level before beginning the next level. Because

of the way low-level codes are defined, doing this generates all the gross demand for a

lower-level part before it is processed. We will describe each of these steps in detail in

Section 3.1.4. The basic outputs of an MRP system are planned order releases, change

notices, and exception reports. These we will define in Section 3.1.3. Figure 3.2 presents

a schematic of the overall process.

We now illustrate this procedure with a simple example. Suppose the demand for

part A is given by the gross requirements from the following master production schedule:

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Suppose further that there are no scheduled receipts (these are a bit tricky and we

will discuss them later) and there are 30 units on hand in inventory. We assume that the

lot size for part A is 75 units and the lead time is 1 week. The MRP processing goes as

follows.
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Netting. The 30 units on hand will cover all the demand in week 1 and 15 units left

over. The remaining 15 leave five units of the demand of 20 in week 2 uncovered. Thus,

net requirements are as follows:

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Projected on-hand 30 15 −5 — — — — — —

Net requirements 0 5 50 10 30 30 30 30

Lot Sizing. The first uncovered demand is in week 2. Therefore, the first planned

order receipt will be in week 2 for 75 units (the lot size). Since only five units are

needed in week 2, 70 units are carried over to week 3, which has a demand of 50. This

leaves 20 for week 4, which has a demand of 10. After covering week 4, the remainder

is insufficient to cover the demand of 30 units in week 5. Thus, we need another lot of

75 to arrive at the beginning of week 5. After subtracting 30 units, we have 55 available

for week 6, which also has a demand of 30, leaving 25 for week 7. The 25 units are not

sufficient to cover the demand of 30, and so we need another lot of 75 to arrive in week

7. This lot covers both the remaining demand in week 7 (five) and the 30 needed in week

8. We show the results of these calculations in the following tableau:

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Projected on-hand 30 15 −5 — — — — — —

Net requirements 0 5 50 10 30 30 30 30

Planned order receipts 75 75 75

Time Phasing. To determine when to release the jobs (if made in-house) or purchase

orders (if bought from someone else), we simply subtract the lead time from the time of

the planned order receipts to obtain the planned order releases. The result for planned

lead times of 1 week is shown below:

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Projected on-hand 30 15 −5 — — — — — —

Net requirements 0 5 50 10 30 30 30 30

Planned order receipts 75 75 75

Planned order releases 75 75 75
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BOM Explosion. Once we have determined start times and quantities for part A, it is

a simple matter to generate demand requirements for all its components. For instance,

each unit of part A requires two units of part 100. Therefore, gross requirements for part

100 to produce part A are computed by simply doubling the planned order releases for

part A. The gross requirements for part 100 generated by part A must be added to those

generated by other parts (e.g., part 500) in order to compute the total gross requirements

for part 100. As long as we process parts in order (low to high) of their low-level code,

we will have accumulated all the gross requirements for each part before processing it.

3.1.3 MRP Inputs and Outputs

The basic inputs to MRP are a forecast of demand for end items, the associated bills of

material, and the current inventory status, plus any data needed to specify production

policies. These data come from three sources: (1) the item master file, (2) the master

production schedule, and (3) the inventory status file.

The Master Production Schedule. The master production schedule is the source of

demand for the MRP system. It gives the quantity and due dates for all parts that have

independent demand. This will include demand for all end items as well as external

demand for lower-level parts (e.g., demand for spare parts).

The minimum information contained in the master production schedule is a set of

records containing a part number, a need quantity, and a due date for each purchase order.

This information is used by MRP to obtain the gross requirements that initiate the MRP

procedure. The MPS typically uses the part number to link to the item master file where

other processing information is located.

The Item Master File. The item master file is organized by part number and contains, at

a minimum, a description of the part, bill-of-material information, lot-sizing information,

and planning lead times.

The minimum BOM data for a part are the components and quantities that are

directly required to make the part. The bill-of-material processor uses this information

to display complete bills of material for any item, although such detailed information is

not needed for MRP processing.

By using low-level codes, MRP accumulates all the demand of a part before it

processes that part. To see why this is necessary, suppose it were not done. In our example,

MRP might process part 100 after processing parts A and B but before processing part

500. If so, it would not have the demand for part 100 generated by part 500. If we go

back and schedule more production of part 100, we may end up with many small jobs

of part 100 instead of a few large ones. Several small jobs could easily have the same

due date. The result would be a failure to exploit any economies of scale from sharing

setups on critical equipment. The use of low-level codes prevents this from happening.

Two other pieces of information needed to perform MRP processing are the lot-

sizing rule (LSR) and the planning lead time (PLT). The LSR determines how the jobs

will be sized in order to balance the competing desires of reducing inventory (by using

smaller lots) and increasing capacity (by using larger lots to avoid setups). The methods,

EOQ and Wagner–Whitin, as discussed in Chapter 2, are possible lot-sizing rules. We

discuss the use of these and other rules later in this chapter.

The PLT is used to determine job start times. In MRP, this procedure is simple:

The start time is equal to the due date minus the PLT. Thus, if the product cycle times

were always precisely equal to the PLTs, MRP would result in parts being ready exactly

when needed (i.e., just in time). However, actual cycle times vary and are never known
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in advance. Thus, deciding what planned lead times to use in an MRP system can be a

difficult question and one that we will discuss further, in this chapter and in Chapter 5.

On-Hand Inventory. On-hand inventory data are stored by part number and contain

information describing the part, where it is located, and how many are currently on

hand. On-hand inventory includes raw material stock, “crib” stock (i.e., inventory that

has been processed since being raw material and kept within the plant), and assembly

stock. On-hand inventory may also contain information about allocation that indicates

how many parts are reserved for specific jobs.

Scheduled Receipts. This file contains all previously released orders, either purchase

orders or manufacturing jobs. A scheduled receipt (SR) is a planned order release

that has actually been released. For purchased parts, this involves executing a purchase

order (PO) and sending it to a vendor. For manufactured parts, this entails gathering

all necessary routing and manufacturing information, allocating the necessary inventory

for the job, and releasing the job to the plant. Once the PO or job has been released,

the planned order release is deleted in the database and the scheduled receipt is created.

Thus, SRs are jobs and orders resulting from previous MRP runs and either are currently

in process or have not yet been received from the vendor. Jobs that have not yet arrived

at an inventory location are considered part of work in process (WIP). When the job

is completed (i.e., it has finished its routing and goes into stock), the scheduled receipt

is deleted from the database and the on-hand inventory is updated to reflect the amount

of the part that was completed. A corresponding procedure follows the receipt of a

purchased part from a vendor.

Typical information contained for each scheduled receipt is an identifier (PO number

or job number), part number, due date, release date, unit of measure, quantity needed,

and current quantity. Other information may include price or cost, routing data, vendor

data, material requirements, special handling, anticipated ending quantity, anticipated

completion date, and so forth.

Knowledge of on-hand inventory and scheduled receipts is important to determining

net requirements. This procedure is often called coverage analysis, and it involves

determining how much demand is “covered” by current inventory, purchase orders, and

manufacturing jobs.

If demands never changed and jobs always finished on time, all existing scheduled

receipts would correspond exactly to subsequent requirements. Unfortunately, demands

do change and jobs do not always finish on time, and so scheduled receipts sometimes

need to be adjusted. Such adjustments are indicated in change notices, described below.

MRP Outputs. The output of an MRP system includes planned order releases, change

notices, and exception reports. Planned order releases eventually become the jobs that

are processed in the plant.

A planned order release (POR) contains at least three pieces of information: (1)

the part number, (2) the number of units required, and (3) the due date for the job. A

job or a POR need not correspond to an individual customer order and, in most cases,

will not. Indeed, in a situation where there are many common parts, PORs for common

components will often be for many different assemblies, not to mention customers.

However, if all jobs finish on their due dates, all customer orders will be filled on time.

This is accomplished automatically in the MRP processing that we discuss in detail next.
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Change notices indicate modifications of existing jobs, such as changes in due dates

or priorities. Moving a due date earlier is called expediting while making a due date

later is known as deferring.

Exception reports, as in any large management information system, are used to

notify the users that there are discrepancies between what is expected and what will

transpire. Such reports might indicate job count differences, inventory discrepancies,

imminently tardy jobs, and the like.

3.1.4 The MRP Procedure

While the basic ideas of MRP are simple, the details can get messy. In this section we

go through the MRP procedure in enough detail to give the reader an idea of the basic

workings of most commercial MRP systems. To do this, we make use of the following

notation. For each part, define:

Dt = gross requirements (demand) for period t (e.g., a week)

St = quantity currently scheduled to complete in period t (i.e., a

scheduled receipt)

It = projected on-hand inventory for end of period t , where current

on-hand inventory is given by I0

Nt = net requirements for period t

With these we will now describe the four basic steps of MRP: netting, lot sizing,

time phasing, and BOM explosion.

Netting. Netting, or coverage analysis, is used to compute net demand. In many systems

it also adjusts scheduled receipts by expediting those that are currently scheduled to arrive

too late and deferring those currently scheduled to arrive too soon.

In more primitive implementations, net demand is computed very simply. We first

compute the projected-on-hand (with no replenishment),

It = It−1 − Dt + St

with I0 equal to the current on-hand. Then the net demand is computed as

Nt = min{max(−It , 0), Dt }

This formula makes the net demand equal to the magnitude of the first negative projected-

on-hand inventory or the demand for the period, whichever is smaller.

More sophisticated systems assume that all SRs will be received before any newly

created job can be completed. This makes sense since SRs are already “on the way,”

and it is unlikely that any new planned order release would be able to “pass” the SR to

become available sooner. If an SR is outstanding with a vendor, it should be easier to

expedite the existing order than to start a new one. Likewise an SR that is currently in the

shop should finish before one that we start now. Therefore, we will assume that coverage

will come first from on-hand inventory, second from SRs (regardless of their due date),

and finally from new planned orders. To compute when the first SR should arrive, we first

determine how far into the future the on-hand inventory will cover demand. We compute

It = It−1 − Dt

starting with t = 1 and with I0 equal to current on-hand inventory. We increment t and

continue to compute It until it becomes less than zero. The period in which this occurs
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Table 3.1 Input Data for Example

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Scheduled receipts 10 10 100

Adjusted SRs

Projected on-hand 20

Net requirements

Planned order receipts

Planned order releases

is when the first scheduled receipt should arrive. If the current due date of the first SR is

different from this, it should be changed. This will give rise to a change notice indicating a

deferral if the SR is to be pushed back and an expedite if it is to be moved forward.2 Once

the SR is changed, the projected on-hand inventory should reflect the change; that is,

It (after change in SR) = It (before change in SR) + St

where St is the quantity of SR that is moved into period t . If It remains less than zero,

the next SR should also be moved to period t . This is repeated until either It becomes

nonnegative or there are no more scheduled receipts.

Once the projected on-hand inventory is made nonnegative in period t, we continue

the procedure by moving forward in time by incrementing t and computing

It = It−1 − Dt

again until It becomes less than zero. We repeat this procedure until either we exhaust

the scheduled receipts or we have reached the end of the time horizon. If it happens

that while there are remaining scheduled receipts, a change notice should be issued to

either cancel those orders/jobs or defer them to a very late date, since there is no demand

for them at this time. More often we will run out of on-hand inventory and SRs before

we have exhausted demand. The demands beyond what the on-hand inventory and the

scheduled receipts can cover are the net requirements.

Once scheduled receipts have been adjusted, the net requirements are computed as

before, Nt = min{max(−It , 0), Dt }. The net requirements are then used in the lot-sizing

procedure.

Before we move on to lot sizing, consider an example to illustrate these coverage

analysis procedures. Table 3.1 contains the gross requirements from the master produc-

tion schedule for part A, three scheduled receipts, and the current on-hand inventory

count.

2Of course, this automatic changing of due dates occurs only within the database unless someone acts.

The change notices are used to propagate this information to the “expediter” who is responsible for ensuring

that a job finishes on its due date. This is all very easy in theory, but many times a job may be expedited to a

point where it is impossible to finish on time. Such instances lead to occasions when the data in the MRP

database do not reflect the true situation on the shop floor.
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We begin by computing the projected on-hand inventory. Starting with 20 units

in stock, we subtract 15 for the gross requirements in period 1, leaving five remaining

on-hand. Notice we do not consider the SR of 10 in period 1 since we always use on-hand

inventory before using scheduled receipts.

Moving to the second period, we see that the gross requirement of 20 exceeds the

five in stock, and so we issue a change notice to defer the SR with 10 from period 1 to

period 2. However, this still provides only a total of 15 units, five less than what is needed.

Therefore we add the second SR to period 2, bringing the total to 25 units. Notice that

since this SR is already scheduled for period 2, we do not need to generate a change notice.

After adjusting the first two SRs to period 2 and subtracting the gross requirements, we

have an on-hand inventory of five. Since this quantity is insufficient to cover the third

demand of 50, we issue an expedite notice to change the due date of the third SR of 100

from period 4 to period 3, yielding an on-hand inventory of 55. In some systems the

job could be split, expediting only that portion that is needed at the earlier date. In this

example, however, we expedite the entire job. This more than covers the 10 units in period

4, leaving 45, as well as the 30 in period 5, leaving 15 units. The demand in period 6

exceeds the projected on-hand inventory, and there are no more SRs to be adjusted. Thus,

the first uncovered demand occurs in period 6 and is equal to 15. Table 3.2 summarizes

the coverage analysis calculations used to generate projected on-hand inventory.

The net requirements are now easily computed, as shown in Table 3.2. For periods

1 through 5 they are zero because projected on-hand inventory is greater than zero. For

period 6 they are 15, simply the negative of projected on-hand inventory. For periods 7

and 8 the net requirements are equal to the gross requirements, both of which are 30.

Lot Sizing. Once we have computed the net requirements, we must schedule produc-

tion quantities to satisfy them. Because MRP assumes demands are deterministic but

not constant over time, this is exactly the same problem we addressed in Chapter 2

and solved “optimally” using the Wagner–Whitin algorithm. We will discuss this and

other lot-sizing techniques in Section 3.1.6. For clarity and to illustrate the basic MRP

computations, we restrict our attention at this point to two very simple lot-sizing rules.

The simplest lot-sizing rule, known as lot-for-lot, states that the amount to be

produced in a period is equal to that period’s net requirements. This policy is easier to

use than the fixed quantity policy in the example in Section 3.1.2, and is consistent with

just-in-time philosophy (see Chapter 4) of making only what is needed.

Table 3.2 Adjusted Scheduled Receipts, Projected On-Hand, and
Net Requirements

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Scheduled receipts 10 10 100

Adjusted SRs 20 100

Projected on-hand 20 5 5 55 45 15 −15 — —

Net requirements 15 30 30

Planned order receipts

Planned order releases
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Table 3.3 Planned Order Receipts and Releases

Part A 1 2 3 4 5 6 7 8

Gross requirements 15 20 50 10 30 30 30 30

Scheduled receipts 10 10 100

Adjusted SRs 20 100

Projected on-hand 20 5 5 55 45 15 −15 — —

Net requirements 15 30 30

Planned order receipts 45 30

Planned order releases 45 30

Another simple rule is known as fixed order period (FOP), also sometimes called

period order quantity. This rule attempts to reduce the number of setups by combining

the net requirements of P periods. Note that when P = 1, FOP is equivalent to lot-for-lot.

Returning to our example, assume that the lot-sizing rule for parts A and B is fixed

order period with P = 2 and for all other parts we use lot-for-lot. Then, for part A, we

plan on receiving 45 units in period 6 (combining net demand from periods 6 and 7) and

30 units in period 8 (we cannot combine beyond our planning horizon). The results of

these lot-sizing calculations are shown in Table 3.3

Time Phasing. Almost universally, MRP systems assume that the time to make a part

is fixed, although a few systems do allow for the planned lead time to be a function of

the job size. Regardless of the specifics, however, MRP treats lead times as attributes

of the part and possibly the job, but not of the status of the shop floor. This can cause

problems, as we will see later.

If we return to our example and assume that the planned lead time for part A is two

periods, we are able to compute the planned order releases as shown in Table 3.3.

BOM Explosion. Table 3.3 shows the final result of processing part A. Recall that part

A is made up of two units of part 100 and one unit of part 200 (see Figure 3.1). Thus,

the planned order releases generated for part A create gross requirements for parts 100

and 200. Specifically, we need 90 units of part 100 in period 4 (two are needed for each

unit of A) and 60 units in period 6. Similarly, we require 45 units of part 200 in period

4 and 30 units in period 6. These demands must be added to any requirements already

accumulated for these parts (e.g., if we have already processed other parts that require

them as subcomponents). To illustrate this, we will pursue our example a bit further.

The next step is to process any other parts having a low-level code of zero. In this

example, we would process part B next. Suppose that the master production schedule

for part B is as follows:

t 1 2 3 4 5 6 7 8

Demand 10 15 10 20 20 15 15 15
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Furthermore, assume the following inventory and part data for parts B, 100, 300,

and 500 (for brevity, we will not treat part 200, 400, or 600).

SRs
Part Current Lot-Sizing

Number On-Hand Due Quantity Rule Lead Time

B 40 0 FOP, 2 weeks 2 weeks

100 40 0 Lot-for-lot 2 weeks

300 50 2 100 Lot-for-lot 1 week

500 40 0 Lot-for-lot 4 weeks

Since there are no scheduled receipts for part B, the MRP calculations for this part

are simple. Table 3.4 shows the completed tableau.

We have now completed processing all parts with an LLC of zero (i.e., parts A

and B). Of the remaining parts we are considering, only part 500 has an LLC of one.

Therefore we treat it next.

The only source of demand for part 500 is from part B (i.e., part A does not require

part 500, and there is no external demand for part 500). Because each unit of B requires

one unit of part 500, the planned order releases for part B become the gross requirements

for part 500. Again, there are no scheduled receipts. The MRP processing is shown in

Table 3.5.

Because the lead time for part 500 is 4 weeks, there is not enough time to finish the

first 25 units before week 4. Therefore, a planned order release is scheduled for week 1

(as soon as possible) with an indication on an exception report that it is expected to be

late.

We now turn to level 2 and part 100. Part 100 has two sources of demand, two units

for each unit of part A and one unit for each unit of part 500. There are no scheduled

receipts. The MRP processing is shown in Table 3.6

The only part at level 3 we consider is part 300. It has requirements from parts B and

100. Also, there is a scheduled receipt of 100 units in week 2. Since it arrives at the time

Table 3.4 MRP Processing for Part B

Part B 1 2 3 4 5 6 7 8

Gross requirements 10 15 10 20 20 15 15 15

Scheduled receipts

Adjusted SRs

Projected on-hand 40 30 15 5 −15 — — — —

Net requirements 15 20 15 15 15

Planned order receipts 35 30 15

Planned order releases 35 30 15
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Table 3.5 MRP Calculations for Part 500

Part 500 1 2 3 4 5 6 7 8

Gross requirements 35 35 30 15

Scheduled receipts

Adjusted SRs

Projected on-hand 40 40 5 5 −25 — — — —

Net requirements 25 15

Planned order receipts 25 15

Planned order releases 25∗ 15

∗Indicates a late start

of the first uncovered requirement, no adjustments are necessary. The MRP processing

is shown in Table 3.7.

We have now completed the MRP processing for all the parts of interest (processing

for parts 200 and 400 is entirely analogous to that done for the other parts). Table 3.8

gives a summary of the outputs that an MRP system would generate from the above

calculations. For each change notice, the system reports the quantity and part number

affected, old due date, new due date, and whether it is an expedite or deferral. For each

new planned order release, it reports the release date, the (new) due date, the release

quantity, and whether it is anticipated to be late.

3.1.5 Special Topics in MRP

Up to now, we have focused on the mechanics of MRP processing. We now consider

several technical issues that affect MRP performance. In particular, we address the

question of what can be done to improve performance when things do not go as planned.

Table 3.6 MRP Calculations for Part 100

Part 100 1 2 3 4 5 6

Required from A 90 60

Required from 500 25 15

Gross requirements 25 15 90 60

Scheduled receipts

Adjusted SRs

Projected on-hand 40 15 0 0 −90 — —

Net requirements 90 60

Planned order receipts 90 60

Planned order releases 90 60
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Table 3.7 MRP Calculations for Part 300

Part 300 1 2 3 4 5 6 7 8

Required from B 35 30 15

Required from 100 90 60

Gross requirements 125 90 15

Scheduled receipts 100

Adjusted SRs 100

Projected on-hand 50 50 25 25 −65 — — — —

Net requirements 65 15

Planned order receipts 65 15

Planned order releases 65 15

Table 3.8 Summary of MRP Output

Part Old Due Date New Due

Transaction Number or Release Date Date Quantity Notice

Change notice A 1 2 10 Defer

Change notice A 4 3 100 Expedite

Planned order release A 4 6 45 OK

Planned order release A 6 8 30 OK

Planned order release B 2 4 35 OK

Planned order release B 4 6 30 OK

Planned order release B 6 8 15 OK

Planned order release 100 2 4 90 OK

Planned order release 100 4 6 60 OK

Planned order release 300 3 4 65 OK

Planned order release 300 5 6 15 OK

Planned order release 500 1 4 25 Late

Planned order release 500 2 6 15 OK

Updating Frequency. A key determinant of the effectiveness of an MRP system is

the frequency of updating. If we update too frequently, the shop can be inundated with

exception reports and constantly changing planned order releases.3 If, on the other hand,

we update too infrequently, we can end up with old plans that are often out of date. In

designing an MRP system, one must balance the need for timeliness against the need for

stability.

Firm Planned Orders. Changing the production schedule frequently can cause it to

become very unstable. This makes it difficult for managers to shift workers effectively

and prepare for setups. Therefore, it is desirable to minimize schedule disruption due to

changes. One way to do this is by using firm planned orders. A firm planned order is a

3In the past, when computer systems were small in memory and slow in processing, the cost of computer

processing could also be prohibitive. However, with the dramatic increases in computer power in recent

years, this is much less a factor in choosing a regeneration frequency.
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planned order release that is held fixed; that is, it will be released regardless of changes

in the system. Consequently, firm planned orders are treated in MRP processing as if

they were scheduled receipts (i.e., they must be included in the coverage analysis). By

converting all planned order releases within a specified time interval to firm planned

orders, the production plans become more stable. This is particularly important in the

short term for managerial control purposes. Firm planned orders are also useful for

reducing system nervousness, which is discussed in greater detail below.

Troubleshooting in MRP. A wise man named Murphy once said, “If something can

go wrong, it will go wrong.” In an MRP system, there are many things that can go wrong.

Jobs can finish late, parts can be scrapped, demands can change, and so on. As a result,

over the years MRP systems have acquired features to assist the planner as conditions

change. Examples include the techniques of pegging and bottom-up replanning.

Pegging allows the planner to see the source of demand that results in a given

planned order release. It is facilitated by providing a link from the gross requirements

of an item to all its sources of demand. For example, consider the planned order release

of 65 units of part 300 in week 3 shown in Table 3.7. Pegging would link this to the

individual requirements of 60 units of part 100 and 30 units of part B in week 4. These,

in turn, could be linked to their demand sources, namely, part B to the master production

schedule and part 100 to the 60 units needed to make part A in week 6 (see Table 3.6).

One of the uses of pegging is in bottom-up replanning. This is best illustrated with

an example. Suppose we discover that the scheduled receipt of 100 units of part 300 due

in week 2 will not be coming in (someone found the purchase order that was supposed

to be sent to the vendor behind a file cabinet). Of course, the appropriate action would

be to place the order immediately, call the vendor, and see if the order can be expedited.

If this is not possible, we can use bottom-up replanning to investigate the impact of the

late delivery.

From Table 3.7, we see that the gross requirements affected are the 125 required in

week 2. If the scheduled receipt will not be coming in, then we have only the 50 that are

on-hand to cover demand, leaving 75 units uncovered. Of the 125 demanded, 35 are for

part B, a level 0 item, and 90 are for part 100, a level 2 item. If we attempt to cover the

lowest-level items first (reasoning that these have the potential for causing the greatest

disruption), then we see that we can cover only 50 of the 90 units of part 100 needed in

period 2. Further pegging shows that these requirements are from 90 units of demand for

part A, for which we can now cover only 50 units. At this point we might want to contact

the customer for the 90 units of part A and see if we can deliver 50 when requested and

the other 40 later.

Alternatively, we might use the 50 units on hand to cover the demand for part B first

(the idea here is to cover the items that generate revenue). If we do this, we can cover the

35 units of demand for B and are left with 15 units to cover the 90 required for part 100.

Again pegging these to their original demand shows that 75 of the 90 units of part A

required in period 4 would not be covered. If the demand for part B in the MPS is for an

actual customer, while that for part A is only a forecast, we might want to cover B first.

Of course, a different option is to split the 50 on hand to cover some of the demand for

part B and some for part 100. The “correct” choice depends on the customers involved,

their willingness to accept late orders, and so on.

Instead of pegging, we could have eliminated the scheduled receipt of 100 units

of part 300 and made a complete regeneration of MRP. This would have resulted in a

planned order release in week 1 with an exception notice that it is expected to be late.

However, a regeneration of MRP cannot determine which customer orders will be late
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as a result of this delay. Bottom-up replanning and pegging provide the planner with

this ability. The use of firm planned orders allows the planner to remedy a schedule by

overriding standard MRP processing.

3.1.6 Lot Sizing in MRP

To demonstrate basic MRP processing, we have described two simple lot-sizing rules—

fixed order period and lot-for-lot. In this section, we will discuss issues surrounding the

lot-sizing problem and describe other, more complex lot-sizing rules.

The lot-sizing problem deals with the basic trade-off between having many small

jobs, which tend to increase setup costs (materials, tracking costs, labor, etc.) and/or

decrease capacity, versus having a few large jobs, which tend to increase inventory.

Recall that in Chapter 2 we formulated the Wagner–Whitin (WW) approach to the

lot-sizing problem by assuming infinite capacity and known setup and inventory carrying

costs. Under these assumptions, we showed that the lot-sizing problem can be solved

optimally by using the WW algorithm. Of course, the questions with this approach are

whether anyone can know the setup and inventory carrying costs and whether capacities

will be binding. As one wag remarked about setup costs, “I have yet to write out a check

to a machine.” In many instances, setup “cost” is used as proxy for limited capacity.

The idea is to design lot-sizing rules so that higher setup costs result in larger lots (e.g.,

the EOQ). Since larger lots require fewer setups, less capacity is consumed. Conversely,

when capacity is not tight, smaller setup costs can be used to reduce lot sizes (and thereby

inventory) at the expense of more setups. Thus, by adjusting setup costs, the planner can

trade inventory for capacity.

Unfortunately, the so-called “Wagner–Whitin property” of producing only when

inventory levels reach zero is not optimal when capacity is a constraint. Nonetheless,

many of the lot-sizing rules that have been suggested possess the WW property and

are typically compared to the WW algorithm when their performance is assessed. Thus,

although many of the assumptions may be invalid in realistic situations, it would appear

that most lot-sizing rule designers have accepted the Wagner–Whitin paradigm. Interest-

ingly, we know of no commercial MRP package that actually uses the WW algorithm.

The reasons usually given are that it is too complicated or that it is too slow. But with the

advent of fast computers, speed is no longer an issue—an efficient WW algorithm runs

quickly on a personal computer. A more likely reason may be found in the observation

that “People would rather live with a problem they cannot solve than accept a solution

they do not understand.” Regardless of the reason, a host of alternative lot-sizing algo-

rithms have been suggested and are offered in various forms in most commercial MRP

systems. We will discuss here some of the more commonly used methods.

Lot-for-Lot. As we have already noted, lot-for-lot (LFL) is the simplest of the lot-

sizing rules—simply produce in period t the net requirements for period t . Since this

leaves no inventory at the end of any period (given the assumptions of MRP), this method

minimizes inventory (assuming that it is possible to produce the demand in each period).

However, under the Wagner–Whitin paradigm, since there is a “setup” in every period

with demand, this method also maximizes total setup cost. Despite this, lot-for-lot is

attractive in several respects. First, it is simple. Second, it is consistent with the just-in-

time philosophy (see Chapter 4) of making only what is needed when it is needed. Finally,

since the procedure does not lump requirements together in some periods and produce

nothing in others, it tends to generate a smoother production schedule. In situations

where setup times (costs) are minimal, it is probably the best policy to use.
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Fixed Order Quantity and EOQ. A second very simple policy is to order a prede-

termined quantity whenever an order is placed. We use this rule, fixed order quantity, in

our first example. It is commonly used for two simple reasons.

First, when there are certain sized totes, carts, or other fixtures used to transport jobs

in the shop, it makes sense to create jobs only in these sizes. In some cases, different sized

totes are used at different points in the shop. For instance, fenders are usually carried in

smaller quantities than spark plugs. To avoid leftovers, it makes sense to coordinate the

sizes of the quantities. One way to do this is to choose power-of-2 (1, 2, 4, 8, 16, etc.)

lot sizes.

Second, fixing the job size influences the number of setups. Since the basic trade-off

is between setup cost and inventory carrying cost, the problem of choosing an appropriate

fixed order quantity is very similar to that of the economic order quantity problem

discussed in Chapter 2. The primary difference is that the EOQ model assumed a constant

demand rate. In MRP, demand need not be constant. However, we can make use of the

EOQ model by replacing the constant demand of that model with an estimate of the

average demand D̄. Then, using A to represent the setup cost and h to denote the

inventory carrying cost per annum, we can use the EOQ formula we derived in Chapter 2

Q =

√

2AD̄

h

to compute the fixed order quantity Q. As discussed previously, we may want to round

this quantity to the nearest power of 2. The ratio of A/h can be adjusted to achieve

a desired setup frequency. Making A/h larger will reduce the setup frequency, while

reducing A/h will increase the setup frequency. After some experience, a value that is

compatible with the capacity of the line can be found. Of course, since this value will

depend on the actual orders, it may change frequently.

Unlike the lot-for-lot rule, the fixed order quantity method (whether or not one

uses the EOQ to obtain the order size) will not have the Wagner–Whitin property of

producing only when inventory reaches zero. This means that it can result in incurring

cost to carry inventory that does not eliminate a setup—an obvious inefficiency (under

the assumptions of Wagner–Whitin).4

However, we can modify the rule slightly to consider only job sizes that are equal to

the exact demand of one or more periods, and then choose the one that is closest to the

desired fixed job size. This practice recovers the Wagner–Whitin property. Consider the

following example. Suppose our fixed order quantity is 50 units and the net requirements

are these:

Net requirements 15 15 60 65 55 15 20 10

Then, to preserve the Wagner–Whitin property, our planned order receipts would be

Planned order receipts 30 60 65 55 45

4Of course, as a practical measure, we will probably not plan to run out of inventory exactly when

receiving the next order. Nonetheless, we can use safety stock (discussed in the next section) to provide some

cushion and then insist on the Wagner–Whitin property for the cycle stock (i.e., the stock that is intended to

be used).
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In period 1, 30 is closer to 50 than is 15, so we ordered two periods’ worth of demand

instead of one. In period 3, 60 is closer than 125, so we ordered one period’s worth

instead of two, and so on.

Fixed Order Period. The fixed order period (FOP) rule was used in the MRP pro-

cessing example in Section 3.1.4. Its operation is simple: If you are going to produce

in period t, then produce all the demand for period t, t + 1, . . . , t + P − 1, where P is

a parameter of the policy. If P = 1, the policy is lot-for-lot, since we only produce for

the current period. Since each production quantity is for the exact amount required in a

given set of periods, the policy has the Wagner–Whitin property.

While simple, the policy does have some subtlety. The policy does not state that

production will occur once every P periods. If there are periods with no demand, they

are skipped. Consider the following example with P = 3.

Period 1 2 3 4 5 6 7 8 9

Net requirements 15 45 25 15 20 15

Planned order receipts 60 60 15

We skip the first period since there is no demand. The first demand occurs in period 2

and so we accumulate the demand for periods 2, 3, and 4 (note there is no demand in

period 4) and therefore order 60 units for period 2. We again skip period 5, as it has no

demand, and accumulate periods 6, 7, and 8 with a planned order receipt of 60 units in

period 6. Finally, we order 15 units for period 9 and look no farther out since we are at

the end of our time horizon.

One way to determine an “optimal” value for P is to use the EOQ formula and the

average demand in a fashion similar to that used for the fixed order quantity rule. In

the preceding example, the total demand for nine periods is 135 units, so the average

demand is 15 units per period. Suppose the setup cost is $150 and the carrying cost per

period is $2. We can then compute the EOQ as

Q =

√

2AD

h
=

√

2 × 150 × 15

2
= 47.4

We can then compute the order period P as

P =
Q

D
=

47.4

15
= 3.16 ≈ 3 periods

Of course, the validity of computing P by this method has all the limitations of the EOQ

method that were noted in Chapter 2.

Part-Period Balancing. Part-period balancing (PPB) is a policy that combines the

assumptions of the Wagner–Whitin paradigm with the mechanics of the EOQ. One of

the properties of the EOQ solution to the lot-sizing problem is that it sets the average

inventory carrying cost equal to the setup cost.

The idea of PPB is to balance (i.e., set equal) the inventory carrying cost and setup

cost. To describe this, we need to define the notion of a part-period as the product of

the number of parts in a lot times the number of periods they are carried in inventory.

For instance, 1 part carried for 10 periods, 5 parts carried for 2 periods, and 10 parts
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carried for 1 period all represent 10 part-periods and incur the same inventory carrying

cost. Part-period balancing seeks to make the carrying cost as close to the setup cost as

possible. We can demonstrate this by using the data of the previous example.

By considering only those quantities that preserve the Wagner–Whitin property, we

reduce our choices to a relative few. Since there are no requirements in period 1, there

will be no production in period 1. The choices for period 2 are 15 (produce for period 2

only), 60 (produce for periods 2 and 3), 85 (produce for periods 2, 3, and 6), and so on.

The following table shows the part-periods and the costs involved.

Quantity for Inventory
Period 2 Setup Cost ($) Part-Periods Carrying Cost ($)

15 150 0 0

60 150 45 × 1 = 45 90

85 150 45 + 25 × 4 = 145 290

Since $90 is the closest to $150 of the options available, we elect to make 60 units in

period 2. Since there are no requirements, we will make nothing in periods 3, 4, and 5.

For period 6 the choices are 25, 40, 60, and 75 units. Again we present the computations

in a table.

Quantity for Inventory
Period 6 Setup Cost ($) Part-Periods Carrying Cost ($)

25 150 0 0

40 150 15 × 1 = 15 30

60 150 15 + 20 × 2 = 55 110

75 150 55 + 15 × 3 = 100 200

The inventory carrying cost closest to $150 results from making 60 units in period 6.

This covers requirements for periods 6, 7, and 8, leaving 15 for period 9. Note that this

is exactly the same schedule that resulted from the FOP policy.

Other Methods. A host of other methods for lot sizing have been proposed by re-

searchers. Most of these attempt to provide a near-optimal solution according to the

Wagner–Whitin criteria. Whether these criteria are appropriate is a matter of debate, as

we have discussed. Baker (1993) gives a good review of many of the lot-sizing methods

that have been suggested.

Finally, we note that although the Wagner–Whitin algorithm is optimal under certain

conditions, other rules may perform better in practice. For instance, Bahl et al. (1987)

report in a review of the lot-sizing literature that the fixed order quantity method, without

modification to give it the Wagner–Whitin property, tends to work better than rules that

do possess the Wagner–Whitin property in multilevel production systems with capacity

limitations. They conclude that the often-imposed Wagner–Whitin property may not be

practical in real settings, since “the remnants avoided by almost all (other lot-sizing rules)
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become an asset in terms of on-time delivery of end items.” This makes sense, since these

remnants become a form of safety stock, an issue that we explore in the next section.

3.1.7 Safety Stock and Safety Lead Times

Operations management researchers have long debated the role of safety stock and safety

lead times in MRP systems. Orlicky felt that these had no place in the system except,

possibly, for end items. Lower-level items, he believed, were more than adequately

covered by the workings of the system. Since Orlicky’s time, many researchers have

disagreed. Because MRP is deterministic, the logic goes, something should be done to

account for uncertainty and randomness.

There are several sources of uncertainty. First, in all except pure make-to-order

systems, neither the demand quantity nor the timing of the demand is known exactly.

Second, production timing is almost always subject to variation, due to machine break-

downs, quality problems, fluctuations in staffing, and so on. Third, production quantities

are uncertain because the number of good parts that finish can be less than the quantity

that start because of yield loss or fallout.

Safety stock and safety lead time can be used as protection against these problems.

Vollmann et al. (1992) suggest that safety stock should be used to protect against uncer-

tainties in production and demand quantities, while safety lead time should be used to

protect against uncertainties in production and demand timing.

Providing safety stock (SS) in an MRP system is fairly straightforward. Suppose we

wish to maintain a safety stock level of 10 units for part B (refer to Table 3.4). This time

we compute the first net requirement as we did before, but we subtract an additional 10

units for the desired safety stock. The projected on-hand minus safety stock first becomes

negative in period 3 (as opposed to period 4 before), as we see in Table 3.9.

Thus, our first planned order release is for five units needed to bring the inventory

to the desired safety stock level, plus 20 units for actual demand.

Introducing safety lead time into the MRP calculations is a bit different. If the

nominal lead time is 2 weeks and we desire a safety lead time of 1 week, we perform

the offsetting in two stages: the first for the safety lead time regarding the planned order

receipt date (i.e., the due date) and the second using the usual MRP method, to obtain

Table 3.9 MRP Computations for Part B with Safety Stock

Part B 1 2 3 4 5 6 7 8

Gross requirements 10 15 10 20 20 15 15 15

Scheduled receipts

Adjusted SRs

Projected on-hand 40 30 15 5 — — — — —

Projected on-hand—SS 30 20 5 −5 — — — — —

Net requirements 5 20 20 15 15 15

Planned order receipts 25 35 30

Planned order releases 25 35 30
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Table 3.10 MRP Calculations for Part B with Safety Lead Time

Part B 1 2 3 4 5 6 7 8

Gross requirements 10 15 10 20 20 15 15 15

Scheduled receipts

Adjusted SRs

Projected on-hand 40 30 15 5 −15 — — — —

Net requirements 15 20 15 15 15

Planned order receipts 35 30 15

Adjusted planned order receipts 35 30 15

Planned order releases 35 30 15

the planned order release date. We demonstrate the use of a safety lead time of 1 week,

using the same data as in the previous example in Table 3.10.

The one additional step beyond the usual MRP calculation is shown in the “Adjusted

planned order receipts” line, which backs up these receipts according to the 1-week safety

lead time. Notice that the effect on planned order releases is identical to simply inflating

the planned lead times. However, the due dates on the jobs are earlier in a system using

safety lead times than in one without it. The effect of safety lead times on a single part is

fairly simple. Bringing parts in a week early means they will be available unless delivery

is late by more than a week. However, things are more subtle when we consider multiple

parts and assemblies.

For instance, suppose a plant manufactures a part that requires 10 components to

come together at assembly. Suppose also that the actual manufacturing lead times can

be well approximated by a normal distribution with a mean of 3 weeks and a standard

deviation of 1 week. To maintain good customer service, we want assemblies to start

on time at least 95 percent of the time. If s is the service level (i.e., the probability of

on-time delivery) for each component, then the probability that all 10 components are

available on time (assuming independent deliveries) is given by

Pr {on-time start of assembly} = s10

Since we want this probability to equal 0.95, we can solve for s as follows:

s = (0.95)1/10
= 0.9949

Since the manufacturing lead times are normally distributed, this represents approxi-

mately 2.6 standard deviations above the mean, or around 5.6 weeks—about twice the

mean lead time for the planned lead time.

Of course, this analysis assumes that the 10 items are arriving to the assembly

operation independently of one another, an assumption that may not be true if they are

all being fabricated in the same plant. Nonetheless, the point is made—if we are to try

to guarantee any level of service for an assembly, the service for the component parts

must be much greater.

In conclusion, although safety stock and safety lead times can be useful in an MRP

system, we must be cognizant of the fact that both procedures lie to the system. Safety

stock requires the intentional production of quantities for which there is no customer
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need, while safety lead times set due dates earlier than are really required. Both situations

will make available-to-promise calculations (used to quote deliveries to customers,

discussed below) less accurate. Excess safety stocks and long safety lead times will

result in customers being turned away because of perceived schedule infeasibility even

though the schedule is actually feasible. In addition, there is always the risk that once

safety stock and/or lead times are discovered by the users, an informal system of “real”

quantities and due dates will appear. Such behavior can lead to a subversion of the formal

system and can degrade its performance.

3.1.8 Accommodating Yield Losses

The above discussion and examples illustrate the use of hedges against uncertainties

in demand and timing. However, hedging against random scrapping of parts during

production—yield loss—involves an additional computation. Suppose the net demand

is Nt units and the average yield fraction is y. Also suppose, for this example, that Nt

is a large number, so that we do not have to worry about integer quantities. Thus, if we

start Nt (1/y) units, we will, on average, finish with Nt units, the net demand. However,

if Nt (1/y) is a large number, it is very unlikely that we will finish with exactly Nt . We

will, with roughly equal probability, finish with either more or less than the net demand.

Finishing with more means that we will carry the extra parts in inventory until they are

netted from future demand. If the product is highly customized, this can be a problem.

On the other hand, if we finish with less, a new job will be required to make up the

difference, and it is unlikely that the order will ship on time.

Safety stock can improve customer service and responsiveness in this case. We

inflate the size of the job to Nt (1/y) as before and carry safety stock to accommodate

instances when production is less than the average yield. Another strategy is to carry

no safety stock but to inflate the job by more than 1/y. In this case, it is likely that the

job will finish with more than the net demand and that the extra stock will be carried

in inventory. The two procedures are essentially equivalent since both result in better

service at the expense of additional inventory.

Lastly, we should point out that the effectiveness of any yield strategy depends on

the variability of the yields themselves. For instance, if a job starts with 100 units, each

unit having an independent probability of 0.9 of being completed, then the mean and

standard deviation of the number of units finishing will be 90 and 3, respectively. Thus,

by starting 120 (that is, 100/0.9 + 3 × 3) units, we have a probability of greater than

0.99 (3 standard deviations above the mean) that we will finish with at least 100 units.

However, if the yield situation is more of an all-or-nothing type, so that either all the

units that start finish properly or none of them do (as in a batch process), then we need to

release two separate jobs of 100 each to obtain a 0.99 probability of finishing 100 on time.

In the first (independent) case, the average increase in inventory would be eight units

(120 × 0.9 − 100). In the second (batch) case, it would be 80 units (200 × 0.9 − 100).

The moral is that average yield rate is not enough to determine an effective yielding

strategy. The mechanism and variability of the processing causing the yield fallout must

also be considered.

3.1.9 Problems in MRP

Despite enthusiastic support of MRP by early proponents—Orlicky’s book was subtitled

A New Way of Life—several problems were recognized early on. Three of the most severe

were (1) capacity infeasibility of MRP schedules, (2) long planned lead times, and (3)

system “nervousness.” These and other problems first led to new MRP procedures and
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spawned a new generation of MRP, called manufacturing resources planning or MRP

II, which has been incorporated as part of enterprise resources planning (ERP), as we

will discuss in the next section.

Capacity Infeasibility. The basic working model of MRP is a production line with

a fixed lead time. Since this lead time does not depend on how much work is in the

plant, there is an implicit assumption that the line will always have sufficient capacity

regardless of the load. In other words, MRP assumes all lines have infinite capacity. This

can create problems when production levels are at or near capacity.

One way to address this problem is to make sure that the master production schedule

that supplies demand to the system is capacity-feasible. A check of this is provided by

a procedure called rough-cut capacity planning (RCCP), as we will see later. As its

name implies, RCCP is an approximation. A more detailed capacity assessment of the

resulting MRP plans can be made by using a procedure known as capacity requirements

planning (CRP). Both RCCP and CRP are modules that are often found in MRP II.

Long Planned Lead Times. As we saw in our earlier discussion of safety lead times,

there are many pressures to increase planned lead times in an MRP system. In Part II,

we will see that long lead times invariably lead to large inventories. However, as long as

the penalty for a late job is greater than that for excess inventory (which is typically the

case, since inventory does not scream but dissatisfied customers do!), production control

managers will tend toward long planned lead times.

The problems caused by long planned lead times are further exacerbated by the

fact that MRP uses constant lead times when, in fact, actual manufacturing times vary

continually. To compensate, a planner will typically choose pessimistic (long) estimates

for the planned lead times. Suppose for example, the average manufacturing lead time

is 3 weeks, with a standard deviation of 1 week. To maintain good customer service, the

planned lead time is set to 5 weeks. Since the actual lead times are random, some will be

less than the mean of 3 weeks and others will be greater. If these follow an approximately

normal distribution, then the most likely lead time will be 3 weeks, so the most likely

holding time in inventory will be 2 weeks. The result can be a large amount of inventory.

The longer the planned lead times, the longer parts will wait for the next operation,

and so the more inventory there will be in the system. Since setting planned lead times

equal to the average manufacturing time yields a service level of only 50 percent for

each component (and therefore much worse service for finished assemblies), managers

will virtually always choose lead times that are much longer than average manufacturing

times. Such behavior results in a lack of responsiveness as well as high inventory levels.

System Nervousness. Nervousness in an MRP system occurs when a small change in

the master production schedule results in a large change in planned order releases. This

can lead to strange effects. For instance, as we demonstrate with the following example,

it is actually possible for a decrease in demand to cause a formerly feasible MRP plan

to become infeasible.

The following example is taken from Vollmann et al. (1992). We consider two parts.

Item A has a lead time of 2 weeks and uses the fixed order period (FOP) lot-sizing rule

with an order period of 5 weeks. Each unit of A requires one unit of component B, which

has a lead time of 4 weeks and uses the FOP rule with an order period of 5 weeks. Tables

3.11 and 3.12 give the MRP calculations for both parts.

We now reduce the demand in period 2 from 24 to 23. It would seem obvious that any

schedule that is feasible for 24 parts in period 2 should also be feasible for 23 parts in the

same period. But notice what happens to the calculations in Table 3.13. The aggregation of
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Table 3.11 MRP Calculations for Item A before Change in Demand

Item A 1 2 3 4 5 6 7 8

Gross requirements 2 24 3 5 1 3 4 50

Scheduled receipts

Adjusted SRs

Projected on-hand 28 26 2 −1 — — — — —

Net requirements 1 5 1 3 4 50

Planned order receipts 14 50

Planned order releases 14 50

Table 3.12 MRP Calculations for Component B before Change in Demand

Component B 1 2 3 4 5 6 7 8

Gross requirements 14 50

Scheduled receipts 14

Adjusted SRs 14

Projected on-hand 2 2 2 2 2 2 −48 — —

Net requirements 48

Planned order receipts 48

Planned order releases 48

Table 3.13 MRP Calculations for Item A after Change in Demand

Item A 1 2 3 4 5 6 7 8

Gross requirements 2 23 3 5 1 3 4 50

Scheduled receipts

Adjusted SRs

Projected on-hand 28 26 3 0 −5 — — — —

Net requirements 5 1 3 4 50

Planned order receipts 63

Planned order releases 63
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Table 3.14 MRP Calculations for Component B after Change in Demand

Component B 1 2 3 4 5 6 7 8

Gross requirements 63

Scheduled receipts 14

Adjusted SRs 14

Projected on-hand 2 2 −47 — — — — — —

Net requirements 47 48

Planned order receipts 47

Planned order releases 47*

∗Indicates a late start

demand during lot sizing causes a drastically different set of planned order releases. In

the case of component B (Table 3.14), the planned order releases are no longer even

feasible.

There have been several remedies offered to reduce nervousness. One is the proper

use of lot-sizing rules. Clearly, if we use lot-for-lot, the magnitude of the change to the

planned order releases will be no larger than the changes to the MPS. However, lot-for-lot

may result in too many setups, so we need to look for other cures.

Vollmann et al. (1992) recommend the use of different lot-sizing rules for different

levels in the BOM, with fixed order quantity for end items, either fixed order quantity

or lot-for-lot for intermediate levels, and fixed order period for the lowest levels. Since

order sizes do not change at the higher levels, this tends to dampen nervousness due to

changes in lot size. Of course, care must be taken when establishing the magnitude of

the fixed lot size.

While the use of proper lot-sizing rules can reduce system nervousness, other mea-

sures can alleviate some of its effects. One obvious way is to reduce changes in the

input itself. This can be done by freezing the early part of the master production sched-

ule. This reduces the amount of change that can occur in the MPS, thereby reducing

changes in planned order releases. Since early planned order releases are the ones in

which change is most disruptive, a frozen zone, an initial number of periods in the MPS

in which changes are not permitted, can dramatically reduce the problems caused by

nervousness.

In some companies the first X weeks of the MPS are considered frozen. However,

in most real systems, the term frozen may be too strong, since changes are resisted but

not strictly forbidden. (Perhaps slushy zone would be a more accurate metaphor.) The

concept of time fences formalizes this type of behavior. The earliest time fence, say for

4 weeks out, is absolutely frozen—no changes can be made. The next fence, maybe 5

to 7 weeks out, is restricted but less rigid. Changes might be accepted in model options

if the options are available, and possibly resulting in a financial penalty to the customer.

The next fence, perhaps 8 to 12 weeks out, is less rigid still. In this case, changes in part

number might be accepted if all components are on hand. In the final fence, 13 weeks

and beyond, anything goes.

Another way to reduce the consequences of nervousness is to make use of firm

planned orders. Unlike frozen zones or time fences, firm planned orders fix planned
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Table 3.15 MRP Calculations for Item A with FPO

Item A 1 2 3 4 5 6 7 8

Gross requirements 2 23 3 5 1 3 4 50

Scheduled receipts

Firm planned orders 14

Projected on-hand 28 26 3 14 9 8 5 1 −49

Net requirements 49

Planned order receipts [14] 49

Planned order releases [14] 49

order releases. By converting early planned order releases to firm planned orders, we

eliminate all system nervousness early in the schedule, where it is most disruptive.

Consider what would happen if the first planned order release in Table 3.11 were made

into a firm planned order before the change in demand. This would result in its being

treated just like a scheduled receipt in the MRP processing. With this change there is no

nervousness, as is shown in Tables 3.15 and 3.16.

Of course, the use of firm planned orders and time fencing means that the frozen

part of the schedule will be less responsive to changes in demand. Another drawback is

that the firm planned orders represent tedious manual entries that must be managed by

planners.

3.2 Manufacturing Resources Planning—MRP II

Material requirements planning offered a systematic method for planning and procuring

materials to support production. The ideas were relatively simple and easily implemented

on a computer. However, some problems remained.

Table 3.16 MRP Calculations for Component B with FPO

Component B 1 2 3 4 5 6 7 8

Gross requirements 14 49

Scheduled receipts 14

Adjusted SRs

Projected on-hand 2 2 2 2 2 2 −47 — —

Net requirements 47

Planned order receipts 47

Planned order releases 47
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As we have mentioned, issues such as capacity infeasibility, long planned lead times,

system nervousness, and others can undermine the effectiveness of an MRP system. Over

time, additional procedures were developed to address some of these problems. These

were incorporated into a larger construct known as manufacturing resources planning,

or MRP II.

Beyond simply addressing deficiencies of MRP, MRP II also brought together other

functions to make a truly integrated manufacturing management system. The additional

functions subsumed by MRP II included demand management, forecasting, capacity

planning, master production scheduling, rough-cut capacity planning, capacity require-

ments planning, dispatching, and input/output control. In this section we describe the

MRP II hierarchy into which these functions fit and discuss some of the associated mod-

ules. Our presentation is somewhat abbreviated for two reasons. First, MRP and MRP

II are subjects that can occupy an entire volume themselves. We recommend Vollmann

et al. (1992) as an excellent comprehensive reference. Second, we take up the issue of

hierarchical production planning (in the context of pull systems) in Chapter 13. There we

will address generic issues associated with any planning hierarchy such as time scales,

forecasting, demand management, and so forth in greater detail.

3.2.1 The MRP II Hierarchy

Figure 3.3 depicts an instance of the MRP II hierarchy. We use the word instance because

there are probably as many different hierarchies for MRP II as there are MRP II software
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vendors (and there are many such vendors, although most call themselves “enterprise,”

ERP, or SCM “solution providers” now).

3.2.2 Long-Range Planning

At the top of the hierarchy we have long-range planning. This involves three functions:

resource planning, aggregate planning, and forecasting. The length of the time horizon

for long-range planning ranges from around 6 months to 5 years. The frequency for

replanning varies from once per month, to once per year, with two to four times per year

being typical. The degree of detail is typically at the part family level (i.e., a grouping

of end items having similar demand and production characteristics).

The forecasting function seeks to predict demands in the future. Long-range fore-

casting is important to determining the capacity, tooling, and personnel requirements.

Short-term forecasting converts a long-range forecast of part families to short-term fore-

casts of individual end items. Both kinds of forecasts are input to the intermediate-level

function of demand management. We describe specific forecasting techniques in detail

in Chapter 13.

Resource planning is the process of determining capacity requirements over the

long term. Decisions such as whether to build a new plant or to expand an existing one

are part of the capacity planning function. An important output of resource planning is

projected available capacity over the long-term planning horizon. This information is

fed as a parameter to the aggregate planning function.

Aggregate planning is used to determine levels of production, staffing, inventory,

overtime, and so on over the long term. The level of detail is typically by month and for

part families. For instance, the aggregate planning function will determine whether we

build up inventories in anticipation of increased demand (from the forecasting function),

“chase” the demand by varying capacity using overtime, or do some combination of

both. Optimization techniques such as linear programming are often used to assist the

aggregate planning process. We discuss aggregate planning and models for supporting

it in greater detail in Chapter 16.

3.2.3 Intermediate Planning

At the intermediate level, we have the bulk of the production planning functions. These

include demand management, rough-cut capacity planning, master production schedul-

ing, material requirements planning, and capacity requirements planning.

The process of converting the long-term aggregate forecast to a detailed forecast

while tracking individual customer orders is the function of demand management.

The output of the demand management module is a set of actual customer orders plus

a forecast of anticipated orders. As time progresses, the anticipated orders should be

“consumed” by actual orders.

This is accomplished with a technique known as available to promise (ATP). This

feature allows the planner to know which orders on the MPS are already committed

and which are available to promise to new customers. ATP combined with a capacity-

feasible MPS facilitates negotiation of realistic due dates. If more orders than expected

are received, to keep quoted lead times from becoming excessive, additional capacity

(e.g., overtime) might be required. On the other hand, if fewer than expected orders

arrive, sales might want to offer discounts or some other incentives to increase demand.

In either case, the forecast and possibly the aggregate plan should be revised.
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Master production scheduling takes the demand forecast along with the firm orders

from the demand management module and, using aggregate capacity limits, generates an

anticipated build schedule at the highest level of planning detail. These are the “demands”

(i.e., part number, quantity, and due date) used by MRP. Thus, the master production

schedule contains an order quantity in each time bucket for every item with independent

demand, for every planning date. For most industries, these are given at the end item

level. However, in some cases, it makes more sense to plan for groups of items or models

instead of end items. An example of this is seen in the automobile industry where the

exact make and specification of a car are not determined until the last minute on the

assembly line. In these situations, a final assembly schedule determines when the exact

end items are produced while the master production schedule is used to schedule models.

A key input to this type of planning is the superbill of material that contains forecast

percentages for the different options of each particular model. For a complete discus-

sion of superbills in final assembly scheduling, the reader is referred to Vollman et al.

(1992).

Rough-cut capacity planning (RCCP) is used to provide a quick capacity check

of a few critical resources to ensure the feasibility of the master production schedule.

Although more detailed than aggregate planning, RCCP is less detailed than capacity

requirements planning (CRP), which is another tool for performing capacity checks after

the MRP processing. RCCP makes use of a bill of resources for each end item on the

MPS. The bill of resources gives the number of hours required at each critical resource

to build a particular end item. These times include not only the end item itself but all the

exploded requirements as well. For instance, suppose part A is made up of components

A1 and A2. Part A requires 1 hour of process time in process center 21 while components

A1 and A2 require 1
2

hour and 1 hour, respectively. Thus the bill of resource for part A

would show 2 1
2

hours for process center 21 for each unit of A. Suppose we also have

part B with no components that requires 2 hours in process center 21.

To continue the example, suppose we have the following information regarding the

master production schedule for parts A and B:

Week 1 2 3 4 5 6 7 8

Part A 10 10 10 20 20 20 20 10

Part B 5 25 5 15 10 25 15 10

The bills of resources for parts A and B are given by

Process Part Part
Center A B

21 2.5 2.0

Then the RCCP calculations for parts A and B at process center 21 are as follows:
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Week 1 2 3 4 5 6 7 8

Part A (hour) 25 25 25 50 50 50 50 25

Part B (hour) 10 50 10 30 20 50 30 10

Total (hour) 35 75 35 80 70 100 80 35

Available 65 65 65 65 65 65 65 65

Over(+)/under(−) 30 −10 30 −15 −5 −35 −15 30

If we had considered only the sum of the eight periods in aggregate, we would have

concluded that there was sufficient capacity—520 hours versus a requirement of 510

hours. However, after performing RCCP, we see that several periods have insufficient

capacity while others have an excess. It is now up to the planner to determine what can

be done to remedy the situation. Her options are to (1) adjust the MPS by changing

due dates or (2) adjust capacity by adding or taking away resources, using overtime, or

subcontracting some of the work.

Notice that RCCP does not perform any offsetting. Thus, the periods used must be

long enough that the part, its subassemblies, and its components can all be completed

within a single period. RCCP also assumes that the demand can be met without regard

to how the work is scheduled within the process center (i.e., without any induced idle

time). In this way, RCCP provides an optimistic estimate of what can be done.

On the other hand, RCCP does not perform any netting. While this may be acceptable

for end items (demand for these can be netted against finished goods inventory relatively

easily), it is less acceptable for subassemblies and components, particularly when there

are many shared components and WIP levels are large. This aspect of RCCP tends to

make it conservative.

These two effects make the behavior of RCCP difficult to gauge. Usually the first

approximation tends to dominate the second, making RCCP an optimistic estimation of

what can be done, but not always. Consequently, rough-cut capacity planning can be

very rough indeed.

Capacity requirements planning (CRP) provides a more detailed capacity check

on MRP-generated production plans than RCCP. Necessary inputs include all planned

order releases, existing WIP positions, routing data, as well as capacity and lead times

for all process centers. In spite of its name, capacity requirements planning does not

generate finite capacity analysis. Instead, CRP performs what is called infinite forward

loading. CRP predicts job completion times for each process center, using given fixed

lead times, and then computes a predicted loading over time. These loadings are then

compared against the available capacity, but no correction is made for an overloaded

situation.5

To illustrate how CRP works, consider a simple example for a process center that

has a 3-day lead time and a capacity of 400 parts per day. At the start of the current day,

400 units have just been released into the process center, 500 units have been there for

5Unlike MRP and CRP, true finite capacity analysis does not assume a fixed lead time. Instead the time to

go through a manufacturing operation depends on how many other jobs are already there and their relative

priority. Most finite capacity analysis packages do some sort of deterministic simulation of the flow of the

jobs through the facility. As a result, finite capacity analysis is much more complex than CRP.
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1 day, and 300 have been there for 2 days. The planned order releases for the next 5 days

are as follows:

Day 1 2 3 4 5

Planned order releases 300 350 400 350 300

Using the 3-day lead time, we can compute when the parts will depart the process

center. If we ever predict more than 400 units departing in a day, the process center is

considered to be overloaded. The resulting load profile is shown in Figure 3.4. The first

day shows the load to be 300 (these are the same 300 units that have been in the process

center for two days and depart at the end of day 1). The second day shows 500; again

these are the same 500 that were in for 1 day at the start of the procedure. Since 500 is

greater than the capacity of 400 per day, this represents an overloaded condition.

Note that even when load exceeds capacity, CRP assumes that the time to go through

the process center does not change. Of course, we know that it will take longer to get

through a heavily loaded process center than a lightly loaded one. Hence, all the estimates

of CRP beyond such an overloaded condition will be in error. Therefore, CRP is typically

not a good predictor of load conditions except in the very near term. Another problem

with CRP is that it tells the planner only that there is a problem; it offers nothing about

what caused the problem or what can be done to alleviate it. To determine this, the

planner must first obtain a report that disaggregates the load to determine which jobs are

causing the problem, and then must use pegging to track the cause back to demand on

the MPS. This can be quite tedious.

A fundamental flaw with CRP is that, like MRP itself, it implicitly assumes an

infinite capacity. This assumption comes from the assumption of fixed lead times that do

not depend on the load of the process center. Consider the same process center having no

work in it at the start and the following planned order releases, produced with a lot-sizing

rule that tends to group demand to avoid setups:

Day 1 2 3 4 5

Planned order releases 1,200 0 0 1,200 0
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Using CRP, the load profile will show an overloaded condition on day 3 and day

6. If we were to perform finite capacity loading, we would see a very different picture.

There would be no output for 2 days (the first release needs to work its way through),

and then we would see 400 units output each day for the next 6 days. The second release

on day 4 would arrive just as the last of the first release was being pulled into the process

center. The basic relations between capacity, work in process, and the time to traverse a

process center are the subject of Chapter 7.

Thus, in spite of its hopeful introduction and worthy goals, there are fundamental

problems with CRP. First, there are enormous data requirements, and the output is

voluminous and tedious. Second is the fact that it offers no remedy to an overloaded

situation. Finally, since the procedure uses infinite loading and many modern systems can

perform true finite capacity loading, fewer and fewer companies are seriously using CRP.

The material requirements planning module of all early versions of MRP II and

many modern ERP systems is identical to the MRP procedure described earlier. The

output of MRP is the job pool, consisting of planned order releases. These are released

onto the shop floor by the job release function.

3.2.4 Short-Term Control

The plans generated in the long- and intermediate-term planning functions are imple-

mented in the short-term control modules of job release, job dispatching, and in-

put/output control.

Job release converts planned order releases to scheduled receipts. One of the impor-

tant functions of job release is allocation. When there are several high-level items that

use the same lower-level part, a conflict can arise when there is an insufficient quantity

on hand. By allocating parts to one job or another, the job release function can rationalize

these conflicts. Suppose there are two planned order releases that require component A.

Suppose further that there is enough stock on hand of component A for either job to be re-

leased but not for both. The first POR also requires component B for which there is plenty

of stock, while the other POR requires component C for which there is insufficient stock.

The job release function will allocate the available stock to the first POR since there is

enough stock of both components A and B to start the job. A shortage notice would be gen-

erated for the second POR, which would remain in the job pool until it could be released.

Once a job or purchase order is released, some control must be maintained to make

sure it is completed on time with the correct quantity and specification. If the job is for

purchased components, the purchase order must be tracked. This is a straightforward

practice of monitoring when orders arrive and tracking outstanding orders. If the job

is for internal manufacture, this falls under the function known as shop floor control

(SFC) or production activity control (PAC). Throughout this book we use the term

SFC, as it is more traditional and more widely used. Within SFC are two main functions:

job dispatching and input/output control.

Job Dispatching. The basic idea behind job dispatching is simple: Develop a rule for

arranging the queue in front of each workstation that will maintain due date integrity

while keeping machine utilization high and manufacturing times low. Many rules have

been proposed for doing this.

One of the simplest dispatching rules is known as shortest process time, or SPT.

Under SPT, jobs at the process center queue are sorted with the shortest jobs first in line.

Thus, the job in the queue having the shortest processing time will always be performed

next. The effect is to clear out small jobs and get them through the plant quickly. Use of
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SPT typically decreases average manufacturing times and increases machine utilization.

Average due date performance is also generally quite good, even though due dates are

not considered in the ordering.

Problems with SPT occur whenever there are particularly long jobs. In such cases,

jobs can sit for a long time without ever being started. Thus, while average due date

performance of SPT is good, the variance of the lateness can be quite high. One way to

avoid this is to use a rule known as SPTx , where x is a parameter. By this rule, the next

job to be worked will be the one with the shortest processing time unless a job has been

waiting x time units or longer, in which case it becomes the next job. This rule seems to

yield reasonably good performance in many situations.

If jobs are all approximately the same size and routings are fairly consistent, a good

dispatching rule is earliest due date, or EDD. Under EDD, the job closest to its due

date is worked on next. EDD exhibits reasonably good performance under the above

conditions, but typically does not work better than SPT under more general conditions.

Here are three other common rules.

Least slack: The slack for a job is its due date minus the remaining process time

(including setups) minus the current time. The highest priority is the job with the

lowest slack value.

Least slack per remaining operation: This is similar to the least slack rule

except we take the slack and divide it by the number of operations remaining on

the routing. Again, the highest-priority job has the smallest value.

Critical ratio: Jobs are sorted according to an index computed by dividing the

time remaining (i.e., due date minus the current time) by the number of hours of

work remaining. If the index is greater than 1, the job should finish early. If it is

less than 1, the job will be late; and if it is negative, it is already late. Again, the

highest-priority job has the smallest value of the critical ratio.

There are at least 100 different dispatching rules that have been offered in the

operations management literature. A good survey of many of these is found in Blackstone

et al. (1982), where the authors test various rules by using a simulated factory under a

broad range of conditions.

Of course, no dispatching rule can work well all the time, because, by their very

nature, dispatching rules are myopic. The only consistent way to achieve good schedules

is to consider the shop as a whole. The problem with doing this is that (1) the shop

scheduling problem is extremely complex and can require an enormous amount of com-

putational time and (2) the resulting schedules are often not intuitive. We will address

the scheduling problem more fully in Chapter 15.

Input/Output Control. Input/output (I/O) control was first suggested by Wight (1970)

as a way to keep lead times under control. I/O control works in the following way:

1. Monitor the WIP level in each process center.

2. If the WIP goes above a certain level, then the current release rate is too high, so

reduce it

3. If it goes below a specified lower level, then the current release rate is too low,

so increase it.

4. If it stays between these control levels, the release rate is correct for the current

conditions.

The actions—reduce and increase—must be done by changing the MPS.
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I/O control provides an easy way to check releases against available capacity. How-

ever, by waiting until WIP levels have become excessive, the system has, in many

respects, already gone out of control. This may be one reason that so-called pull sys-

tems (e.g., Toyota’s kanban system) may work better than push systems such as MRP

(found in ERP/SCM systems). While these systems control releases (via the MPS)

and measure WIP levels (via I/O control), kanban systems control WIP directly and

measure output rates daily. Thus, kanban does not allow WIP levels to become exces-

sive and detects problems (i.e., production shortfalls) quickly. Kanban is discussed in

greater detail in Chapter 4, while the basics of push and pull are explored more fully in

Chapter 10.

3.3 Enterprise Resources Planning and Supply Chain Management

In the years following the development of MRP II, a number of would-be succes-

sors were offered by vendors and consultants. MRP III never quite caught on, nor

did the indigestibly acronymed BRP (business requirements planning). Finally, in

spite of its less than appealing acronym, enterprise resources planning (ERP) emerged

victorious.

This was due largely to the success of a few vendors, notably SAP, that targeted

not only manufacturing operations but all operations (e.g., manufacturing, distribution,

accounting, financial, and personnel) of a company. Hence, the system offered was

designed to control the entire enterprise.

SAP’s R/3 software was typical of an interwoven comprehensive ERP system. Ac-

cording to BusinessWeek, this system can “act as a powerful network that can speed

decision-making, slash costs, and give managers control over global empires at the click

of a mouse” (Edmondson 1997). While clearly “trade hype,” this description contains

a kernel of truth. ERP systems do indeed link information together in ways that make

it much easier for upper management to obtain a global picture of operations in almost

real time.

Advantages of this integrated approach include

1. Integrated functionality

2. Consistent user interfaces

3. Integrated database

4. Single vendor and contract

5. Unified architecture and tool set

6. Unified product support

But there are also disadvantages, including

1. Incompatibility with existing systems

2. Long and expensive implementation

3. Incompatibility with existing management practices

4. Loss of flexibility to use tactical point systems

5. Long product development and implementation cycles

6. Long payback period

7. Lack of technological innovation
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In spite of any of these perceived drawbacks, ERP has enjoyed remarkable success in

the marketplace, as we discuss below.

3.3.1 ERP and SCM

The success of ERP is at least partly due to three coincident undercurrents preceding its

development. The first was recognition of a field that has come to be called supply chain

management (SCM). In many ways, SCM extends traditional inventory control meth-

ods over a broader scope to include distribution, warehousing, and multiple production

locations. Importantly, defining a function called supply chain management has led to

an appreciation of the importance of logistical issues. We see this reflected in the growth

of trade organizations such as the Council of Logistics Management, which grew from

6,256 members in 1990 to almost 14,000 in 1997.

In recent years, there has been an abandonment of the term ERP in favor of the more

inclusive (and trendy) term supply chain management. The changing of terms coincided

with the increasing use of the World Wide Web and “e-commerce.” We continue our

discussion of the history of SCM in Chapter 5 and discuss the technical details of supply

chain management in Chapter 17.

The second trend that spurred acceptance of ERP was the business process re-

engineering (BPR) movement (see Hammer and Champy 1993). Prior to the 1990s, few

companies would have been willing to radically change their management structures to

fit a software package. But BPR has taught managers to think in terms of radical change.

Today BPR has pretty much died a buzzword death. Nonetheless, the legacy remains

and many managers feel that one of the benefits of ERP implementation is the chance to

re-engineer their operations.

The third trend was the explosive growth in distributed processing and the power of

smaller computers. An MRP run that took a weekend to run on a million-dollar computer

in the 1960s can now be done on a laptop in a few seconds. Instead of a central repository

for all corporate data, information is now stored where used on a personal computer or

a workstation. These are linked via an intracompany network, and the data are shared

by all functions. The latest offerings of ERP vendors are designed with exactly this

architecture in mind.

Sales of ERP increased dramatically during the 1990s. Part of this is due to the

degree of its acceptance but much of it is probably due to the (apparently irrational) fear

of the “Y2K-bug” that was supposed to bring many computer systems down at the end of

the Second Millennium. In 1989 total sales for MRP II at $1.2 billion accounted for just

under one-third of the total software sales in the United States (Industrial Engineering

1991). Worldwide sales for the top 10 vendors of ERP alone were $2.8 billion in 1995,

$4.2 billion in 1996, and 5.8 billion in 1997 (Michel 1997). The German company, SAP,

alone had revenues of more than 4.3 billion euros in 2001. Once the Y2K hysteria was

over, sales of ERP software actually dropped. Gartner, Inc., reported that new-license

revenue had decreased worldwide by 9 percent in 2002 (Gartner 2003). After experi-

encing double-digit revenue growth in the last half of the 1990s, SAP sales were down

5 percent in 2003 from the previous year. But by 2004, AMR Research reported the ERP

market was again growing at a rate of 14 percent (Reilly 2005a).

Supply chain management software has taken longer to get traction. After shrinking

in 2002 and 2003, the overall market increased by 4 percent in 2004 to just below $5.5

billion (Reilly 2005b). The three largest vendors are SAP, Oracle, and i2.
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However, large sales of software are not the whole picture. Many companies are

disenchanted at the sometimes staggering cost of implementation. In a survey of Fortune

1000 firms that had implemented ERP, 44 percent reported they spent at least 4 times

as much on implementation help (e.g., consultants) as on the software itself. We are

aware of several companies that canceled projects after spending millions, not wanting

to “throw good money after bad.” We discuss these issues more in Chapter 5.

3.3.2 Advanced Planning Systems

While ERP systems integrate company data, advanced planning systems (APS), also

known as advanced planning and optimization (APO), are used to analyze the data

up and down the organization. The capabilities of APS are as varied as the vendors sup-

plying the software. Most APS applications are memory-based algorithms that perform

functions such as finite capacity scheduling, forecasting, available to promise, demand

management, warehouse management, and distribution and traffic management. In many

cases, ERP/SCM vendors partner with more specialized software developers to provide

these functions. Interestingly, this add-on approach has frequently resembled the ear-

lier MRP II approach to “fixing” the MRP problem of infinite backward scheduling of

reworking the schedule after it has been generated.

3.4 Conclusions

Material requirements planning evolved from the recognition of the fundamental differ-

ence between dependent and independent demand. It was also the first major application

of modern computers in production control. MRP provides a simple method for ordering

materials based on needs, as established by a master production schedule and bills of

material. As such, it is well suited for use in controlling the purchasing of components.

However, in the control of production, there are still problems.

Manufacturing resources planning, or MRP II, was developed to address the prob-

lems of MRP and to further integrate business functions into a common framework.

MRP II has provided a very general control structure that breaks the production control

problem into a hierarchy based on time scale and product aggregation. Without such a

hierarchical approach, it would be virtually impossible to address the huge problem of

coordinating thousands of orders with hundreds of tools for thousands of end items made

up of additional thousands of components. In the 1990s ERP integrated this hierarchical

approach into a formidable management tool that could consolidate and track enormous

quantities of data. More recently, the functionality of ERP was combined with the ability

to coordinate directly with suppliers and customers creating a supply chain management

(SCM) system.

Despite the important contributions of MRP, MRP II, ERP, and SCM to the body

of manufacturing knowledge, there are fundamental problems with the basic model

underlying these systems (i.e., the assumptions of infinite capacity and fixed lead times

that are found even in some of the most sophisticated ERP/SCM systems). As we will

discuss further in Chapter 5, a critical issue for the long term is how to resolve the

basic difficulties of MRP while retaining its simplicity and broad applicability. We will

address this problem in Part III, after we have taken note of the insights offered by the

just-in-time (JIT) movement in Chapter 4 and have developed some basic relationships

concerning factory behavior in Part II.
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Study Questions

1. What is the difference between raw material inventory, work-in-process (WIP) inventory,

and finished goods inventory?

2. What is the difference between independent demand and dependent demand? Give several

examples of each.

3. What level is an end item in a bill of material? What is a low-level code? What is the

low-level code for an end item? Draw a bill of material for which component 200 occurs on

two different levels and has a low-level code of 3.

4. What is the master production schedule, and what does it provide for an MRP system?

5. How do you convert gross requirements to net requirements? What is this procedure called?

6. Why are scheduled receipts adjusted before any net requirements are computed?

7. Which lot-sizing rule results in the least inventory?

8. What are the trade-offs considered in lot sizing?

9. In what respect is the Wagner–Whitin algorithm optimal? How is it sometimes impractical

(i.e., what does it ignore)?

10. Which of the following lot-sizing rules possess the so-called Wagner–Whitin property?

(a) Wagner–Whitin

(b) Lot-for-lot

(c) Fixed order quantity (e.g., all jobs have size of 50)

(d) Fixed order period

(e) Part-period balancing

11. How do planned lead times differ from actual lead times? Which is typically bigger, the

planned lead time or the average actual lead time? Why?

12. What assumption in MRP makes the implicit assumption of infinite capacity? What is the

effect of this assumption on planned lead times? On inventory?

13. What is the difference between a planned order receipt and a planned order release? How

does a scheduled receipt differ from a planned order release?

14. What is the difference between a scheduled receipt and a firm planned order? How are they

similar?

15. Why do we perform all the MRP processing for one level before going to the next-lower

level? What would happen if we did not?

16. What is the bill-of-material explosion?

17. What is pegging? How does it help in bottom-up replanning?

18. What is the effect of having safety stock when computing net requirements?

19. What is the difference between having a safety lead time of one period and simply adding

one period to the planned lead time? What is the same?

20. What is nervousness in an MRP system? How is it caused? Why is it bad? What are some

things that can be done to prevent it?

21. What is MRP II? Why was it created?

22. Why might rough-cut capacity planning be optimistic? Why might it be pessimistic?

23. Why is capacity requirements planning not very accurate? What assumptions are made in

CRP that are the same as those in MRP?

24. What is the purpose of dispatching? What are dispatching rules? Why does shortest process

time seem to work pretty well? When does earliest due date work well?

25. What is the purpose of input/output control? Why is it often “too little, too late”?

26. How has ERP continued to perpetrate the fundamental problem of MRP? Has this been

addressed in SCM systems?
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Problems

1. Suppose an assembly requires five components from five different vendors. To guarantee

starting the assembly on time with 90 percent confidence, what must the service level be for

each of the five components? (Assume the same service level for each component.)

2. End item A has a planned lead time of 2 weeks. There are currently 120 units on hand and

no scheduled receipts. Compute the planned order releases using lot-for-lot and the MPS

shown here:

Week 1 2 3 4 5 6 7 8 9 10

Demand 41 44 84 42 84 86 7 18 49 30

3. Using the information in Problem 2, compute the planned order releases using part-period

balancing where the ratio of setup cost to the holding cost is 200.

4. (Challenge) With the information in Problem 2, compute the planned order releases using

Wagner–Whitin, where the ratio of setup cost to holding cost is 200. How much lower is the

cost of the plan than in the previous case?

5. Rework Problem 2 with 50 units of safety stock. What is different from Problem 2?

6. Rework Problem 2 with a planned lead time of two periods and a safety lead time of one

period. What is different from Problem 2?

7. Suppose demand for a power steering gear assembly is given by

Gear 1 2 3 4 5 6 7 8 9 10

Demand 45 65 35 40 0 0 33 0 32 25

Currently there are 150 parts on hand. Production is planned by using the fixed order

period method and two periods. The lead time is three periods. Determine the planned order

release schedule.

8. Consider the previous problem, but assume that a scheduled receipt for 50 parts is scheduled

to arrive in period five.

(a) What changes, if any, need to be made to the scheduled receipt?

(b) Using the same lot-sizing rule and lead time, compute the planned order release

schedule.

9. Demand for a power steering gear assembly is given by

Gear 1 2 3 4 5 6 7 8 9 10

Demand 14 12 12 13 5 90 20 20 20 20

Currently there are 50 parts on hand. The lot-sizing rule is, again, fixed order period using

two periods. Lead time is three periods.

(a) Determine the planned order release schedule for the gear.
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(b) Suppose each gear assembly requires two pinions. Currently there are 100 pinions on

hand, the lot-sizing rule is lot-for-lot, and the lead time is two periods. Determine the

gross requirements and then the planned order release schedule for pinions.

(c) Suppose management decreases the demand forecast for the first period to 12. What

happens to the planned order release schedule for gears? What happens to the planned

order release schedule for pinions?

10. Consider an end item composed of a single component. Demand for the end item is 20 in

week 1, four in week 2, two in week 3, and zero until week 8 when there is a demand of 50.

Currently there are 25 units on hand and no scheduled receipts. For the component there are

10 units on hand and no scheduled receipts.

Planned order releases for all items are computed by using the Wagner–Whitin algorithm

with a setup cost of $248 and a carrying cost of $1 per week. The planned lead time for the

end item is 1 week, and for the component it is 3 weeks.

(a) Compute the planned order releases for the end item and the component. Are there any

problems?

(b) The forecast for demand in week 8 has been changed to 49. Recompute the planned

order releases for the end item and the component. Are there any problems?

(c) Suppose the first 2 weeks’ planned order releases from part (a) had been converted to

firm planned orders. Do the computation again after changing the demand in week 8 to

49. Are there any problems? Comment on nervousness and the use of firm planned

orders.

11. Generate the MRP output for items A, 200, 300, and 400 using the following information.

(Note: End item A is the same as in Problem 2.)

� Bills of material:

A: Two 200 and one 400

200: Raw material

300: Raw material

400: One 200 and one 300

� Master production schedule:

Week 1 2 3 4 5 6 7 8 9 10

Demand (A) 41 44 84 42 84 86 7 18 49 30

� Item master and inventory data:

Lead Lot-Sizing
Amount Amount Time Rule

Item on Hand on Order Due (Weeks) (Setup/Hold)

A 120 0 2 PPB (200)

200 300 200 3 2 Lot-for-lot
100 5

300 140 100 4 2 Lot-for-lot
100 7

400 200 0 3 Lot-for-lot
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12. Consider a circuit-board plant that makes three kinds of boards: Trinity, Pecos, and Brazos.

The bills of material are shown here:

Trinity: 1 subcomposite 111 and 1 subcomposite 112

Pecos: 1 subcomposite 211 and 1 subcomposite 212

Brazos: 1 subcomposite 311 and 1 subcomposite 312

Subcomposite 111: Core 1

Subcomposite 112: Core 2

Subcomposite 211: Core 1

Subcomposite 212: Core 1

Subcomposite 311: Core 1

Subcomposite 312: Core 2

All cores: raw material

Recently, the lamination and the core circuitize operations have been bottlenecks. The unit

hours (i.e., time for a single board on the bottleneck tools) in these areas are given below.

These times are in hours and include inefficiencies such as operator unavailability,

downtime, setups, and so forth.

Board Trinity Pecos Brazos

Lam 0.020 0.022 0.020
Core Cir 0.000 0.000 0.000

Board S111 S112 S211 S212 S311 S312

Lam 0.015 0.013 0.015 0.013 0.015 0.015
Core Cir 0.025 0.023 0.028 0.023 0.027 0.028

Board Core 1 Core 2

Lam 0.008 0.008
Core Cir 0.000 0.000

The anticipated demand for the next 6 weeks is as follows:

Week 1 2 3 4 5 6

Trinity 7,474 2,984 5,276 5,516 3,818 3,048
Pecos 6,489 5,596 7,712 7,781 3,837 4,395
Brazos 3,898 3,966 3,858 6,132 5,975 6,051

Total 17,861 12,546 16,846 19,429 13,630 13,494

(a) Construct bills of capacity for Trinity, Pecos, and Brazos at lamination and core

circuitize.

(b) Use these bills to determine the load for each of the next 6 weeks at both lamination and

core circuitize. The process centers operate 5 days per week for three shifts per day
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(24 hours per day). Breaks and lunches are included in the unit hour data. There are six

lamination presses and eight expose machines (the bottleneck) in core circuitize. Which

weeks are over- or underloaded? What should be done?

13. The Wills and Duncan parts must pass through process center 22. Wills is released to

process center 22 while Duncan must first pass through process center 21 before going to

process center 22. The planned lead time for going through process center 22 is 3 days,

while the time to go through process center 21 is 2 days. There are 16 hours of capacity at

process center 22 per day. Each Wills takes 0.04 hour while a Duncan takes 0.025 hour at

process center 22. Currently there are 300 Wills units that have been in process center 22 for

1 day and 200 units that have been there for 2 days. Releases to the process center (i.e.,

Wills to 22 and Duncan to 21) are shown below. There are also 225 of the Duncan parts that

have been in the process center for one day and 200 that have been there for z days. There

are also 250 units in process center 21 that have been there for 1 day and 200 units that have

been there for 2 days. The releases are as follows:

Day Today 1 2 3 4 5

Wills 250 300 350 300 300 300
Duncan 250 150 150 150 150 150

(a) Determine how many Wills parts will leave process center 22 on each day.

(b) Determine how many Duncan parts will leave process center 22 on each day.

(c) Compute the load profile for process center 22.



C H A P T E R

4 From the JIT Revolution

to Lean Manufacturing

I tip my hat to the new constitution

Take a bow for the new revolution

Smile and grin at the change all around

Pick up my guitar and play

Just like yesterday

Then I get on my knees and pray

WE DON’T GET FOOLED AGAIN!

The Who

4.1 The Origins of JIT

In the 1970s and 1980s, while American manufacturers were (or were not) joining the

MRP crusade, something entirely different was afoot in Japan. Much as the Americans

had done in the 19th century, the Japanese were evolving a distinctive style of manufac-

turing that would eventually spark a period of huge economic growth. The manufacturing

techniques behind the phenomenal Japanese success have become collectively known as

just-in-time (JIT). They represent an important chapter in the history of manufacturing

management.

The roots of JIT undoubtedly extend deep into Japanese cultural, geographic, and

economic history. Because of their history of living with space and resource limitations,

the Japanese are inclined toward conservation. This has made tight material control

policies easier to accept in Japan than in the “throw-away society” of America. Eastern

culture is also more systems-oriented than Western culture with its reductionist scientific

roots. Policies that cut across individual workstations, such as cross-trained floating

workers and total quality management, are more natural in this environment. Geography

has also certainly influenced Japanese practices. Policies involving delivery of materials

from suppliers several times per day are simply easier in Japan, where industry is spatially

concentrated, than in America with its wide-open spaces. Many other structural reasons

for the Japanese success have been advanced. However, since a manufacturing firm has

no control over these factors, they are of limited interest to us here.

Of greater relevance are the JIT practices themselves. The most direct source for

many of the ideas represented by JIT is the work of Taiichi Ohno at Toyota Motor
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Company. According to Ohno, Toyota began its innovative journey in 1945 when Toyoda

Kiichiro, president of Toyota, demanded that his company “catch up with America in

three years. Otherwise, the automobile industry of Japan will not survive” (Ohno 1988, 3).

At the time, Japan’s economy was shattered by the war, labor productivity was one-ninth

that of the United States, and automotive production was at minuscule levels. Obviously,

Toyota did not catch up to the Americans in 3 years, but it set in motion an effort that

would eventually achieve Toyoda’s goal and would spark the most fundamental changes

in manufacturing management since the scientific management movement in the early

years of the 20th century.

Ohno, who moved to Toyota Motor from Toyoda Spinning and Weaving in 1943,

recognized that the only way to become competitive with America would be to close the

huge productivity gap between the two countries. This, he argued, could be done only

through waste elimination aimed at lowering costs. But unlike the American automobile

companies, Toyota could not reduce costs by exploiting economies of scale in giant mass

production facilities. The market for Japanese automobiles was simply too small. Thus,

the managers at Toyota decided that their manufacturing strategy had to be to produce

many models in small numbers.

The principal challenge from a production control standpoint was to maintain a

smooth production flow in the face of a varied product mix. Moreover, to avoid waste,

this had to be accomplished without large inventories. Ohno described the system evolved

at Toyota to address this challenge as resting on two pillars:

1. Just-in-time, or producing only what is needed.

2. Autonomation, or automation with a human touch.

He attributed the motivation for the just-in-time idea to Toyoda Kiichiro, who used

the words to describe the ideal automobile assembly process. Ohno’s model for JIT was

the American-style supermarket, which appeared in Japan in the mid-1950s. In a super-

market, customers get what is needed, at the time needed, and in the amount needed. In

Ohno’s factory analogy, a workstation is a customer that gets materials from an upstream

workstation that acts as a sort of store. Of course, in a supermarket, stock is replenished

from a storeroom or by means of deliveries, while in a factory, replenishment requires

production by an upstream workstation. His goal was to have each workstation acquire

the required materials from upstream workstations precisely as needed, or just in time.

Just-in-time flow requires a very smoothly operating system. If materials are not

available when a workstation requires them, the entire system may be disrupted. As we

discuss in the next section, this has serious implications for the production environment.

One means for avoiding disruptions is Ohno’s concept of autonomation, which refers to

machines that are both automated, so that one worker can operate many machines, and

foolproofed, so that they automatically detect problems. Ohno received his inspiration for

the idea of autonomation from Toyoda Sakichi, inventor of the automatically activated

loom used at Toyoda Spinning and Weaving. Automation was essential for achieving

the productivity improvements necessary to catch up with Americans. Foolproofing,

which helps operators intervene in an automated process at the right time, is primarily

what Ohno meant by “automation with a human touch.” He viewed the combination as

necessary to avoid disruptions in a JIT environment.

Between the late 1940s and the 1970s, Toyota instituted a host of procedures and

systems for implementing just-in-time and autonomation. These included the now fa-

mous kanban system, which we will discuss in detail later, as well as a variety of systems

related to setup reduction, worker training, vendor relations, quality control, and many

others. While not all the efforts were successful, many were, and the overall effect was
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to raise Toyota from an inconsequential player in the automotive market in 1950 to one

of the largest automobile manufacturers in the world by the 1990s.

4.2 JIT Goals

To achieve Ohno’s goal of workstations acquiring materials just in time, a pristine pro-

duction environment is necessary. Perhaps as a result of the Japanese propensity to speak

metaphorically,1 or perhaps because of the difficulty of translating Japanese descriptions

to English (the words translate, but the cultural context does not), this need has often

been stated in terms of absolute ideals. For example, Robert Hall, one of the first Ameri-

can authors to describe JIT, used terms like stockless production and zero inventories.

However, he did not literally mean that firms should operate without inventory. Rather,

he wrote

Zero inventories connotes a level of perfection not ever attainable in a production process.

However, the concept of a high level of excellence is important because it stimulates a quest

for constant improvement through imaginative attention to both the overall task and to the

minute details. (Hall 1983, 1)

Edwards (1983) pushed the use of absolute ideals to its limit by describing the goals

of JIT in terms of the seven zeros, which are required to achieve zero inventories. These,

along with the logic behind them, are summarized as follows:

1. Zero defects. To avoid disruption of the production process in a JIT

environment where parts are acquired by workstations only as they are needed,

it is essential that the parts be of good quality. Since there is no excess inventory

with which to make up for the defective part, a defect will cause a delay. Thus,

it is essential that every part be made correctly the first time. The only

acceptable defect level is zero, and it is not possible to wait for inspection

points to check quality. Quality must occur at the source.

2. Zero (excess) lot size. In a JIT system, the goal is to replenish stock taken by a

downstream workstation as it is taken. Since the downstream workstations may

take parts of many types, maximum responsiveness is maintained if each

workstation is capable of replacing parts one at a time. If, instead, the

workstation can only produce parts in large batches, then it may not be possible

to replenish the stocks of all parts quickly enough to avoid delays. This goal is

more frequently stated as a lot size of one.

3. Zero setups. The most common reason for large batch sizes in production

systems is the existence of significant setup times. If it takes several hours to

change a die on a machine to produce a different part type, then it only makes

sense that large batches of each part will be run between setups. Small lot sizes

would lead to frequent setups and thereby seriously degrade capacity. Hence,

eliminating setups is a precondition for achieving lot sizes of one.

4. Zero breakdowns. Without excess work in process (WIP) in the system to

buffer machines against outages, breakdowns will quickly bring production to a

halt throughout the line. Therefore, an ideal JIT environment cannot tolerate

unplanned machine failures (or operator unavailability, for that matter).

1Shigeo Shingo, who along with Ohno was influential in developing the Toyota system, writes such

things as “the Toyota production wrings water out of towels that are already dry” (Shingo 1990, 54) and

“there is nothing more important than planting ‘trees of will’ ” (Shingo 1990, 172).
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5. Zero handling. If parts are made exactly in the quantities and at the times

required, then material must not be handled more than is absolutely necessary.

No extra moves to and from storage can be tolerated. The ideal is to feed the

material directly from workstation to workstation with no intermediate pauses.

Any additional handling will move the system away from just-in-time

operation, since parts will have to be produced early to accommodate the

additional time spent in handling.

6. Zero lead time. When perfect just-in-time parts flow occurs, a downstream

workstation requests parts and they are provided immediately. This requires

zero lead time on the part of the upstream workstation. Of course, lot sizes of

one go a long way toward reducing the effective lead time required to produce

parts, but the actual processing time per part is also important, as is waiting

(queueing) time. The goal of zero lead time is very close to the core of the zero

inventories objective.

7. Zero surging. In a JIT environment where parts are produced only as needed,

the flow of material through the plant will be smooth as long as the production

plan is smooth. If there are sudden changes (surges) in the quantities or product

mix in the production plan, then, since no excess WIP in the system can be used

to level these changes, the system will be forced to respond. Unless there is

substantial excess capacity in the system, this will be impossible and the result

will be disruptions and delays. A level production plan and a uniform product

mix are thus important inputs to a JIT system.

Obviously, the seven zeros are no more achievable in practice than is zero inventory.

Zero lead time with no inventory literally means instantaneous production, which is

physically impossible. The purpose of such goals, according to the JIT proponents who

make use of them, is to inspire an environment of continual improvement. No matter

how well a manufacturing system is running, there is always room for improvement.

Gauging progress against absolute ideals provides both an incentive and a measure of

success.

4.3 The Environment as a Control

The JIT ideals suggest an aspect of the Japanese production techniques that is truly rev-

olutionary: the extent to which the Japanese have regarded the production environment

as a control. Rather than simply reacting to such things as machine setup times, ven-

dor deliveries, quality problems, production schedules, and so forth, they have worked

proactively to shape the environment. By doing this, they have consciously made their

manufacturing systems easier to manage.

In contrast, Americans, with their scientific management roots and reductionist ten-

dencies, have been prone to isolating individual aspects of the production problem and

working to “optimize” them separately. Americans took setup times (or costs) as fixed

and tried to come up with optimal lot sizes (e.g., the economic production lot, EPL,

model). The Japanese tried to eliminate—or at least reduce—setups and thereby elim-

inate the lot-sizing problem. Americans took due dates as exogenously provided and

attempted to optimize the production schedule (e.g., the Wagner–Whitin model). The

Japanese realized that due dates are negotiated with customers and worked to integrate

marketing and manufacturing to provide production schedules that do not require pre-

cise optimization or abrupt changes. Americans took infrequent, expensive deliveries
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from vendors as given and tried to compute optimal order sizes (e.g., the EOQ model).

The Japanese worked to set up long-term agreements with a few vendors to make fre-

quent deliveries feasible. Americans took quality defects as given and set up elaborate

inspection procedures to find them. The Japanese worked to ensure that both vendors

outside the plant and operators inside the plant were aware of quality requirements and

equipped with the necessary tools to maintain them. American manufacturing engi-

neers got product specifications “thrown over the wall” from design engineers and did

their best to adapt the manufacturing process to accommodate them. Japanese manu-

facturing and design engineers worked together to ensure designs that are practical to

manufacture.

These distinctions between America and Japan are not a direct indictment of Ameri-

can models themselves. Indeed, as we highlighted in Chapter 2, models can offer valuable

insights. For instance, the EOQ model suggests that total cost (i.e., setup plus inventory

carrying cost) depends on the cost per setup according to the formula

Annual cost =

√

2ADh

where A is the setup cost (in dollars), D is the demand rate (in units per year), and h is the

unit carrying cost (in dollars per unit per year). If we let D = 100 and h = 1 for purposes

of illustration, then we can plot the relationship between total cost and setup cost as in

Figure 4.1. This figure, and hence the model, clearly indicates that there are benefits to be

gained from reducing the cost per setup. Since this cost presumably decreases with setup

time, the EOQ model does point up the value of setup time reduction. However, while

the insight is there, the sense of its strategic importance is not. Consequently, serious

setup time reduction methodologies were evolved not in America, but in Japan.

In setups and many other areas, the Japanese have taken a holistic, systems view of

manufacturing with a deep understanding of how these systems behave. Consequently,

they have been able to identify policies that cut across traditional functions and to

manage the interfaces between functions. Thus, while the specific techniques of JIT

(which we shall discuss below) are important, the systems approach to transforming the

manufacturing environment and the constant attention to detail over an extended period

of time are fundamental. Ohno was urging just this with his admonition to “ask why five

times,” by which he meant that one should iteratively seek out and remove obstacles to

the primary objective. A typical sequence of what Ohno had in mind might go as follows:

A workstation becomes starved for work. Why? An upstream machine went down. Why?

A pump failed. Why? It ran out of lubricant. Why? A leaky gasket was not detected.
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Why? And so on. This type of relentless pursuit of understanding and improvement may

well be the real reason for Japan’s remarkable success.

4.4 Implementing JIT

As the previous discussion makes clear, JIT is more than a system of frequent materials

delivery or the use of kanban to control work releases. At the heart of the manufacturing

systems developed by Toyota and other Japanese firms is a careful restructuring of the

production environment. Ohno (1988, 3) was very clear about this:

Kanban is a tool for realizing just-in-time. For this tool to work fairly well, the production

process must be managed to flow as much as possible. This is really the basic condition.

Other important conditions are leveling production as much as possible and always working

in accordance with standard work methods.

Only when the environmental changes have been made can the specific JIT techniques

be effective. We now turn to the key environmental issues that must be addressed in order

to implement JIT.

4.4.1 Production Smoothing—Heijunka

As called for by the zero surging ideal, JIT requires a smooth production plan. If either the

volume or product mix varies greatly over time, it will be very difficult for workstations to

replenish stock just in time. To return to the supermarket analogy, if all customers decided

to do their shopping on Tuesday, or if all shoppers decided to buy canned tomatoes at

the same time, stockouts would be very likely. However, because customers are spread

over time and buy different mixes of products, the supermarket is able to replenish the

shelves a little at a time and, for the most part, avoid stockouts.

In a manufacturing system, requirements are ultimately generated by customer de-

mand. However, the sequence in which products are manufactured need not match the

sequence in which they will be purchased by customers. Indeed, since customer de-

mands are almost never completely known by the manufacturer in advance, this is not

even possible. Instead, plants make use of a master production schedule (MPS) that

specifies which products are to be produced in each time interval. As we noted in the

previous chapter, MRP systems typically make use of time intervals (buckets) of a week

or longer for their MPS.

A first condition for JIT, therefore, is to ensure that the MPS is reasonably level over

time. As we noted in Chapter 3, many ERP systems contain MPS modules for facilitating

the smoothing process. This development was stimulated in part by the Toyota system

called heijunka.

But even a smoothed MPS that specifies only weekly or monthly requirements

could allow surges within the week or month that exceed the system’s ability to meet the

demands in a just-in-time fashion. Hence, the Toyota system and virtually all other JIT

systems make use of a final assembly schedule (FAS), which specifies daily, or even

hourly, requirements. Developing a level FAS from the MPS involves two steps:

1. Smoothing aggregate production requirements.

2. Sequencing final assembly.

Smoothing the final assembly schedule is straightforward. If the MPS calls for

monthly production of 10,000 units and there are 20 working days in the month, then the
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FAS will call for 500 units per day. If there are two shifts, this translates into 250 units per

shift. If each shift is 480 minutes long, then the average time between outputs—the takt2

time—will have to be 480/250 = 1.92 minutes per unit. In a perfect situation, this means

we should produce at a rate of exactly one unit every 1.92 minutes or every 115 seconds.

A system in which discrete parts are produced at a fairly steady flow rate is called

a repetitive manufacturing environment. The kanban system developed by Toyota,

which we will discuss later, is best-suited to repetitive manufacturing environments.

In reality, we are unlikely to produce exactly one unit every 1.92 minutes. Small devi-

ations are not a problem; if the line falls behind during one hour but catches up during the

next, fine. However, if the system departs from the specified rate over a period exceeding a

shift or a day, corrective action (e.g., overtime) is typically required. Maintaining a steady,

predictable output stream is the only means by which a JIT system can consistently meet

customer due dates. Hence, JIT systems generally include measures to promote mainte-

nance of a steady flow (e.g., extra capacity to make sure production quotas are achieved).

Once the aggregate requirements of the MPS have been translated to daily rates, we

must translate the product-specific requirements to a production sequence. We do this by

breaking out the daily requirements according to the product proportions from the MPS.

For instance, if the 10,000 units to be produced during the month consist of 50 percent

(5,000 units) product A, 25 percent (2,500 units) product B, and 25 percent (2,500 units)

product C, then this means that the daily production of 500 units should consist of

0.5 × 500 = 250 units of A

0.25 × 500 = 125 units of B

0.25 × 500 = 125 units of C

Furthermore, the products should be sequenced on the line such that these propor-

tions are maintained as uniformly as possible. Thus, the sequence

A–B–A–C–A–B–A–C–A–B–A–C–A–B–A–C · · ·

will maintain a 50-25-25 mix of A, B, and C over time. Obviously, this requires a line

that is flexible enough to support this type of mixed model production (i.e., producing

several products at once on the same line), which is impossible unless setups between

products are very short or nonexistent. Furthermore, since the production rate is one unit

every 1.92 minutes, this sequence implies that the times between outputs of product A

will be 2 × 1.92 = 3.84 minutes. Times between outputs of products B and C will be

4 × 1.92 = 7.68 minutes. The assembly line, as well as the rest of the plant, must be

physically capable of handling these times.

Of course, most production requirements will not lend themselves to such simple

sequences. In that case, it may be reasonable to slightly adjust the demand figures (e.g.,

when demands are actually rough forecasts) to accommodate a simple sequence; or it

may be reasonable to depart slightly from a simple sequence by spreading leftover units

as evenly as possible throughout the daily schedule. The objective, however, remains as

level a flow as possible. This is in sharp contrast with the traditional American practice

of producing a large batch of one product before shifting to the next and emphasizing

attainment of production quotas only at the end of the month.

2A German word used to describe a Japanese system that indicates a precise interval of time (such as a

music meter).
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4.4.2 Capacity Buffers

An apparent difficulty with JIT lies in coping with unexpected disruptions, such as order

cancelations or machine failures. In an MRP system, when production requirements

change, the schedule is simply regenerated, some jobs may be expedited, and things

continue. However, in a JIT system, where great pains have been taken to ensure a constant

flow, another approach is required. Similarly, if a machine failure causes production to

fall behind, the netting operation in MRP will include the unmet requirements in the next

pass. The JIT system with its level production quotas has no intrinsic way to keep track

of such shortages.

This rigidity is certainly a problem with “ideal” JIT. But ideal JIT only works in an

ideal environment—as does almost anything. (If demand is absolutely level, perfectly

predictable, and within capacity capabilities, then MRP will work extremely well and

will result in just-in-time production.) However, real-world JIT systems are never ideal

and out of necessity contain measures for dealing with unanticipated disruptions. An

approach commonly used by the Japanese is that of a capacity buffer. By scheduling the

facility to less than 24 hours per day, the line can catch up if it falls behind. If production

gets ahead of the desired rate, then workers are either sent home or directed to other

tasks. If production falls behind the desired rate, either because of problems in the line or

because of changes in the requirements, then the extra time is used. One way to allow for

this is two-shifting, in which two shifts are scheduled per day, separated by a down period

(Schonberger 1982, 137). The down period can be used for preventive maintenance or

catch-up, if necessary. A popular approach is to schedule shifts “4–8–4–8,” in which two

eight-hour shifts are separated by four-hour down periods.

The capacity buffer offered by the availability of overtime serves as an alternative

to the WIP buffers found in most MRP systems. If an unexpected occurrence, such as

a machine outage, causes production to fall behind at a workstation, then WIP buffers

can prevent other workstations from starving. In a JIT system where the WIP buffers are

very small, a failure is very likely to cause starvation somewhere in the system. Thus, to

keep the production rate constant, overtime will be needed. In effect, the Japanese have

reduced WIP, so that production occurs just-in-time, but they have maintained excess

capacity, just-in-case.

4.4.3 Setup Reduction

A work sequence like that suggested earlier, A–B–A–C–A–B–A–C–A–B–A–C–, is prob-

ably not workable if there are significant setup times required to switch production from

one product to another. For instance, if each of the three products requires a different die

that takes several hours to change over, there is no way to achieve the desired daily rate

of 500 units while using a sequence that requires a die change after each part. In America

these setups were traditionally regarded as given, and large lot sizes were used to keep

the number of changeovers to a manageable level. In Japan, reducing the setup times to

the point where changeovers no longer prevent a uniform sequence became something

of an art form. Ohno reported setups at Toyota that were reduced from 3 hours in 1945

to 3 minutes in 1971 (Ohno 1988).

A number of good references provide specifics on the many clever techniques that

have been used to speed machine changeovers (Hall 1983; Monden 1983; Shingo 1985),

so we will not go deeply into details here. Instead, we will make note of some general

principles that have been invoked to guide setup reduction efforts.

The key to a general approach to setup reduction is the distinction between an

internal setup and an external setup. Internal setup operations are those tasks that take
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place when the machine is stopped (i.e., not producing product), while external setup

operations are those tasks that can be completed while the machine is still running. For

instance, removing a die is an internal task, while collecting the necessary tools to remove

it is an external task. It is the internal setup that is disruptive to the production process,

and hence this is the portion of the overall setup process that deserves the most intense

attention. With this distinction in mind, Monden (1983) identifies four basic concepts

for setup reduction:

1. Separate the internal setup from the external setup. The fact that current

practice has the machine stopped while certain tasks are being completed does

not guarantee that they are internal tasks. The setup reduction process must start

by asking which tasks must be done with the machine stopped.

2. Convert as much as possible of the internal setup to the external setup. For

example, if some components can be preassembled before shutting down the

machine, or if a die casting can be preheated before installing it, the internal

setup time can be substantially reduced.

3. Eliminate the adjustment process. This frequently accounts for 50 to 70 percent

of the internal setup time and is therefore critical. Jigs, fixtures, or sensors can

greatly speed or even eliminate adjustments.

4. Abolish the setup itself. This can be done by using a uniform product design

(e.g., the same bracket for all products), by producing various parts at the same

time (e.g., stamping parts A and B in a single stroke and separating them later),

or by maintaining parallel machines, each set up for a different product.

The references cited offer a host of techniques for implementing these concepts,

ranging from quick-release bolts, to standardized tools and procedures, to parallel oper-

ations (e.g., two workers performing the setup in parallel), to color coding schemes, and

so on. The real lesson from this diversity of ideas is, perhaps, the old maxim “Necessity

is the mother of invention.” The uniform production sequences used in JIT demanded

quick changeovers, and the diligent efforts of Japanese engineers provided them.

4.4.4 Cross-Training and Plant Layout

Ohno interpreted productivity improvement as a crucial goal for Toyota very early on.

However, because of his concern with ensuring smooth material flow without excess WIP,

productivity improvements could not be achieved by having workers produce large lots

on individual machines. It rapidly became clear that a JIT system is much better served by

multifunctional workers who can move where needed to maintain the flow. Furthermore,

having workers with multiple skills adds flexibility to an inherently inflexible system,

greatly increasing a JIT system’s ability to cope with product mix changes and other

exceptional circumstances.

To cultivate a multiskilled workforce, Toyota made use of a worker rotation system.

The rotations were of two types. First, workers were rotated through the various jobs in

the shop.3 Then, once a sufficient number of workers were cross-trained, rotations on a

daily basis were begun. Daily rotations served the following functions:

1. To keep multiple skills sharp.

2. To reduce boredom and fatigue on the part of the workers.

3It is interesting to note that managers were also rotated through the various jobs, in order to prove their

abilities to the workers.
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U-shaped manufacturing

cell.

3. To foster an appreciation for the overall picture on the part of everyone.

4. To increase the potential for new idea generation, since more people would be

thinking about how to do each job.

These cross-training efforts did indeed help the Japanese catch up with the Amer-

icans in terms of labor productivity. But they also fostered a great deal of flexibility,

which Americans, with their rigid job classifications and history of confrontational labor

relations, found difficult to match.

With cross-training and autonomation, it becomes possible for a single worker to

operate several machines at once. The worker loads a part into a machine, starts it up,

and moves on to another machine while the processing takes place. But remember, in

a JIT system with very little WIP, it is important to keep parts flowing. Hence, it is not

practical to have a worker staffing a number of machines that perform the same operation

in a large, isolated process center. There simply will not be enough WIP to feed such an

operation.

A better layout is to have machines that perform successive operations located

close to one another, so that the products can flow easily from one to another. A linear

arrangement of machines, traditionally common to American facilities,4 accommodates

the product flow well, but is not well suited to having workers tend multiple machines

because they must walk too far from machine to machine. To facilitate material flow and

reduce walking time, the Japanese have tended toward U-shaped lines, or cells, as shown

in Figure 4.2.

The advantages of U-shaped cells are as follows:

1. One worker can see and attend all the machines with a minimum of walking.

2. They are flexible in the number of workers they can accommodate, allowing

adjustments to respond to changes in production requirements.

3. A single worker can monitor work entering and leaving the cell to ensure that it

remains constant, thereby facilitating just-in-time flow.

4. Workers can conveniently cooperate to smooth out unbalanced operations and

address other problems as they surface.

The use of cellular layouts in JIT systems precipitated a trend that gathered steam

in the United States during the 1980s. One now sees U-shaped manufacturing cells in

4Linear layouts were essential in colonial water-powered plants, where machines were driven by belts

from a central driveshaft. By the time steam and electricity replaced water power, straight production lines

had become the norm in America.
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a variety of production environments, to the point where cellular manufacturing has

become much more prevalent than the JIT systems that spawned it.

4.4.5 Less Work In Process

All of the above improvements require less WIP than plants that do not have smooth

production, a capacity buffer, short setups, cross-trained workers, and a U-shaped lay-

out. Less WIP translates to shorter cycle times and better customer responsiveness. Of

course, less WIP also means less buffer for upsets. If one machine goes down or one

worker does not do what is needed when it is needed, output falls. Likewise, if a quality

problem occurs, production stops because there is no other work to which the process can

switch. Thus, like the uniform production sequences that created a demand for shorter

changeovers, low WIP levels demand higher quality. A just-in-time system simply can-

not function with significant rework or scrap. This development led to a new revolution

that became more influential than JIT itself—total quality management.

4.5 Total Quality Management

Although the basic techniques of quality control were developed and espoused long

ago by Americans, particularly Shewhart (1931), Feigenbaum (1961), Juran (1964), and

Deming (1950a, 1950b, 1960), it was within the Japanese JIT systems that quality was

lifted to new and strategic importance.

4.5.1 Driving Forces for Higher Quality

Schonberger (1982, 50) offers two possible reasons for why quality control “took” in

Japan so much more readily than in America:

1. The Japanese historical abhorrence for wasting scarce resources (i.e., by

making bad products).

2. The Japanese innate resistance to specialists, including quality control experts,

which made it more natural to ensure quality at the point of production than to

check it later at a quality control station.

Beyond these cultural factors is the simple fact that JIT requires a high level of

quality to function. Under JIT, a machine operator does not have a large batch of parts

to sift through to find one suitable for use. He or she may have only one to choose from;

if it is bad, the line stops. If this were to happen often enough, the consequences would

be devastating. The analogy that many JIT writers have used is that of water in a stream

with rocks on the bottom. The water represents WIP, the rocks are problems. As long as

the water is high, the rocks are covered. However, when the water level is lowered, the

rocks are exposed. Similarly, when the WIP level in a plant is reduced, problems, such

as defects, become very noticeable.

Notice that JIT not only highlights the fact that there are quality problems, but also

facilitates identification of their source. If WIP levels are high and quality inspections

are made at separate stations, operators may get relatively little feedback about their own

quality levels. Moreover, what they get will not be timely. In contrast, in a JIT environ-

ment, the parts made by an operator will be used rapidly by a downstream operator, who

will have a strong incentive to notify the upstream operator of defects. This will serve to

alert the operator of a potential problem while there is still time to do something about

it. It also induces substantial psychological motivation to “do it right the first time.” JIT
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advocates claim that this results in an overall increase in quality awareness and improved

quality to the customer.

Analogously to the effect it had on setup reduction techniques, the pressure exerted

by JIT fostered a burst of creativity in quality improvement methodologies. A huge

volume of literature has detailed these over the past decade (see, e.g., DeVor, Chang, and

Sutherland 1992; Garvin 1988; Juran 1988; Shingo 1986), and so we will not go into

great detail here but will revisit the topic in Chapter 12.

4.5.2 Quality Principles from JIT

We now summarize seven principles identified by Schonberger (1982, 55) as essential

to the quality practices of the Japanese:

1. Process control. The Japanese devoted a great deal of effort to enable the

workers themselves to make sure their production processes were operating

properly. This included use of statistical process control (SPC) charts and other

statistical methods, but also involved simply giving workers responsibility for

quality and the authority to make changes when needed.

2. Easy-to-see quality. As they were urged to do by Juran and Deming in the

1950s, the Japanese made use of extensive visual displays of quality measures.

Display boards, gauges, meters, plaques, and awards were used to “put quality

on display.” The Japanese carried this further with the poka-yoke or “mistake

proofing” concept. The idea was to design the system so that the worker cannot

make a mistake. These practices were aimed partly at providing feedback to the

workforce and partly at proving that quality level is high to inspectors from

customer plants.

3. Insistence on compliance. Japanese workers were encouraged to demand

compliance with quality standards at every level in the system. If materials from

a supplier did not measure up, they were sent back. If a part in the line was

defective, it was not accepted. The attitude was that quality comes first and

output second.

4. Line stop. The Japanese emphasized the “quality first” ideal to the extent that

each worker had the authority to stop the line to correct quality problems. At

some plants, different colored lights (yellow for a problem and red for a

line-stopping problem) are displayed on an andon board indicating the status of

different areas of the plant. Such a board is displayed in a highly visible

location so that all can immediately see the status of the entire plant. Where

these techniques were used, quality really did come before throughput.

5. Correcting one’s own errors. In contrast to the rework lines often found in

American plants, the Japanese typically required the worker or work group that

produced a defective item to fix it. This gave the workers full responsibility for

quality.

6. The 100 percent check. The long-range goal was to inspect every part, not just

a random sample. Simple or automated inspection techniques are desirable;

foolproof (autonomous) machines that monitor quality during production are

even better. However, in some situations where true 100 percent inspection was

not feasible, the Japanese made use of the N = 2 method, in which the first and

last parts of a production run are inspected. If both are good, then it is assumed

that the machine was not out of adjustment and therefore that the intermediate

parts are also good.
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7. Continual improvement. In contrast to the Western notion of an acceptable

defect level, the Japanese looked toward the ideal of zero defects. In this

context, there is always room for further quality improvements.

Like the impact it had on cellular plant layout, JIT has engendered a revolution in

quality that has grown far beyond its role in kanban and other JIT systems. The 1980s

have been labeled the quality decade and have seen the emergence of such high-visibility

initiatives as the Malcolm Baldridge Award, Six Sigma, and the ISO 9000 standards.

The current heightened awareness of quality around the world is directly rooted in the

JIT revolution.

4.5.3 The West Strikes Back—ISO 9000

While the Malcom Baldridge Award was really no more than bragging rights for the

companies who won it, both Six Sigma and ISO 9000 had a profound impact on industry.

Although it took a while for Six Sigma to catch on, ISO 9000 was adopted quite early.

In a effort to capture the benefits of the newly emerging quality revolution, partic-

ularly the benefits of what was perceived then as “Japanese management” methods à la

Toyota, in 1979 the British government mandated “British Standard 5750.”

The basic idea was similar to Ohno’s automation: determine the best practice, doc-

ument it, and then ensure it is being followed. The result is a certificate that indicates

a high-quality process. Interestingly, Toyota never provided any such certificate. To do

so would indicate the reaching of some arbitrary target—the antithesis of continual im-

provement. Also, it is much easier to audit whether one has a “process” and whether

it is being followed than to determine whether the process is effective. Consequently,

the BS 5754 was roundly criticized as being both ineffective in improving quality and

burdensome in its documentation requirements.

Nonetheless, despite these complaints, the British Standards Institute along with

the British government convinced the International Organization for Standardization to

adopt essentially the same standard in 1987, which became known as ISO 9000.

ISO 9000 (1994) paragraph 1:

The requirements specified are aimed primarily at achieving customer satisfaction by pre-

venting non-conformity at all stages from design through servicing.

At first glance, the idea looks good: document your procedures so that an independent

inspector can document whether you follow them and thereby provide a certification for

your customers. Unfortunately, there is nothing requiring that the procedures used are

good ones or even that following them results in high quality. The Standard supposedly

guarantees quality by the fact that if problems are found, there is a procedure to remedy

them (but there is nothing that guarantees that this procedure is effective either). Seddon

(2000) comments,

Quality assurance, according to the Standard, is a way of managing that prevents non-

conformance and thus “assures quality.” This is what makes ISO 9000 different from other

standards: it is a management standard, not a product standard. It goes beyond product stan-

dardization: it is standardizing not what is made but how it is made. To use standards to dictate

and control how organizations work was to extend the role of standards to new territory. To

take such a step we might have firstly established that any such requirements worked—that

they resulted in ways of working which improved performance.

Yet the plausibility of this Standard, and the fact that those who had an interest in main-

taining it were (and still are) leading opinion, prevented such enquiries. In simple terms the

Standard asks managers to say what they do, do what they say and prove it to a third party.
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The result has been a cottage industry of ISO 9000 inspectors along with a tremen-

dous amount of effort on the part of the companies seeking certification to document

every conceivable procedure. By 1995, the process had become so ubiquitous that it was

lampooned in a series of the popular Dilbert comic strip featuring, among others, the

“Stupid Label Guy” labeling the coffee maker.

Interestingly, Toyota tried ISO 9000 in one of its factories and then ceased using

it because it added no value Seddon (2006). Because of these and other problems, the

total quality management movement began to lose steam. However, it was to return

with a vengeance under a different label—Six Sigma—which we discuss below (see

Section 4.7.2).

4.6 Pull Systems and Kanban

The single technique most closely associated with the JIT practices of the Japanese is the

“pull system” known as kanban developed at Toyota. The word kanban is Japanese for

card,5 and in the Toyota kanban system, cards were used to govern the flow of materials

through the plant.

To describe the Toyota kanban system, it is useful to distinguish between push and

pull production control systems.6 In a push system, such as MRP, work releases are

scheduled. In a pull system, releases are authorized. The difference is that a schedule is

prepared in advance, while an authorization depends on the status of the plant. Because

of this, a push system directly accommodates customer due dates, but has to be forced

to respond to changes in the plant (e.g., MRP must be regenerated). Similarly, a pull

system directly responds to plant changes, but must be forced to accommodate customer

due dates (e.g., by matching a level production plan against demand and using overtime

to ensure that the production rate is maintained).

Figure 4.3 gives a schematic comparison of MRP and kanban. In the MRP system,

releases into the production line are triggered by the schedule. As soon as work on a part

is complete at a workstation, it is “pushed” to the next workstation. As long as machine

operators have parts, they continue working under this system.

4.6.1 Classic Kanban

In the kanban system, production is triggered by a demand. When a part is removed from

an inventory point (which may be finished goods inventory or some intermediate stock)

the workstation that feeds the inventory point is given authorization to replace the part.

This workstation then sends an authorization signal to the upstream workstation to replace

the part it just used. Each station does the same thing, replenishing the downstream void

and sending authorization to the next workstation upstream. In the kanban system, an

operator requires both parts and an authorization signal (kanban) to work.

The kanban system developed at Toyota made use of two types of cards to authorize

production and movement of product. This two-card system is illustrated in Figure 4.4.

The basic mechanics are as follows. When a workstation becomes available for a

new task, the operator takes the next production card from a box. This card tells the

operator that a particular part is required at a downstream workstation. He or she looks to

the inbound stockpoint for the materials required to make that part. If they are there, the

operator removes the move cards attached to them and places them in another box. If the

5Ohno translates kanban as sign board, but we will use the more common translation of card.
6See Chapter 10 for a more detailed discussion and comparison of push and pull systems.
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materials are not available, the operator chooses another production card. Whenever the

operator finds both a production card and the necessary materials, he or she processes

the part, attaches the production card, and places it in the outbound stockpoint.

Periodically, a mover will check the box containing move cards and will pick up

the cards. He or she will get the materials indicated by the cards from their respective

outbound stockpoints, replace their production cards with the move cards, and move

them to the appropriate inbound stockpoints. The removed production cards will be

deposited in the boxes of the workstations from which they came, as signals to replenish

the inventory in the outbound stock points.

The rationale for the two-card system used by Toyota is that when workstations

are spatially distributed, it is not feasible to achieve instantaneous movement of parts

Figure 4.4 Toyota-style two-card kanban system.
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from one station to the next. Therefore, in-process inventory will have to be stored in

two places, namely, an outbound stockpoint, when it has just finished processing on a

machine, and an inbound stockpoint, when it has been moved to the next machine. The

move cards serve as signals to the movers that material needs to be transferred from one

location to another.

4.6.2 Other Pull Systems

In a system with workstations close to one another, WIP can effectively be “handed” from

one process to the next. In such settings, two inventory storage points are not necessary,

and a one-card system can be used. In this system, an operator still requires a production

card and the necessary materials to begin processing. However, instead of removing a

move card from the incoming materials, the worker simply removes the production card

from the upstream process and sends it back upstream. If one looks closely, it is apparent

that a two-card system is identical to a one-card system in which the move operations are

treated as workstations. Hence, the choice of one over the other depends on the extent to

which we wish to regulate the WIP involved in move operations. If these operations are

fast and predictable, it is probably unnecessary. If they are slow and irregular, regulation

of move WIP may be helpful.

In many implementations, no cards are used at all. In some situations, a WIP limit

is established by allowing only a small number of containers in the line. In others, limits

are placed on the WIP locations themselves. For instance, a “kanban square” is denoted

by a mark on the floor that indicates what and how much WIP is to be stored there. Still

others use “electronic kanbans” that track the amount of WIP in the line with a computer.

WIP is logged in and out by using bar codes, IR tags, RF transponders, and so forth.

4.6.3 Kanban and Base Stock Systems

The key controls in a kanban system (one- or two-card) are the WIP limits at each

station. These take the form of a card count, a limit on the number of containers, or,

simply, a volume limitation. These directly govern the amount of WIP in the system

and, by affecting the frequency with which machines are starved for parts, indirectly

determine the maximum throughput rate. We will examine the relationship between

WIP and throughput in detail in Part II. For now, it is worthwhile to note the similarity

between kanban and the reorder point methods we discussed in Chapter 2. Consider the

one-card kanban system with m production cards at a given station. Each time inventory

in the downstream stockpoint falls below m, production cards are freed up, authorizing

the station to replenish the buffer. The mechanics of this process are almost exactly the

same as those of the base stock model, with the downstream station acting as the demand

and the card count m serving as the base stock level. A key difference is that a base stock

system does not have a limit on the amount of work that can be in process while the

kanban system does (i.e., the backlog in a base stock system can exceed the production

card count in a kanban system). Nonetheless, much of the intuition we developed for the

base stock system in Chapter 2 carries over to the kanban system.

During the decades of the ’70s and the ’80s, JIT became a well-defined practice

and appeared to completely eclipse MRP II and the computer-controlled manufacturing

system. However, it did not last and eventually succumbed to the lure of management to

have all business processes (including manufacturing) within one integrated information

technology framework—enterprise resource planning.
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4.7 Goodbye JIT, Hello Lean

At least on the surface, ERP seemed to contain JIT by providing modules with names like

“repetitive manufacturing.” These modules provided the capability to level load the MPS

and to implement pull. But they also revealed a lack of understanding of JIT within the

ERP mind set. While the repetitive manufacturing module provided software to perform

production smoothing and kanban, the philosophy of continual improvement as well as

the nonsoftware elements of the system such as visual controls, mistake proofing, and

one piece flow were missing.

4.7.1 Lean Manufacturing

In 1990, after a 5-year MIT study of the automobile industry, a new term for JIT—lean

manufacturing—appeared in the book, The Machine That Changed the World

(Womack, Jones, Roos 1990). This was followed in 1996 by a second book, Lean

Thinking (Womack and Jones 1996) that outlined the lean “philosophy.” In hindsight,

lean manufacturing provided a neater package than did the various collections of JIT

techniques. The focus of lean was on flow, the value stream, and eliminating muda, the

Japanese word for waste, by performing kaizen events. Soon, most companies were again

learning new Japanese words in the desire to become more “lean” (including many that

had recently abandoned JIT to embrace ERP). Moreover, because lean did not require a

computer or the development of software, there was almost no barrier of entry to would-

be lean consultants. The trade press became full of stories of how companies had slashed

their inventories, shortened their lead times, and fattened their bottom lines—all without

using a computer. Thus, with the help of an army of consultants, lean became the rage.

Unfortunately, during these heady days, much of the clarity offered by Ohno and

Shingo regarding the philosophy and mechanics of JIT was lost. There is now great

confusion with regard to the benefits of pull and the necessity of a level schedule (which

we discuss in more detail in Chapter 10). Nonetheless, it appears that lean has been more

successful than JIT in achieving results. In fairness, JIT never really went away; it was

simply renamed and repackaged and worked better the second time around.

4.7.2 Six Sigma and Beyond

Like JIT, TQM never disappeared either. Moreover, despite having arisen from JIT, the

TQM revolution lasted much longer than the original JIT revolution. Nonetheless, its

fortunes were linked to JIT and, after a delay, by the mid 1990s TQM too began to lose

its luster. One reason is that once the popularity of JIT had faded, the requirements for

high quality were less evident. Furthermore, many managers felt burdened with the doc-

umentation requirements of the ISO standards with relatively little to show for the effort.

For these and other reasons, TQM ceased to have the appeal that it had during the 1980s.

The growing vacuum left by the demise of JIT and TQM coincided with the rise of

another phenomenon—Six Sigma. The early development of Six Sigma occurred during

the years 1985–87 at Motorola. Six Sigma was conceived as a method for creating

radically better products and processes that would enable Motorola to compete more

effectively with the Japanese. In fact, the goal of Six Sigma was to reduce defects into

the parts per million (PPM) range7— orders of magnitude better than“typical” quality

7Technically, a Six Sigma process has no more than 3.4 defects per million opportunities. Unfortunately,

this corresponded to control limits of around 4.5 sigma. Fortunately, by adding another sigma and a half to

account for “process shift,” one arrives at a much more agreeable buzz word with a nice alliteration.
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prevailing at that time. To achieve this, CEO Bob Galvin of Motorola insisted that

product and service quality be improved by a factor of 10 every 2 years. This aggressive

requirement became the impetus for an approach to reducing process variation that soon

became known as the measure, analyze, improve, control methodology (MAIC). This

method quickly paid off for Motorola when it became one of the first recipients of the

Malcolm Baldridge National Quality Award in 1988.

If Six Sigma had not grown beyond its roots at Motorola, it might have received

little attention. Fortunately, the charismatic leadership at companies such as Asea Brown

Boveri (ABB), Allied Signal, and General Electric (GE) pushed Six Sigma beyond what

even Motorola had accomplished. In particular, Jack Welch of GE launched a company-

wide initiative in 1995 to transform his company from a “great business” into the “greatest

company in the world.” He insisted that every aspect of business be brought under the

umbrella of Six Sigma. Furthermore, Six Sigma training would be a requirement for

promotion. From a financial perspective, GE’s goals were fully realized; its annual

reports during 1996–99 estimate the savings from Six Sigma to be $1–2 billion per year.

In the years following 1995, the value of GE stock increased four-fold.

By the turn of the millennium, Six Sigma had matured into a well-defined method-

ology known as DMAIC (MAIC plus the addition of a “define” phase). While DMAIC is

focused on improving manufacturing processes, a new Six Sigma variant, design for Six

Sigma (DFSS), focuses on the design of new products and processes. DFSS has its own

methodology—define, measure, analyze, design, verify (DMADV). Companies in fields

as diverse as health care, manufacturing, financial services, software development, and

home improvement adopted Six Sigma as the basis for their process improvement efforts.

As Six Sigma grew and developed, it became what some practitioners consider to be a

complete management system that was successful precisely because of its bottom-line

orientation. Others note that Six Sigma is an evolutionary extension of the TQM and JIT

movements, as well as a worthy successor to the earlier quality initiatives of Deming,

Juran, Crosby, and even Shewhart.

4.8 The Lessons of JIT/Lean and TQM/Six Sigma

The range of issues touched on in this chapter makes it clear that JIT/lean is not a

simple procedure or technique. Nor can it be said to be a coherent, well-defined man-

agement strategy. Rather, it is an assortment of attitudes, philosophies, priorities, and

methodologies that have been collectively labeled JIT and now, lean. The real thread

connecting them is that they all have their origins with Toyota and a few other Japanese

companies.

While JIT/lean may not offer comprehensive policies for managing a manufacturing

facility, its originators at Toyota and elsewhere have clearly demonstrated true genius in

generating creative solutions to specific problems. Inherent in these solutions are some

key insights that deserve a prominent place in the history of manufacturing management:

1. The production environment itself is a control. Strategies that involve

reducing setups, changing product designs with manufacturing in mind,

leveling production schedules, and so on, can have greater impact on the

effectiveness of the production process than any decisions actually made on the

factory floor.

2. Operational details matter strategically. Ohno and others reinforced the

100-year-old insight of Carnegie that the small details of the production process
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can confer a substantial competitive advantage. Like Carnegie, the JIT

advocates concentrated on cost of manufacture and were willing to examine the

most mundane aspects of the manufacturing process in their efforts to reduce

waste.

3. Controlling WIP is important. The importance of the smooth and rapid flow

of materials through the system was recognized by Ford in the 1910s and was

echoed with emphasis by Ohno in the 1980s. Virtually all the benefits of JIT

either are a direct consequence of low WIP levels (e.g., short cycle times)

or are spurred by the pressure low WIP levels create (e.g., high quality

levels).

4. Flexibility is an asset. JIT is inherently inflexible. In its essential form it calls

for an absolutely steady rate and mix of production, virtually minute by minute.

However, perhaps in reaction to this tendency toward inflexibility, the

advocates of JIT have developed an acute appreciation for the value of

flexibility in responding to a volatile marketplace. They have tempered JIT

with a host of practices designed to promote flexibility, including short setup

times, capacity cushions, worker cross-training, cellular plant layout, and many

others.

5. Quality can come first. Although many of the basic quality concepts used by the

Japanese in their JIT systems had long been championed by American quality

experts, Japanese firms were far more effective at putting these ideas into

practice than were their American counterparts. They demonstrated to the

world that a system in which quality takes precedence over throughput and is

assured at the source not only works, but is profitable as well.

6. Continual improvement is a condition for survival. In sharp contrast to Henry

Ford’s belief in a perfectible product and process, the Japanese recognize that

manufacturing is a continually changing game. Standards that sufficed

yesterday will not be adequate tomorrow. Despite our terming JIT a

“revolution,” it took about 25 years (from the 1940s to the late 1960s) of

constant attention for Toyota to reduce setups from 3 hours to 3 minutes. More

than anything, the successful practitioners of JIT have been devoted to doing

things better and better, a little bit at a time.

The TQM/Six Sigma movements came from the need to reduce the variability caused

by errors in a production environment. Indeed, we will see in Part II that understanding

how variability degrades performance is key to improving a manufacturing system.

The key insights are:

1. Quality and logistics must be improved together. A production system cannot be

lean if it has poor internal quality (i.e., products must be made right the first

time). Likewise, a system cannot consistently produce a quality product unless

it is quite lean (i.e., it must have low WIP).

2. “If you don’t have time to do it right, when will you find time to do it over?”

This aphorism succinctly captures the need for good quality in a manufacturing

system.

3. Variability must be identified and reduced. The focus of Six Sigma is to

identify and reduce variability by (1) determining its root cause and (2)

eliminating the cause. The problem with Six Sigma is that many problems are

not directly related to variability but only indirectly. This will be a major focus

of Part II.
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Discussion Point

1. Consider the following statement:

Henry Ford practiced short-cycle manufacturing in the 1910s. The basic tools of total quality

management were developed and practiced at Western Electric in the 1920s. Kanban is

equivalent to a base stock system, which was well known since the 1930s. Thus, just-in-time

is nothing more than a repackaging of traditional American ideas, for which its Japanese

proponents have been greatly over praised.

(a) Comment on the accuracy of this statement.

(b) What aspects of JIT seem radically distinct from older techniques? Do these justify

terming JIT a revolution?

(c) What aspects of JIT are particularly rooted in Japanese culture? What implications might

this have for the transferability of JIT to America?

Study Questions

1. What are the seven zero goals of JIT? Of these, which are actually achievable? Which are

completely outrageous if taken literally?

2. Discuss the fundamental difference between the zero defects goal in JIT and the acceptable

quality level of former times. What does this have to do with the adage, “If you don’t have

time to do it right, when will you find time to do it over?”

3. Why is zero setup time desirable? Why is zero lead time?

4. Under the JIT philosophy, why is inventory often said to be evil?

5. What is meant by the common analogy of a stream, where WIP is represented by water and

problems by rocks? What difficulties might arise from the perspective this analogy suggests?

6. What does Ohno mean by the “five whys”?

7. In what way does Ohno describe an American-style supermarket as an inspiration for JIT?

What potential problems exist with using a supermarket as an analogy for a manufacturing

system?

8. What role does total quality management (TQM) play in JIT? Does JIT depend on TQM,

promote TQM, or both?

9. Describe autonomation.

10. Why is flexible labor important in a JIT system?

11. What are manufacturing cells? What role do they play in a JIT system?

12. What are the advantages of mixed model production?

13. Explain how two-card kanban works.

14. How is two-card kanban equivalent to one-card kanban? What is left out in the two-card

case?

15. What is the “magic” of kanban? Is it the fact that stock is pulled from one station to the next,

or is it something more fundamental?

16. Give at least two reasons that Toyota’s kanban system has not been universally adopted by

industry in America (or Japan).

17. Why are a relatively constant volume and relatively stable product mix essential to kanban?

18. List three ways in which the intrinsic rigidity of JIT is compensated for in practice.

19. What is the fundamental difference between a pull production system and a push production

system?

20. In a serial production line, at which station (first, last, middle, etc.) would it be best to have

the bottleneck in a push system? Where in a pull system? Explain your reasoning.
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21. For each of the following situations, indicate whether kanban or MRP would be more

effective.

(a) An auto plant producing three styles of vehicle

(b) A custom job shop

(c) A circuit board plant with 40,000 active part numbers

(d) A circuit board with 12 active part numbers

(e) A plant with one assembly line where all parts are purchased



C H A P T E R

5 What Went Wrong?

Our task now is not to fix the blame for the past, but to fix the course for the future.

John F. Kennedy

5.1 The Problem

The previous chapters detailed the considerable progress that has been made. So why

name this chapter, “What Went Wrong?” To answer this question, we ask another: After

so much “progress,” why does “Newton’s law of consultants,” which states that

For every expert there is an equal and opposite expert.

still remain in force? Recall that in Chapter 1 approaches to manufacturing management

were broken down into three basic trends:

1. Efficiency trend: This approach started in the early 20th century with the

scientific management movement and the first attempts at modeling

manufacturing processes. Scientific management was dead by the 1920s, but

the efficiency trend persisted quietly for decades until it experienced a huge

resurgence in international attention when the just-in-time (JIT) movement,

having been developed in Japan over the previous three decades, burst on the

corporate scene in the late 1970s. While JIT shared a focus on efficiency with

scientific management, it tended to deemphasize modeling in favor of a focus

on overall philosophy and shop floor methods. Today the efficiency movement

continues under the labels of lean manufacturing and the Toyota production

system (TPS), and it is characterized by an emphasis on visual management,

smooth flow, and low inventory. Like JIT, lean and TPS tend to utilize

benchmarking and imitation rather than mathematical models or computers.

2. Quality trend: This approach dates back to the work of Shewhart, who in the

1930s introduced statistical methods into quality control. From the 1950s to the

1980s the movement grew in scope and influence under Juran and Deming, but

it remained rooted in statistics and was largely ignored by American industry.

However, quality rode to prominence on the coattails of the JIT movement and,

in the 1980s, became known as total quality management (TQM). Although the

176
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approach was very successful, it was oversold to the point where TQM reduced

quality to a clichéd buzzword, causing a backlash that almost drove the quality

trend from the corporate landscape during the early 1990s. However, it was

resurrected in the latter half of the decade–under the banner of Six

Sigma—when ABB, Allied Signal, General Electric, and others began

implementing a methodology that had originally been developed at Motorola in

the mid-1980s. Six Sigma reconnected the quality trend to its statistical origins,

by focusing on variance identification and reduction. But it has gone on to

evolve into a broader systems analysis framework that seeks to place quality in

the larger context of overall efficiency.

3. Integration trend: This approach began in the 1960s with the introduction of

the computer into manufacturing. Although large-scale organizations had

clearly been “integrated” prior to this, it was only with the advent of material

requirements planning (MRP) that formal integration of flows and functions

became a focus for improving productivity and profitability. In the 1970s, MRP

enjoyed the publicity spotlight that the American Production and Inventory

Control Society (APICS) generated with its “MRP crusade.” But, though

software packages continued to sell, the success of JIT in the 1980s temporarily

eclipsed MRP as a movement. It re-emerged in the 1990s, in expanded form, as

enterprise resources planning (ERP). ERP promised to use the emerging

technology of distributed processing to integrate virtually all business processes

in a single IT application. A “re-engineering” fad and fears of the Y2K bug

fueled demand for these extremely expensive systems. However, once the

millennium passed without disaster, companies started to realize that ERP had

been oversold. Undaunted, ERP vendors (sometimes literally overnight)

transformed their ERP software into supply chain management (SCM) systems.

They continue to offer their vision of computer integration, now under the

banner of SCM.

Today, the current incarnations of these trends all have strong followings. Lean, Six

Sigma, and SCM are each being sold as the solution to productivity problems in both

manufacturing and services, as well as in other sectors such as construction and health

care. The resulting competition between different approaches has fostered excessive

zeal on the part of their proponents. But, as history has shown repeatedly, excessive

zeal tends to result in programs being oversold to the point at which they degenerate into

meaningless buzzwords. The periodic tendency of these trends to descend into marketing

hype is one sign that there is a problem in the state of manufacturing management. The

separation of the three trends into competing systems, a state of affairs that keeps good

ideas from being disseminated, is another indication of this problem.

The crisis can be traced to a single common root—the lack of a scientific framework

for manufacturing management. The resulting confusions are numerous:

1. There is no universally accepted definition of the problem of improving

productivity.

2. There is no uniform standard for evaluating competing policies.

3. There is little understanding of the relations between financial measures (such

as profit and return on investment) and manufacturing measures (such as work

in process, cycle time, output rates, capacity, utilization, variability, etc.).

4. There is little understanding of how the manufacturing measures relate to each

other.
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Hence, there is no system for distinguishing the good from the bad in terms of concepts,

methods, and strategies. Moreover, since the barriers to entry are so low, the manufactur-

ing field is awash with consultants—and since the above relations are so little understood,

the consultants are left relying on buzzwords and “war stories” about how such-and-

such technique worked at company so-and-so. Thus, companies inevitably fall back on

management by imitation and cheerleading. It is no wonder that most of the people

working “in the trenches” sigh knowingly at each new fad, well aware that “this too shall

pass.”

But the practice of operations management need not be dominated by warring per-

sonalities battling over ill-defined buzzwords. In other fields this is not the case. For

instance, consider an engineer designing a circuit with a circuit breaker. The voltage

is 120 volts and the resistance is 60 ohms. What size breaker is needed? The answer

is simple. Since the engineer knows that V = I R (this is Ohm’s law, a fundamental

relationship of electrical science) the breaker must be 120 volts/60 ohms = 2 amperes.

No buzzwords or “experts” required.

Of course, this is a very simple case. But even in more complex environments,

a scientific framework can help to guide decisions. For example, building a highway

bridge is not an exact science, but there are many well-known principles that can be

used to make the process smoother and more risk-free. We know that concrete is very

strong in compression but not in tension. On the other hand, steel is strong in terms

of tension but not when it comes to compression. Consequently, long ago, engineers

designed “reinforced concrete,” something that combines the best of both materials.

Likewise, we know that all stresses must be supported and that there can be no net

torques. Therefore, for a short bridge, a good design is a curved beam that transmits

the stress of the middle of the bridge to the supporting structures. A longer bridge may

require a larger superstructure or even a suspension mechanism. Insights like these do

not completely specify how a given bridge should be built, but they provide a sufficient

body of knowledge to prevent civil engineers from resorting to faddish trends.

In manufacturing, the lack of an accepted set of principles has opened the way

for “experts” to compete for the attention of managers solely on the basis of rhetoric

and personality. In this environment, catchy buzzwords and hyperambitious book titles

are the surest way to attract the attention of busy professionals. For example, Orlicky

(1975) subtitled his book on MRP “The New Way of Life in Production and Inventory

Management,” Shingo (1985) titled his book on SMED (single-minute exchange of die)

“A Revolution in Manufacturing” and Womack and Jones (1991) gave their book on

lean manufacturing the grand title of “The Machine That Changed the World.” While

buzzword campaigns often have good ideas behind them, they almost always oversim-

plify both problems and solutions. As a result, infatuation with the trend of the moment

quickly turns to frustration as the oversold promises fail to materialize, and the disap-

pointed practitioners move on to the next fad.

This characterization of manufacturing management thought as a procession of

trendy fads is certainly a simplification of reality, but only a slight one. Searching for the

phrase “lean manufacturing” or “lean production” on Amazon.com brings up 1,700 titles,

while “supply chain” yields 5,218 and “Six Sigma” brings up 1,484. This glut of books

is marked by volumes distinguished only for their superficial ideas and flashy writing.

While the three major trends identified above show faint signs that “buzzword man-

agement” may eventually be relegated to the manufacturing history books, they have

yet to take a clear step in that direction. In their current incarnations, each of the trends

contains fundamental flaws, which prevent them from serving as comprehensive man-

agement frameworks.
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First we consider the efficiency trend and lean manufacturing. Although this ap-

proach once stressed science and modeling, the current tools of lean are largely quite

simple. For instance, most lean consultants will start by drawing up an elementary value

stream map to identify the muda in the system, then project where the system could go

by preparing a future state map, and finally attempt to bridge the gap by applying a set

of rather standard kaizen events (setup reduction, “5s,” visual controls, kanban, etc.). If

the situation is similar enough to another in which these practices have already been

successfully employed, and if the practitioner is clever enough to recognize the analo-

gous behavior, such efforts are likely to be successful. But in situations that are new, an

experience-based approach like this is probably not going to be innovative enough to

yield a useful solution.

We next consider the quality trend and Six Sigma. In contrast to the efficiency

trend, which evolved from complex to simple, the quality movement has migrated from

simple to sophisticated. In the 1980s, TQM practices (e.g., “quality circles”) were often

criticized as superficial and overly simplistic. But current Six Sigma training places

heavy emphasis on the requisite statistical tools, imparting them over the course of four

36-hour-week “waves” and accompanying the teaching with meaningful improvement

projects. In addition, the architects of Six Sigma training have taken some lessons from

marketing and motivation experts and designated graduates of their programs “black

belts” and their management counterparts “champions.” These catchy labels, as well as

an across-the-board commitment from upper management to fund a massive training

initiative, have contributed much to the success of Six Sigma.

Unfortunately, while Six Sigma provides training in advanced statistics, it does not

offer education on how manufacturing systems behave. For instance, consider a plant with

high inventory levels, poor customer service, and low productivity. The Six Sigma black

belt would approach this scenario by trying to better define the problem (a laudable goal);

performing some measurements; analyzing the data using some kind of experimental

design to determine the “drivers” of the excess in inventory, the poor customer service,

and the low productivity; implementing some changes; and, finally, instituting some

controls. While this process might eventually yield good results, it would be tedious

and time-consuming. In a fast-moving, competitive industry there simply isn’t time to

rediscover the causes of generic problems like high WIP and poor customer service.

Managers and engineers need to be able to invoke known principles for addressing

these. Unfortunately, though they do indeed exist, these principles are not currently a

part of the Six Sigma methodology.

Finally, we consider the integration trend and supply chain management. Because

of its historical connection to the computer, this movement has always tended to view

manufacturing in IT terms: if we collect enough data, install enough hardware, and

implement the right software, the problem will be solved. Whether the software is called

MRP, ERP, or SCM, the focus is on providing accurate and timely information about the

status and location of orders, materials, and equipment, all in order to promote better

decision making.

Unfortunately, what is usually left unsaid when the manufacturing management

problem is described in IT terms is that any software package is going to rely on some

sort of model. And in the case of SCM, as with ERP, MRP II, and all the way back to

MRP, the underlying model has almost always been wrong! Hence, in practice, most

development effort has been directed toward ensuring that the database is not corrupted,

the transactions are consistent, and the user interface is easy (but not too easy) to use. The

validity of the underlying model has received very little scrutiny, since this is not viewed

as an IT issue. As a result, SAP/R3 uses the same underlying model for production
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logistics that was used by Orlicky in the 1960s (i.e., a basic input-output model with

fixed lead times and infinite capacity). Of course, most modern SCM and ERP systems

have added functions to detect the problems caused by the flawed model, but these efforts

are really too little, too late.

5.2 The Solution

The three major trends in manufacturing management contain valuable elements of an

integrated solution, specifically:

1. Six Sigma offers an improvement methodology that involves both upper

management and lower-level information workers. It also recognizes that

improvements are difficult to accomplish (despite the “rah rah” of most

buzzwords) and that there is a body of knowledge that must be taken into

account before one can be effective. Finally, it provides a detailed training

program, along with the expectation that advanced knowledge is required for

success.

2. The lean philosophy promotes the right incentives: focus on the customer,

forget unit cost, look for obviously wasteful practices and eliminate them, and

modify and improve the environment.

3. IT (e.g., SCM and ERP) systems provide the data needed to make rational

manufacturing management decisions.

But there is a key component missing from all of this—a scientific framework that

can make sense of the underlying manufacturing operations. Unlike designers of

electronic circuits and roadway bridges, most Six Sigma black belts, lean practitioners,

and SCM software salespersons simply do not have enough knowledge of the basic

workings of manufacturing systems. These include relationships between cycle time,

production rate, utilization, inventory, work in process, capacity, variability in demand,

variability in the manufacturing process, and so on. Without this knowledge, they are

forced to do one of the following:

1. Analyze the system statistically to determine cause and effect, then implement

certain changes and install controls (this is the Six Sigma approach).

2. Imitate what has been done somewhere else and hope it works again (this is the

lean approach).

3. Install a new software application (this is the IT approach).

Not surprisingly, the success rate of firms using these approaches has been decidedly

mixed. The reason is that practitioners must rely on luck or local genius to make the right

choices for their system. Luck does sometimes come through, but it doesn’t last forever,

so it is rarely a source of sustained success. An in-house genius (e.g., Ohno at Toyota) is

a much more reliable asset, but true geniuses are rare. The rest of us need some kind of

framework to enable us to select and adapt concepts from the major (and minor) trends

and create an effective management system for a given environment.

In this book, we use the term Factory Physics to refer to the necessary framework.

In Part II we will describe the fundamentals of Factory Physics. In Part III we will show

how these fundamentals can be practically applied to improve and control a wide range

of manufacturing systems. In the remainder of this chapter, we will pick up the historical

thread from Chapters 1–4 and discuss the virtues and shortcomings of past approaches

from a factory physics perspective.
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5.3 Scientific Management

Frederick W. Taylor, like many others in the late 19th and early 20th century, placed great

faith in science. Indeed, in view of the remarkable progress made during the previous two

centuries, some felt that all the basic concepts of science had already been established.

In 1894, Albert Michelson stated

The more important fundamental laws and facts of physical science have all been discovered,

and these are now so firmly established that the possibility of their ever being supplanted in

consequence of new discoveries is exceedingly remote . . . . Our future discoveries must be

looked for in the sixth place of decimals.

Lord Kelvin agreed, saying in 1900, “There is nothing new to be discovered in physics

now. All that remains is more and more precise measurement.”

Of course, we know that the entire edifice of physics would come crashing down

within 20 years with the discoveries of relativity and quantum mechanics. But at the

turn of the century, when Taylor and others were promoting scientific management,

it appeared to many that physics had been a complete and unqualified success. The

new sciences of psychology and sociology were expected to follow a similar pattern.

Therefore, it was both plausible and popular to propose that science could bring the same

kind of success to management that it had brought to physics.

In hindsight, however, it appears that scientific management had more in common

with today’s buzzword approaches to management than to the scientific fields of the

time. Like modern buzzwords, “scientific management” was a very popular term, and

it gave consultants a “scientific” mandate to sell their services. It was only vaguely

defined, and could therefore be promoted as “the” solution to virtually all management

problems. But, unlike in modern science, Taylor made many measurements but did little

experimentation. He developed formulas, but did not unify them in any kind of general

theory. Indeed, neither Taylor nor any of his contemporaries ever posed the descriptive

question of how manufacturing systems behave. Instead, they focused on the immediate

prescriptive question of how to improve efficiency.

As a result, the entire stream of work spawned by the original scientific management

movement followed the same frameless, prescriptive approach used by Taylor. Instead of

asking progressively deeper questions about system behavior, researchers and practition-

ers simply addressed the same worn problem of efficiency with ever more sophisticated

tools. For example, in 1913, Harris published his original EOQ paper and established

a precise mathematical standard for efficiency research with his famous “square root

formula” for the lot-sizing problem. While elegant, this formula relied on assumptions

that—for many real-world production systems—were highly questionable. As we dis-

cussed in Chapter 2, these unrealistic assumptions included

� A fixed, known setup cost
� Constant, deterministic demand
� Instantaneous delivery (infinite capacity)
� A single product or no product interactions

Because of these assumptions, EOQ makes much more sense applied to purchasing

environments than to the production environments for which Harris intended it. In a

purchasing environment, setups (i.e., purchase orders) may adequately be characterized

with a constant cost. However, in manufacturing systems, setups cause all kinds of other

problems (e.g., product mix implications, capacity effects, variability effects), as we will

discuss in Part II. The assumptions of EOQ completely gloss over these important issues.



182 Part I The Lessons of History

Even worse than the simplistic assumptions themselves was the myopic perspective

toward lot sizing that the EOQ model promoted. By treating setups as exogenously

specified constraints to be worked around, the EOQ model and its successors blinded

operations management researchers and practitioners to the possibility of deliberately

reducing the setups. It took the Japanese, approaching the problem from an entirely

different perspective, to fully recognize the benefits of setup reduction.

In Chapter 2 we discussed similar aspects of unrealism in the assumptions behind

the Wagner–Whitin, base stock, and (Q, r ) models. In each case, the flaw of the model

was not that it failed to begin with a real problem or a real insight. Each of them did. As

we have noted, the EOQ insight into the trade-off between inventory and setups sheds

light on the fundamental behavior of a plant. So does the (Q, r ) insight into the trade-off

between inventory (safety stock) and service. However, with the fascination for all things

scientific, the insights themselves were rapidly sidelined by the mathematics. Realism

was sacrificed for precision and elegance. Instead of working to broaden and deepen the

insights by studying the behavior of different types of real systems, experts turned their

focus to faster computational procedures for solving the simplified problems. Instead

of working to integrate disparate insights into a strategic framework, they concentrated

on ever smaller pieces of the overall problem in order to achieve neat mathematical

formulas. Such practices continued and flourished for decades under the heading of

operations research.

Fortunately, by the late 1980s, stiff competition from the Japanese, Germans, and

others drove home to academics and practitioners alike that a change was necessary.

Numerous distinguished voices called for a new emphasis on operations. For instance,

professors from Harvard Business School stressed the strategic importance of operational

details (Hayes, Wheelwright, and Clark 1988, 188):

Even tactical decisions like the production lot size (the number of components or subassem-

blies produced in each batch) and department layout have a significant cumulative impact on

performance characteristics. These seemingly small decisions combine to affect significantly

a factory’s ability to meet the key competitive priorities (cost, quality, delivery, flexibility,

and innovativeness) that are established by its company’s competitive strategy. Moreover,

the fabric of policies, practices, and decisions that make up the manufacturing system cannot

easily be acquired or copied. When well integrated with its hardware, a manufacturing system

can thus become a source of sustainable competitive advantage.

Their counterparts across town at the Massachusetts Institute of Technology agreed,

calling for operations to play a larger role in the training of managers (Dertouzos, Lester,

and Solow 1989, 161):

For too long business schools have taken the position that a good manager could manage

anything, regardless of its technological base. . . . Among the consequences was that courses

on production or operations management became less and less central to business-school

curricula. It is now clear that this view is wrong. While it is not necessary for every manager to

have a science or engineering degree, every manager does need to understand how technology

relates to the strategic positioning of the firm . . .

But while observations like these led to an increased consensus that operations

management was important, they did not yield agreement on what should be taught

or how to teach it. The old approach of presenting operations solely as a series of

mathematical models has today been widely discredited. The pure case study approach

is still in use at some business schools and may be superior because cases can provide

insights into realistic production problems. However, covering hundreds of cases in a

short time only serves to strengthen the notion that executive decisions can be made
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with little or no knowledge of the fundamental operational details. The factory physics

approach in Part II is our attempt to provide both the fundamentals and an integrating

framework. In it we build upon the past insights surveyed in this section and make use of

the precision of mathematics to clarify and generalize these insights. Better understanding

builds better intuition, and good intuition is a necessity for good decision making. We are

not alone in seeking a framework for building practical operations intuition via models

(see Askin and Standridge 1993, Buzacott and Shanthikumar 1993, and Suri 1998 for

others). We take this as a hopeful sign that a new paradigm for operations education is

finally emerging.

Ironically, the main trouble with the scientific management approach is that it is

not scientific. Science involves three main activities: (1) observation of phenomena, (2)

conjecture of causes, and (3) logical deduction of other effects. The result of the proper

application of the scientific method is the creation of scientific models that provide a

better understanding of the world around us. Purely mathematical models, not grounded

in experiment, do not provide a better understanding of the world. Fortunately, we may

be turning a corner. Practitioners and researchers alike have begun to seek new methods

for understanding and controlling production systems.

5.4 The Rise of the Computer

Because the stream of models spawned by the scientific management movement did not

provide practical solutions to real-world management problems, it was only a matter of

time before managers turned to another approach. The emergence of the digital computer

provided what seemed like a golden opportunity. The need of manufacturing managers

for better tools intersected with the need of computer developers for applications, and

MRP was born.

From at least one perspective, MRP was a stunning success. The number of MRP

systems in use by American industry grew from a handful in the early 1960s to 150 in

1971 (Orlicky 1975). The American Production and Inventory Control Society (APICS)

launched its MRP crusade to publicize and promote MRP in 1972. By 1981, claims were

being made that the number of MRP systems in America had risen as high as 8,000 (Wight

1981). In 1984 alone, 16 companies sold $400 million in MRP software (Zais 1986). In

1989, $1.2 billion worth of MRP software was sold to American industry, constituting

just under one-third of the entire American market for computer services (Industrial

Engineering 1991). By the late 1990s, ERP had grown to a $10 billion industry—ERP

consulting did even bigger business—and SAP, the largest ERP vendor, was the fourth-

largest software company in the world (Edmondson and Reinhardt 1997). After a brief

lull following the Y2K nonevent, ERP sales picked up, exceeding $24 billion in revenue

in 2005. So, unlike many of the inventory models we discussed in Chapter 2, MRP was,

and still is, used widely in industry.

But has it worked? Were the companies that implemented MRP systems better off

as a result? There is considerable evidence that suggests not.

First, from a macro perspective, American manufacturing inventory turns remained

roughly constant throughout the 1970s and 1980s, during and after the MRP crusade

(Figure 5.1). (Note that inventory turns did increase in the 1990s, but this is almost cer-

tainly a consequence of the pressure to reduce inventory generated by the JIT movement,

and not directly related to MRP.) On the other hand, it is obvious that many firms were

not using MRP during this period; so while it appears that MRP did not revolutionize
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Inventory turns from 1960

to 2003.

the efficiency of the entire manufacturing sector, these figures alone do not make a clear

statement about MRP’s effectiveness at the individual firm level.

At the micro level, early surveys of MRP users did not paint a rosy picture either.

Booz, Allen, and Hamilton, in a 1980 survey of more than 1,100 firms, reported that

much less than 10 percent of American and European companies were able to recoup

their investment in an MRP system within 2 years (Fox 1980). In a 1982 APICS-funded

survey of 679 APICS members, only 9.5 percent regarded their companies as being class

A users (Anderson et al. 1982).1 Fully 60 percent reported their firms as being class C

or class D users. To appreciate the significance of these responses, we must note that

the respondents in this survey were all both APICS members and materials managers—

people with strong incentive to see MRP in as good a light as possible! Hence, their

pessimism is most revealing. A smaller survey of 33 MRP users in South Carolina arrived

at similar numbers concerning system effectiveness; it also reported that the eventual total

average investment in hardware, software, personnel, and training for an MRP system

was $795,000, with a standard deviation of $1,191,000 (LaForge and Sturr 1986).

Such discouraging statistics and mounting anecdotal evidence of problems led many

critics of MRP to make strongly disparaging statements. They declared MRP the “$100

billion mistake,” stating that “90 percent of MRP users are unhappy” with it that “MRP

perpetuates such plant inefficiencies as high inventories” (Whiteside and Arbose 1984).

This barrage of criticism prompted the proponents of MRP to leap to its defense.

While not denying that it was far less successful than they had hoped when the MRP

crusade was first launched, they did not attribute this lack of success to the system itself.

The APICS literature (e.g., Orlicky as quoted by Latham 1981), cited a host of reasons for

most MRP system failures but never questioned the system itself. John Kanet, a former

materials manager for Black & Decker who wrote a glowing account of its MRP system

in 1984 (Kanet 1984), but had by 1988 turned sharply critical of MRP, summarized the

excuses for MRP failures as follows.

For at least ten years now, we have been hearing more and more reasons why the MRP-based

approach has not reduced inventories or improved customer service of the U.S. manufacturing

sector. First we were told that the reason MRP didn’t work was because our computer records

were not accurate. So we fixed them; MRP still didn’t work. Then we were told that our

1The survey used four categories proposed by Oliver Wight (1981) to classify MRP systems: classes A,

B, C, and D. Roughly, class A users represent firms with fully implemented, effective systems. Class B users

have fully implemented but less than fully effective systems. Class C users have partially implemented,

modestly effective systems. And class D users have marginal systems providing little benefit to the company.
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master production schedules were not “realistic.” So we started making them realistic, but

that did not work. Next we were told that we did not have top management involvement; so

top management got involved. Finally we were told that the problem was education. So we

trained everyone and spawned the golden age of MRP-based consulting (Kanet 1988).

Because these efforts still did not make MRP effective, Kanet and many others

concluded that there must be something more fundamentally wrong with the approach.

The real reason for MRP’s inability to perform is that MRP is based on a flawed model.

As we discussed in Chapter 3, the key calculation underlying MRP is performed by using

fixed lead times to “back out” releases from due dates. These lead times are functions

only of the part number and are not affected by the status of the plant. In particular, lead

times do not consider the loading of the plant. An MRP system assumes that the time for

a part to travel through the plant is the same whether the plant is empty or overflowing

with work. As the following quote from Orlicky’s original book shows, this separation

of lead times from capacity was deliberate and basic to MRP (Orlicky 1975, 152):

An MRP system is capacity-insensitive, and properly so, as its function is to determine what

materials and components will be needed and when, in order to execute a given master

production schedule. There can be only one correct answer to that, and it cannot therefore

vary depending on what capacity does or does not exist.

But unless capacity is infinite, the time for a part to get through the plant does depend

on the loading. Since all plants have finite capacity, the fixed-lead-time assumption is

always, at best, only an approximation of reality. Moreover, because releasing jobs too

late can destroy the desired coordination of parts at assembly or cause finished products

to come out too late, there is strong incentive to inflate the MRP lead times to provide a

buffer against all the contingencies that a part may have to contend with (waiting behind

other jobs, machine outages, etc.). But inflating lead times lets more work into the plant,

increases congestion, and increases the flow time through the plant. Hence, the result is

yet more pressure to increase lead times. The net effect is that MRP, touted as a tool to

reduce inventories and improve customer service, can actually make them worse. It is

quite telling that the flaws Kanet pointed out more than 20 years ago are still present in

most MRP and ERP systems.

This flaw in MRP’s underlying model is so simple, so obvious, that it seems incred-

ible we could have come this far without noticing (or at least worrying about) it. Indeed,

it is a case in point of the dangers of allowing the mathematical model to replace the

empirical scientific model in manufacturing management. But to some extent, we must

admit that we have the benefit of 20–20 hindsight. Viewed historically, MRP makes per-

fect sense and is, in some ways, the quintessential American production control system.

When scientific management met the computer, MRP was the result. Unfortunately, the

computer that scientific management met was the computer of the 1960s and had very

limited power. Consequently, MRP is poorly suited to the environment and computers

of the 21st century.

As we pointed out in Chapter 3, the original, laudable goal of MRP was to explicitly

examine dependent demand. The alternative, treating all demands as independent and

using reorder point methods for lower-level inventories, required performing a bill-of-

material explosion and netting demands against current inventories—both tedious data

processing tasks in systems with complicated bills of material. Hence there was strong

incentive to computerize.

The state-of-the-art in computer technology in the mid-1960s, however, was an

IBM 360 that used “core” memory with each bit represented by a magnetic doughnut

about the size of the letter o on this page. When the IBM 370 was introduced in 1971,
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integrated circuits replaced the core memory. At that time a 1
4

inch-square chip would

typically hold less than 1,000 characters. As late as 1979, a mainframe computer with

more than 1,000,000 bytes of RAM was a large machine. With such limited memory,

performing all the MRP processing in RAM was out of the question. The only hope for

realistically sized systems was to make MRP transaction-based. That is, individual part

records would be brought in from a storage medium (probably tape), processed, and then

written back to storage. As we pointed out in Chapter 3, the MRP logic is exquisitely

adapted to a transaction-based system.

Thus, if one views the goal as explicitly addressing dependent demands in a

transaction-based environment, MRP is not an unreasonable solution. The hope of the

MRP proponents was that through careful attention to inputs, control, and special cir-

cumstances (e.g., expediting), the flaw of the underlying model could be overcome and

MRP would be recognized as representing a substantial improvement over older pro-

duction control methods. This was exactly the intent of MRP II modules like CRP and

RCCP. Unfortunately, these were far from successful, and MRP II was roundly criticized

in the 1980s, while Japanese firms were strikingly successful by going back to methods

resembling the old reorder point approach. JIT advocates were quick to sound the death

knell of MRP.

But MRP did not die, largely because MRP II handled important nonproduction

data maintenance and transaction processing functions, jobs that were not replaced by

JIT. So MRP persisted into the 1990s, expanded in scope to include other business

functions and multiple facilities, and was rechristened ERP. Simultaneously, computer

technology advanced to the point where the transaction-based restriction of the old MRP

was no longer necessary. A host of independent companies emerged in the 1990s offering

various types of finite-capacity schedulers to replace basic MRP calculations. However,

because these were ad hoc and varied, many industrial users were reluctant to adopt

them until they were offered as parts of comprehensive ERP packages. As a result, a

host of alliances, licensing agreements, and other arrangements between ERP vendors

and application software developers emerged.

There is much that is positive about the recent evolution of ERP systems. The

integration and connectivity they provide make more data available to decision makers in

a more timely fashion than ever before. Finite-capacity scheduling modules are promising

as replacements for old MRP logic in some environments. However, as we will discuss in

Chapter 15, scheduling problems are notoriously difficult. It is not reasonable to expect

a uniform solution for all environments. For this reason, ERP vendors are beginning

to customize their offerings according to “best practices” in various industries. But the

resulting systems are more monolithic than ever, often requiring firms to restructure their

businesses to comply with the software. Although many firms, conditioned by the BPR

movement to think in revolutionary terms, seem willing to do this, it may be a dangerous

trend. The more firms conform to a uniform standard in the structure of their operations

management, the less they will be able to use it as a strategic weapon, and the more

vulnerable they will be to creative innovators in the future.

By the late 1900s, more cracks had begun to appear in the ERP landscape. In

1999, SAP AG, the largest ERP supplier in the world, was stung by two well-publicized

implementation glitches at Whirlpool Corp., resulting in the delay of appliance shipments

to many customers, particularly Hershey Foods Corp. As a result, the shelves of candy

retailers were empty just before Halloween. Meanwhile, several companies decided to

pull the plug on SAP installations costing between $100 and $250 million (Boudette

1999). Finally, a survey by Meta Group of 63 companies revealed an average return on

investment of a negative $1.5 million for an ERP installation (Stedman 1999).
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However, once the millennium passed without any major software issues, enterprise

resources planning almost immediately became passé. Software vendors replaced their

ERP offerings with supply chain management (SCM) packages almost instantaneously.

The speed and readiness with which they made the switch leads one to wonder just how

much the software was actually altered. Nevertheless, SCM became the hot new fad in

manufacturing. Many firms created VP level positions to “manage” their supply chains.

Legions of consultants offered support. And software sales continued.

As with past manufacturing “revolutions,” hopes were high for SCM. The popular

press was full of articles prophesying that SCM would revolutionize industry by coordi-

nating suppliers, customers, and production facilities to reduce inventories and improve

customer service. But SCM, just like past revolutions, failed to deliver on the promises

made in its behalf and ERP returned along with SCM, thereby further confusing the

issue. During the 1990s and early 2000s a number of surveys showed improvement in

the implementation of information technology although the performance remains below

expectations.

A survey, now known as the “Chaos Report,” conducted by the Standish Group

in 1995, showed that over 31 percent of all IT projects are canceled before they get

completed and that almost 53 percent of the projects would cost 189 percent of their

original estimates. Moreover, only 16 percent of software projects were completed on-

time and on-budget. More recently, the Robbins-Gioia Survey (2001) indicated that 51

percent of the companies surveyed thought their ERP implementation was unsuccessful.

The main problem appears to be the inherent complexity of such systems and the lack

of understanding of exactly what the system is supposed to do.

The well-publicized spate of finger-pointing and recriminations that flared between

Nike and i2 in 2001 illustrated the frustration experienced by managers who felt they had

again been denied a solution to their long-standing coordination problem (Koch 2007).

The situation even reached the attention of the top levels of government, as evidenced

when Federal Reserve Chairman Alan Greenspan testified to Congress in mid-February

2001 that a buildup in inventories was anticipated, in spite of the advances in supply-chain

automation.

Despite all this, the original insight of MRP—that independent and dependent de-

mands should be treated differently—remains fundamental. The hierarchical planning

structure central to the construct of MRP II (and to ERP/SCM systems as well) provides

coordination and a logical structure for maintaining and sharing data. However, making

effective use of the data processing power and scheduling sophistication promised by

ERP/SCM systems of the future will require tailoring the information system to a firm’s

business needs, and not the other way around. This would require a sound understanding

of core processes and the effects of specific planning and control decisions on them.

The evolution from MRP to ERP/SCM represented an impressive series of advances

in information technology. However, as in scientific management, the flaw in MRP has

always been the lack of an accurate scientific model of the underlying material flow

processes. The ultimate success of the SCM movement will depend far more on the

modeling progress it promotes than on additional advances in information technology.

5.5 Other “Scientific” Approaches

Neither operations research nor MRP fully succeeded in reaching a systematic solution

to the manufacturing management problem raised by the original scientific management

movement. But this did not put a stop to the search. Over the years a variety of movements
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have attempted to assume the mantle of scientific management, with varying degrees of

success. Below we summarize some of ones that have had a significant impact on current

practice.

5.5.1 Business Process Re-engineering

At its core, business process re-engineering (BPR) was systems analysis applied to

management.2 But in keeping with the American proclivity for the big and the bold,

emphasis was placed heavily on radical change. Leading proponents of BPR defined

it as “the fundamental rethinking and radical redesign of business processes to achieve

dramatic improvements in critical, contemporary measures of performance, such as cost,

quality, service, and speed” (Hammer and Champy 1993). Because most of the redesign

schemes spawned by BPR involved eliminating jobs, it soon became synonymous with

downsizing.

As a buzzword, BPR fell out of favor as quickly as it arose. By the late 1990s it

had been banished from most corporate vocabularies. Still, it left a lasting legacy. The

layoffs of the 1990s, during bad times and good, certainly had a positive effect on labor

productivity. But because the layoffs affected both labor and middle management to an

unprecedented degree, they undermined worker loyalty.3 Moreover, BPR represented

an extreme backlash against the placid stability of the golden era of the 1960s; radical

change was not only no longer feared, it was sought. This paved the way for more

revolutions. For example, it is hard to imagine management embracing the ERP systems

of the late 1990s, which required fundamental restructuring of processes to fit software

as opposed to the other way around, without first having been conditioned by BPR to

think in revolutionary terms.

5.5.2 Lean Manufacturing

Although BPR disappeared quickly, the systems analysis perspective it engendered lived

on. Lean manufacturing practitioners evolved a version of systems analysis—value

stream mapping (VSM)—that had much in common with BPR. Value stream map-

ping is really a variation of an older procedure known as “process flow mapping,” which

provides a visual representation of the process to be studied or improved. VSM starts

by making a “current state map” that identifies a characteristic flow of parts through the

plant and then compares the “value-added” time with the total cycle time of the part. The

results are often stunning, with value-added time being less than 1 percent of the total.

The practitioner then goes on to create a “future state map,” showing how the system

will look once all the improvements are in place. However, while VSM is a useful first

step, it is not a fully developed systems analysis paradigm for the following reasons:

1. There is no exact definition of “value-added,” an omission that frequently leads

to a great deal of wasted time spent arguing about what is value added and what

is not.

2. Value-added time is frequently so short that it does not offer a reasonable target

for cycle time.

2Systems analysis is a rational means–ends approach to problem solving in which actions are evaluated

in terms of specific objectives. We discuss it in greater detail in Chapter 6.
3The enormous popularity of “Dilbert” cartoons, which poke freewheeling fun at BPR and other

management fads, tapped into the growing sense of alienation felt by the workforce in corporate America.

Ironically, some companies actually responded by banning them from office cubicles.
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3. VSM does not provide a means for diagnosing the causes of long cycle times.

4. Even though VSM collects capacity and demand data, it does not compute

utilization and therefore never discovers when a process is facing demand

beyond its capacity.

5. There is no feasibility check for the “future state.”

This is not to say that VSM is not useful—it is. Any improvement project should start

with an assessment of the current state. Hundreds of companies have discovered signif-

icant opportunities by simply using VSM to carefully examine their current processes.

However, once the low-hanging fruit has been harvested, VSM does not offer a means

for identifying further improvements. Taking this further step requires a model that sys-

tematically connects policies to performance. Nothing in the current lean manufacturing

movement is poised to provide such a model.

5.5.3 Six Sigma

Since it purports to be based on the scientific method, Six Sigma has roots in the sci-

entific management movement. But, as we noted earlier, Six Sigma emphasizes only

the experimentation aspect of the scientific method. Lacking an underlying model, it

treats each production system as a “black box” and does not retain the discoveries ob-

tained during experiments. In this regard, Six Sigma specialists are like scientists who

throw away their old data each time they make new observations. Of course, this kind

of approach is ludicrous, from a scientific perspective. But it remains the norm, because

manufacturing practitioners are not scientists. So, instead of promulgating their results

and slowly building an edifice of theory, they view each situation as new and unique.

Little is retained from previous experiences and even less is shared between companies.

Nonetheless, Six Sigma, which started as a means for identifying and reducing

variability in processes, now offers its own systems analysis approach, and it uses some

very sophisticated methods. The method is called DMAIC:

Define the problem.

Measure performance and quantify the problem.

Analyze using mostly statistical techniques.

Improve the situation.

Control, as in “keep the process in control.”

The DMAIC approach is extremely useful in addressing problems that Six Sigma was

originally designed to handle. It shows its quality control roots in the analyze and control

steps. However, like value stream mapping, DMAIC is not a substitute for a general

systems analysis paradigm.

To see why, consider applying the DMAIC approach to the problem of reducing

cycle time (the time for a job to go through the factory). Once some data have been

collected on current cycle times and a quantitative goal has been set, the process calls for

the analyze step to begin. But invariably someone on the improvement team will claim

that the measure step is not complete because insufficient data have been collected.

The reason this occurs is that measuring and analyzing always go together, and cannot

be arbitrarily separated into completely different processes. It simply isn’t possible to

collect all necessary data up front. Instead, the process of measurement and analysis

proceed iteratively as each analyze step leads to more questions.
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Another problem with the analyze step in DMAIC is that it typically uses statistical

methods to determine cause and effect. The authors have observed the dangers of this

while teaching basic Factory Physics to a group of Six Sigma blackbelt candidates,

who had just undergone 2 weeks of conventional Six Sigma training, including design

of experiments and analysis of variance. The group spent 4 days studying the basic

behavior of manufacturing systems (i.e., Part II of this book), and then, on the last day

of the course, the members were assigned a case study in reducing cycle time. In spite

of our efforts to show them the root causes of long cycle times through Factory Physics

theory, every member of the class resorted to designing an experiment to determine the

cause of long cycle times. Evidently, strict devotion to the DMAIC approach had blinded

the group from seeing why cycle times were long.

Ironically, it appears that BPR and Six Sigma, movements that have their roots in

the ultrarational field of systems analysis, may actually have left many manufacturing

professionals more vulnerable to irrational buzzword fads than ever before.

5.6 Where to from Here?

In Part I of the book, and particularly in this last chapter, we have made the following

points:

1. Scientific management has become mathematical management in that it has

reduced the manufacturing management problem to analytically tractable

subproblems, often making use of unrealistic modeling assumptions that

provide little useful guidance from an overall perspective. The mathematical

methods and some of the original insights can certainly still be useful, but we

need a better framework for applying these in the context of an overall business

strategy.

2. Information technology without a suitable model of the flow process is

fundamentally flawed. For instance, MRP is flawed not in the details, but in the

basics, because it uses an infinite-capacity, fixed-lead-time approach to control

work releases. “Patches,” such as MRP II and CRP, may improve the system in

small ways, but they cannot rectify this basic problem. Moreover, the

fundamental flaw of MRP has been carried over into ERP and SCM.

3. Other “scientific” approaches, such as business process re-engineering, have

typically exhorted managers to rethink their processes without providing a

framework for doing so. These approaches ended in becoming too closely

identified with exclusively radical solutions and downsizing to provide a

balanced alternative.

4. Lean manufacturing provides many useful tools for improving operations.

But the methodology is one of imitation and, as such, does not offer a general

approach for improving any operation, nor does it offer a comprehensive

systems analysis paradigm. Value stream mapping provides a good start in that

direction but does not go far enough to provide solutions to many real problems

(e.g., practical lot sizing and stock setting).

5. Six Sigma is based on the scientific method, particularly the experimentation

step. However, Six Sigma does not provide a paradigm for organizing and

retaining the knowledge obtained from experiments. Moreover, while the

DMAIC procedure is useful in determining causes and implementing variability

controls, it does not offer a comprehensive tool set.
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In practice, it is true that the morphing of JIT and TQM into lean and Six Sigma

has resulted in more robust methods, but what we are left with are still sets of tech-

niques rather than comprehensive systems. Despite many grandiose claims, none of

these methods has reduced Toyota’s successes of the 1980s to a cookbook of rules.

The many creative insights of the JIT and TQM founders need a subtler, more com-

plex framework to be fully understood and applied correctly. They need a science of

manufacturing.

The historical trends contain many of the components needed in a science of manu-

facturing, but not all of them. Indeed, if scientific management had included more science

with its math, if information technology had added a scientific model to its data models, if

“re-engineering” had relied on a full-fledged systems paradigm rather than an overhyped

downsizing program, if lean manufacturing had developed an understanding that went

beyond previous experience, and if Six Sigma constructed a paradigm on which to hang

the results of its experiments, any of these movements might have led to the emergence

of a true science. But since all of them seem to have been stymied by periodic detours

into “buzzword blitzes,” it is left to the manufacturing research and practice community

to step back and apply genuine science to the vital problem of managing manufacturing

systems.

We have no illusions that this will be easy. Americans seem to have a stubborn

faith in the eventual emergence of a swift and permanent solution to the manufactur-

ing problem. Witness the famous economist John Kenneth Galbraith’s echoing of Lord

Kelvin’s overconfidence about physics, Galbraith stating that we had “solved the prob-

lem of production” and could move on to other things (Galbraith 1958). Even though

it quickly became apparent that the production problem was far from solved, faith in

the possibility of a quick fix remained unshaken. Each successive approach to manu-

facturing management—scientific management, operations research, MRP, JIT, TQM,

BPR, ERP, SCM, lean, Six Sigma, and so on—has been sold as the solution. Each one

has disappointed us, but we continue to look for the elusive “technological silver bullet”

which will save American manufacturing.

Manufacturing is complex, large scale, multiobjective, rapidly changing, and highly

competitive. There cannot be a simple, uniform solution that will work well across

a spectrum of manufacturing environments. Moreover, even if a firm can come up

with a system that performs extremely well today, failure to continue improving is

an invitation to be overtaken by the competition. Ultimately, each firm must depend

on its own resources to develop an effective manufacturing strategy, support it with

appropriate policies and procedures, and continue to improve these over time. As

global competition intensifies, the extent to which a firm does this will become not

just a matter of profitability, but one of survival. Factory Physics provides a frame-

work for understanding these core processes and the relationships between performance

measures.

Will we learn from history or will we continue to be diverted by the allure of a

quick fix? Will we bring ideas together within a rational scientific framework or will we

simply continue to play the game making up new buzzwords. Or, worse, will we grow

tired and begin to simply concatenate existing buzzwords, as in the case of the “lean

sigma”?

We believe that the era of science in manufacturing is at hand. As we will show

in Part II, many basic principles governing the behavior of manufacturing systems are

known. If we build on these to provide a framework for the many ideas inherent in the

management trends we have discussed above, we may finally realize the promise of

scientific management: namely, scientific management based on science!
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Discussion Points

1. Consider the following quote referring to the two-machine minimize-makespan scheduling

problem:

At this time, it appears that one research paper (that by Johnson) set a wave of research in

motion that devoured scores of person-years of research time on an intractable problem

of little practical consequence. (Dudek, Panwalkar, and Smith 1992)

(a) Why would academics work on such a problem?

(b) Why would academic journals publish such research?

(c) Why didn’t industry practitioners either redirect academic research or develop effective

scheduling tools on their own?

2. Consider the following quotes:

An MRP system is capacity-insensitive, and properly so, as its function is to determine

what materials and components will be needed and when, in order to execute a given

master production schedule. There can be only one correct answer to that, and it cannot

therefore vary depending on what capacity does or does not exist. (Orlicky 1975)

For at least ten years now, we have been hearing more and more reasons why the MRP-

based approach has not reduced inventories or improved customer service of the U.S.

manufacturing sector. First we were told that the reason MRP didn’t work was because

our computer records were not accurate. So we fixed them; MRP still didn’t work. Then

we were told that our master production schedules were not “realistic.” So we started

making them realistic, but that did not work. Next we were told that we did not have

top management involvement; so top management got involved. Finally we were told

that the problem was education. So we trained everyone and spawned the golden age of

MRP-based consulting. (Kanet 1988)

(a) Who is right? Is MRP fundamentally flawed, or can its basic paradigm be made to work?

(b) What types of environment are best suited to MRP?

(c) What approaches can you think of to make an MRP system account for finite capacity?

(d) Suggest opportunities for integrating JIT concepts into an MRP system.

Study Questions

1. Why have relatively few CEOs of American manufacturing firms come from the

manufacturing function, as opposed to finance or accounting, in the past half century? What

factors may be changing this situation now?

2. In what way did the American faith in the scientific method contribute to the failure to

develop effective OM tools?

3. What was the role of the computer in the evolution of MRP?

4. In which of the following situations would you expect MRP to work well? To work poorly?

(a) A fabrication plant operating at less than 80 percent of capacity with relatively stable

demand

(b) A fabrication plant operating at less than 80 percent of capacity with extremely lumpy

demand

(c) A fabrication plant operating at more than 95 percent of capacity with relatively stable

demand

(d) A fabrication plant operating at more than 95 percent of capacity with extremely lumpy

demand

(e) An assembly plant that uses all purchased parts and highly flexible labor (i.e., so that

effective capacity can be adjusted over a wide range)
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(f) An assembly plant that uses all purchased parts and fixed labor (i.e., capacity) running at

more than 95 percent of capacity

5. Could a breakthrough in scheduling technology make ERP the perfect production control

system and render all JIT ideas unnecessary? Why or why not?

6. What is the difference between romantic and pragmatic JIT? How may this distinction have

impeded the effectiveness of JIT in America?

7. Name some JIT terms that may have served to cause confusion in America. Why might such

terms be perfectly understandable to the Japanese but confusing to Americans?

8. How long did it take Toyota to reduce setups from three hours to three minutes? How

frequently have you observed this kind of diligence to a low-level operational detail in an

American manufacturing organization?

9. How would history have been different if Taiichi Ohno had chosen to benchmark Toyota

against the American auto companies of the 1960s instead of using other sources (e.g.,

Toyota Spinning and Weaving Company, American supermarkets, and the ideas of Henry

Ford expressed in the 1920s)? What implications does this have for the value of

benchmarking in the modern environment of global competition?
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A theory should be as simple as possible, but no simpler.
Albert Einstein
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6 A Science of

Manufacturing

I often say that when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but have scarcely, in your thoughts, advanced to the stage of Science,
whatever the matter may be.

Lord Kelvin

6.1 The Seeds of Science

When this book came out in 1996, manufacturing managers were facing confusing times.

Historical approaches to manufacturing management (e.g., classical inventory control,

MRP, and JIT) had proved to be flawed and incompatible. Facing unprecedented compe-

tition and complexity, managers had turned to a range of “experts” in search of solutions.

But the resulting barrage of books, short courses, software packages, videotapes, web-

sites, and other sources pushing competing philosophies and tools served only to deepen

the fog. Never had there been more choices, and less clarity, in the world of manufac-

turing.

While this chaotic environment was bad for managers, it was good for academics.

All science is motivated by the desire to bring order to the world around us. The fact that

manufacturing was so obviously disordered spurred us and other scholars to appeal to

science for guidance. Without the anarchy of manufacturing management in the 1990s, a

science of manufacturing would have remained nascent. But now that it has been loosed

upon the world out of necessity, it is just a matter of time before manufacturing practices

will be guided by logical principles rather than emotional rhetoric.

In this chapter, we examine the foundations of the science of manufacturing and

connect these to the roots of all science. This will provide the perspective we need to

develop specific manufacturing principles in the remaining chapters of Part II.

6.1.1 A Blizzard of Buzzwords

By the mid 1990s, many in manufacturing had come to view their discipline in terms

of a blizzard of management buzzwords (e.g., MRP, MRP II, ERP, JIT, CIM, FMS,

196
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TOC, TQM, BPR) most with an associated guru. Micklethwait and Woolridge (1996)

described this trend in their revealingly titled book The Witch Doctors.
Ten years later, things are not yet substantially better. ERP systems have become

SCM (supply chain management) systems and the only apparent innovation in buzzword

management is that it has advanced beyond the “TLA” (three-letter acronym) stage with

the introduction of new terms such as lean (which is not an acronym at all but a word) and

the introduction of a Greek letter—6σ . These two movements have become so popular

that by 2002 people had begun speaking about “lean Six Sigma,” or, simply, “lean sigma.”

This may indicate a growing weariness with the creation of new buzzwords since it now

suffices to simply concatenate two old buzzwords.

Of course, each buzzword, new and old, offers some kernel of truth or else it would

never have gained favor among practitioners. But the very nature of buzzwords is that of

a silver bullet—a single solution for all situations. As such they provide little balanced

perspective on what works well and when. This has often led to a “management by

bandwagon” mentality with unfortunate results. Employees, battered by one “revolution”

after another, settle into a cynical attitude that “this too will pass.” But undaunted, many

managers continue to believe that someone, somewhere has a magic pill that will solve

all their operations problems. As a result, buzzword books and consultants prosper, but

little real progress is made.

Certainly part of the confusion stems from the excessive hyperbole used by vendors

and consultants to market their wares. Glitzy promotional materials built around vague,

sweeping claims make it difficult for managers to accurately compare systems. However,

we suspect the roots of the problem are deeper than this. We believe that a large measure

of the confusion is a direct consequence of our lack of reliance on the underlying science

of manufacturing.

6.1.2 Why Science?

In a field such as physics, where the objective is to understand the physical universe, the

need for science is obvious. But manufacturing management is an applied field, where

the objective is financial performance, not discovery of knowledge. So why does it need

science?

The simplest response is that many applied fields rely on science. Medicine is based

on biology, chemistry, and other sciences. Civil engineering is premised on statics,

dynamics, and other branches of physics. Electrical engineering depends on the sciences

of electricity and magnetism. In each case, the scientific foundation provides a powerful

set of tools, but is not in itself the complete applied discipline. For example, the practice

of medicine involves much more than simply applying the principles of biology.

More specifically, science offers a number of uses in the context of manufacturing

management.

First, science offers precision. One reason to develop a science of manufacturing

is to provide more precise characterization of how systems will work. Relations that

provide predictions are the basics of science. For example, F = ma is a basic relation of

physics. Probability tools, like those we used to model demand uncertainty in inventory

systems in Chapter 2, are examples of important basics of Factory Physics.

Science also offers intuition. The formula F = ma is intuitive. Double the force

and, for the same mass, acceleration doubles. Elementary school students are required

to take science courses, not so they can calculate the outcome of an experiment, but so

they can better understand the world around them. Knowing that water expands when

it freezes and that expanding ice can crack an engine block convinces one of the need
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for antifreeze (whether or not one can compute the molality of the solution). Similarly,

a manager frequently does not have time to conduct a detailed analysis of a decision.

In such cases, the real value of models is to sharpen intuition. Good intuition enables

managers to focus their energies on issues of maximum leverage.

Finally, science facilitates synthesis of complex systems by providing a unified

framework. For instance, for many years, electricity and magnetism and optics were

thought to be different fields. James Clerk Maxwell unified them with four equations.

In manufacturing, key performance measures, such as work in process and cycle time,

are often treated as if they are independent. But as we will see in Chapter 7, there are

well-defined and useful relationships between these measures. Moreover, manufacturing

enterprises are complex systems involving people, equipment, and money. As such, they

can be reasonably viewed in a variety of ways: as a collection of people with shared values,

as a creative community for developing new products, as a set of interrelated physical

processes, as a network of material flows, or as a set of cost centers. By providing a

consistent framework, a science of manufacturing offers a means to synthesize these

disparate views. Bringing the different parts of a system into an effective whole is close

to the core of the management function.

To further highlight the need for a science of manufacturing, we consider two ex-

amples.

Example: Product Design

Suppose a new product concept involves a 3-kW motor running on standard household

voltage and wiring (120 volts with a 20-ampere breaker). Is this a good idea?

From basic electrical science we know that the fundamental relationship between

power (P), current (I), and voltage (V) is

P = I V

Since the product specifications imply P = 3,000 watts and V = 120 volts, the motor

will draw I = P/V = 3,000/120 = 25 amperes. But this will immediately trip the 20-

ampere breaker. So, science tells us that the proposed design is bad. It also indicates where

changes can be made to come up with a feasible design. Assuming that the power require-

ment is fixed, we can either switch to 220 volts or use thicker wire with a larger breaker.

The point of this example is that basic knowledge of simple relations can be used to

guide the design process. Many design decisions, for products ranging from semiconduc-

tors to bridges, are made on the basis of well-developed theoretical sciences. Although

the underlying sciences differ, they have the following features in common:

1. They offer quantitative relationships describing system behavior

(e.g., P = I V ).

2. They are founded on theories for simple systems, around which theories for

more complex, real-world systems are built (e.g., classical mechanics

relationships are all stated for systems without air resistance or friction).

3. They contain intuitive key relationships. For example, F = ma clearly indicates

that doubling the mass halves the acceleration under a constant force. For a

given set of observations, a much more complex formula than F = ma might

actually fit the data better, but would not provide the same clear insights and

hence would be less powerful.
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Example: Factory Design

Now suppose we are given specifications for a factory instead of for a product. Specif-

ically, suppose the vice president of manufacturing has demanded that a printed-circuit

board (PCB) plant produce

� 3,000 PCBs per week to meet demand.
� An average cycle time (delay between job release and completion) of not more

than 1 week, to maintain responsiveness,
� No overtime (workweek of 40 hours), to keep costs low.

Can it be done?

This time, the answer is not so clear. The equivalent of F = ma for factory design

is not widely known,1 and the factory analogs to the more sophisticated elements of

electrical engineering have not even been developed.

If it did exist, what might a theory of factory design show us? One possibility would

be the relationships necessary to generate the graph in Figure 6.1 for the PCB plant. The

x axis indicates the throughput rate, while the y axis shows the resulting average cycle

time. The three curves show the relationship for the cases of no overtime, 4 hours of

overtime, and 8 hours of overtime per week.

Of course, the immediate answer to any vice president’s request is “Yes!,” but with

the caveat that “we will need to make some changes.” The curves in Figure 6.1 show that

if we insist on no more than 1 week for the average cycle time with no overtime, the best

we can do is 2,600 units per week. If we insist on an average cycle time of less than 1

week and 3,000 units per week, we will need an additional 4 hours per week of overtime.

As long as the plant is characterized by this set of curves, there is no way to comply

with the vice president’s demand. This does not mean it is impossible, only that it cannot

be done with the current plant configuration. Therefore, as was the case in the earlier

electric motor example, the next thing we want from our theory is an indication of what

changes could be made to alter Figure 6.1 to meet the vice president’s requirements.

Notice that the relationships in Figure 6.1 satisfy the previously cited properties of

design sciences: they are quantitative, simple, and intuitive. Even if they were not used to

1A plausible analog to F = ma for factory design does exist, as we will see in Chapter 7, but it is not

sufficient by itself to answer the question posed here.
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answer numerical questions, such as that posed by the vice president of manufacturing,

relationships like these contain valuable management insights. They indicate that efforts

to increase the rate may result in a sharp increase in cycle time. They also show that

adding capacity (in this case overtime) makes cycle time less sensitive to the output rate.

We will conjecture laws that govern this and other behavior in the remainder of Part II.

Finally, let’s consider a third example that illustrates the danger of using slogans in

place of science.

Example: Lean Thinking

Suppose we have a plant that produces a range of products using several process centers

and we want to improve performance by invoking lean production practices. To do this,

we start with two relationships commonly cited as fundamental in the lean literature:

Cycle time = value-added time + non-value-added time

and

Decreased non-value-added time → increased efficiency

From these, it is clear that if we reduce non-value-added time we will both decrease cycle

time and improve efficiency. So suppose we break all the steps in our processes down

into their value-added components and non-value-added components. Further suppose

that we find several process centers whose process times are shorter than the takt (in-

teroutput) time set needed to meet demand and thus are idle part of the time (clearly

a non-value-added activity). To improve efficiency, we remove some of this additional

capacity and shift it to another part of the plant where demand has been rising. We ex-

pect this to save money by making better use of underutilized capacity (both labor and

machines).

But, to our horror, we find that cycle times have not gone down but instead have

increased by almost fivefold! What went wrong?

The problem here is a lack of a meaningful model and a misunderstanding of the

causes of cycle time. The equation

Cycle time = value-added time + non-value-added time

is a tautology. In other words, its truth is self-contained and so offers no more insight

into the state of the world than a statement like:

Everyone in the world is either Hillary Rodham Clinton or is not Hillary Rodham Clinton.

Indeed, the value-added/non-value-added distinction and the related concept that to im-

prove efficiency one must “eliminate waste” (or muda) is essentially vacuous, amounting

to saying “do the right thing.” Of course we want to do this, but the statement offers no

guidance on how to do it. Hence, unless we are very careful, we are likely to decrease

one type of waste only to increase another.

For example, if (as is often the case) the largest component of cycle time is parts

waiting for resources, we can reduce this “waste” by increasing the number of resources

available. But this will mean an increase in “waste” in the form of labor and capital costs.

So, should we do it? The answer is, it depends on the particulars. But what is clear is

that the so-called logic of lean cannot provide any guidance.

Hence, what is really needed is a basic paradigm that enables us to make trade-offs

between different kinds of waste and helps us identify the root causes of the “waste”
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itself. Because this paradigm is fundamental to the way all factories behave, we call it,

Factory Physics.2

6.2 Formal Roots

Before we can develop Factory Physics as a science of manufacturing, we need to step

back and understand what exactly it means to be scientific.

6.2.1 What Is Science?

In 1950, Einstein wrote

Perfection of means and confusion of goals seem to characterize our age.

His observation still seems apt in the postmodern age. We have become technologically

sophisticated, but still seem to lack direction.

If we take several (many?) steps back in philosophy we begin to see why. Beginning

with Aristotle (d. 322 BC), and for nearly 2,000 years thereafter, metaphysics always

involved four “causes”: material, efficient, formal, and final. The material cause is the

material from which an object or system is made. The efficient cause is the thing that

made it. The formal cause is the pattern or essence of the system or object. The final
cause is the end or purpose for which the object or system is made.

During the period commonly called the Enlightenment, the formal and final causes

were virtually eliminated from consideration. This gave rise to a new philosophical

movement known as “materialism,” which stated that the only things that exist are matter

and that all phenomena are the result of material interactions.3

The consequences of this materialistic focus in manufacturing management today

is that we think it very important to study and understand both manufacturing processes

and products but believe that other considerations should be self evident. In every manu-

facturing system, from semiconductor to pharmaceutical, there are experts on processes

and materials. But visionaries who can see the entire picture are rare. As a result, we

can be very lean, or achieve high quality, or provide superior customer service, but have

a hard time balancing all these, apparently, conflicting objectives. To put it into Aris-

totelian terms, we understand the material and efficient causes very well but have little

knowledge about the formal and final causes.

In this light, it is interesting that more than 20 years ago, an underground best seller,

The Goal (Goldratt and Cox 1984), made a major splash by focusing on final causes. The

goal or final cause of a manufacturing system to which the title referred was “to make

money now and in the future.” While this captures the essential purpose of manufacturing

systems, we suggest expanding it to “make money now and in the future in ways that are

consistent with our core values” to preclude making money via immoral means, which

have sadly become all too common in our era.

2Although our focus is on manufacturing, as emphasized in the name Factory Physics, the science with

which we are concerned applies to any network of proceses through which entities (jobs, customers, tasks,

etc.) flow. Hence, the principles developed here are also applicable to many other types of systems, including

service, financial, health care, and so forth.
3The movement had its roots in antiquity with Thales and Democritis but was extrapolated in radical new

ways by Thomas Hobbs and later by David Hume, Denis Diderot, and others.
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6.2.2 “Formal Cause” of Manufacturing Systems

This leaves the “formal cause,” which is “formal” because it deals with an object’s

“form” (i.e., its definition, pattern, or essence). The formal cause defines the object in

terms of fundamental principles or general laws, and so is significant to a scientific view

of manufacturing. In this section we postulate a new formal cause for manufacturing

systems, which serves as a blueprint for the rest of the book.

Essential and Primitive Elements

The formal cause of a production/service system involves two essential elements: de-

mand and transformation. In other words, the essence of any production (or service)

system is to transform material or other resources into goods (or services) in order to

meet a demand. One might think “supply” is also an essential element of a production

system. However, in fundamental terms, a supplier transforms resources into products

and hence is part of the transformation element.

These “forms” are the same whether the system represents a simple operation at a

process center, a single product flow in a plant, or the entire supply chain of a multibillion-

dollar company (see Figure 6.2). The details and complexity vary greatly between sys-

tems, but the essence remains the same.

Buffers

If demand and transformation were perfectly aligned, we would have the “ideal” form:

transformation would exactly meet demand, there would be no inventory, all resources

would have 100 percent utilization, and lead times would equal process time. No excess

or waste of any kind would exist. Unfortunately, in the real world, we can never achieve

this ideal. Because demand is never perfectly aligned with transformation, buffers arise.

A buffer is an excess resource that corrects for misaligned demand and transformation

and takes on one of three forms:

1. Inventory (extra material in the transformation process or between it and the

demand process)

2. Time (a delay between a demand and satisfaction of it by the transformation

process)

3. Capacity (extra transformation potential needed to satisfy irregular or

unpredictable demand rates)

Planned
demand

Planned
demand

Market demand Market demand

Transformation Stock Flow

Distribution

Figure 6.2

Form of a production

system.
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As we will explain in the remainder of Part II, the factor that makes alignment

of demand and transformation impossible in practice is variability. Because both the

demand and transformation processes are subject to variations (customers change their

minds, machines fail, etc.) we can never match them exactly. Hence, we always have

buffers, which inhibit the efficiency of production and service systems. As we will

discuss in detail in Chapters 7 to 9, understanding the underlying causes of variability

and the buffers it begets is essential to the design and management of efficient production

systems.

Philosophically we seek to make actual systems as close as possible to ideal. To

move from philosophy to science, we note that there are two primitive elements that

make up production systems: stocks and flows. A flow represents material or resources

moving through the transformation process, and is essential, since transformation would

be impossible without it. A stock represents material or other resources waiting for

transformation. Stocks are not essential since systems that keep no inventory between

demand and transformation (e.g., a service system) have no stocks.

In these terms inventory buffers are kept in stocks, while the other two buffers, time

and capacity, are related to flows. Demand and transformation are themselves types of

flows: demand is an inflow, while transformation is an outflow. Of course, the specific

nature of flows and stock can vary greatly across systems. But even this highly simplified

formal model can add clarity to our view of production systems, as we illustrate with the

following example.

Example: Buffer Mismanagement

A plant manager, after reading about the benefits of kanban, decides to implement it at

once. Some “kanban squares” are marked out on the floor and the workforce is instructed

as to how many parts are to be maintained in each. As planned, inventory levels and cycle

time immediately begin to drop. But, to the manager’s chagrin, so does the output of the

plant. Soon, the plant is not able to keep up with demand and customer service begins

to drop rapidly.

What went wrong? In the terminology of our formal model, the plant manager

reduced the time buffer without addressing the underlying reason (i.e., variability) that

buffers existed in the first place. As a result, the system was forced to introduce alternative

buffers, which it did by reducing output and hence utilization. This created an undesired

capacity buffer.

The specific causes of and relationships between buffers are examined in the re-

mainder of Part II. For now, we summarize the main insights from our simple formal

model as follows:

1. The two essential parts of a production system are demand and transformation.

2. The two primitive elements of a production system are stocks and flows.

3. If demand and transformation are not perfectly aligned, there will be one or

more buffers.

4. There are only three kinds of buffers:

(a) Inventory

(b) Time

(c) Capacity

5. The usual cause of misalignment between demand and transformation is

variability.
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6.2.3 Models—Prescriptive and Descriptive

The “formal cause” described above is a very primitive descriptive model of a production

system. Because descriptive models simplify complex realities by distilling out essen-

tial behaviors, they are the basis of all science. However, unlike science, engineering

and management are objective-oriented disciplines and hence also require prescriptive

models that help guide decision making.

Prescriptive models are typically derived from a set of mathematical assumptions.

As such, they differ from descriptive models used in the sciences such as physics and

chemistry, which are statements about nature. Although scientific models use mathe-

matics as a language, they are not derived from mathematics. Instead, scientific models

are essentially conjectures about the way things work. The resulting descriptive models

provide the foundation for prescriptive models used by practitioners in applied fields

such as electrical, mechanical, and chemical engineering for guidance in designing and

controlling complex systems (such as chemical plants).

As an example, consider the problem faced by a civil engineer in selecting a bridge

design. Each available design strategy represents a prescriptive solution based on both

experience and models. For instance, over a long span, a suspension bridge is often a good

option. Suspension bridges are supported by cables made of steel, which can accommo-

date enormous tensile stresses but are almost worthless when faced with compression
stresses. In contrast, a shorter span is often better served with a reinforced-concrete

bridge, where the supporting members curve upward slightly, producing compression

stresses in the load-bearing members. Concrete can support large compression stresses

but does not work well under tension.

How do civil engineers know these things? Early in their education, before taking a

course on building large structures, they take a set of engineering science courses. One

of these, statics and dynamics, covers compression and tension forces. Here one learns

how an arch transmits load from its top to its base. Another early course describes the

strength of materials such as steel and concrete. In our parlance, these are descriptive

courses. Only after these basic concepts are understood, does the prospective engineer

begin to take design or prescriptive courses.

One could argue that the models traditionally taught in operations management

courses represent the descriptive model foundation of manufacturing management. Like

the models taught in engineering science courses, they are elementary and are used as

building blocks for more complex systems. However, there is a fundamental difference.

As Little (1992) pointed out, many of the mathematical models used in operations man-

agement and industrial engineering (IE) are tautologies. That is, given a particular set of

assumptions, the system can be proved to behave in a particular manner. The emphasis

is on proper derivation from the assumptions to the conclusions and not on whether the

model is a realistic representation of an actual system. In essence, the truth of the model

is self-contained. Little even demonstrated that a “law” named for himself (and one that

we will explore in Chapter 7) is not a law at all but is a tautology. Since it can be shown

to hold mathematically, there is no more point to checking Little’s law with empirical

data than there is in polling people to confirm that they either are or are not Hillary

Clinton.

Unlike mathematical tautologies, the models taught in engineering science courses

do make conjectures about the outside world. They invite the student to check partic-

ular statements against empirical evidence (and students do exactly this in laboratory

sections). The formula F = ma is one such conjecture. This law is certainly not a
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mathematical tautology; indeed it isn’t even strictly true (it is only correct for speeds

that are slow compared to the speed of light). Nonetheless, it is enormously useful and

is at the heart of many complex engineering models. Important results in physics, such

as F = ma and other Newtonian laws are also remarkable for their simplicity. However,

as any sophomore engineering student can attest, the field of statics and dynamics is

anything but simple, even though it is based solely on a small set of extremely simple

statements about nature.

It is also important to note that no scientific law can ever be proved. Derivation from

first principles is not a proof since the first principles are themselves conjectured laws.

Since we can never observe all possible situations (unlike mathematical induction), we

can never know if our current explanation of observed phenomena is the right one or

whether some other better explanation will come along. If history is any guide, it is a

good bet that all the laws of science we “know” today will eventually be challenged and

overthrown. As “Theodoric of York” (aka Steve Martin) mused

You know, medicine is not an exact science, but we are learning all the time. Why, just fifty
years ago, they thought a disease like your daughter’s was caused by demonic possession
or witchcraft. But nowadays we know that Isabelle is suffering from an imbalance of bodily
humors, perhaps caused by a toad or a small dwarf living in her stomach.

Nonetheless, the practice of science is not as hopeless as it might seem. An unproved or

even refuted law (such as F = ma) can be very useful. The key is to understand where it

does and does not apply. This is why it is important not to seek to verify our hypotheses

but instead to try our best to refute them. The more we refute, the more we learn about

the system and the better the surviving law will be (Polya 1954). We call this process

conjecture and refutation (Popper 1963). In many ways, conjecture and refutation is

to science what “ask why five times” is to JIT/Lean implementation. Both represent

procedures for getting beyond the obvious and down to root causes.

While there is yet no universally accepted basic science of operations management,

a number of researchers and teachers have begun to address this gap (see Askin and

Standridge 1993, Buzacott and Shanthikumar 1993, and Schwarz 1998). This book

represents our attempt to structure a science of manufacturing. Admittedly it is far from

complete. The factory-physics relationships we can offer at this time are a combination of

insights from historical practices, recent developments by researchers and practitioners,

equations from queueing theory, and a few results from our own research. However,

Factory Physics is no buzzword. It is not easy nor does it pretend to offer a solution for all

situations. Factory Physics simply provides the basic relationships among fundamental

manufacturing quantities such as inventory, cycle time, throughput, capacity, variability,

customer service, and so on. It is our belief that understanding these relationships in

the context of a science of manufacturing, even an incomplete one, will better equip the

reader to design and control effective manufacturing enterprises.

6.3 Strategic and Operational Objectives

Descriptive models that help us understand the basic relationships underlying manu-

facturing system behavior are important. But a science of manufacturing is ultimately

an applied discipline whose purpose is to help us better design and manage production

systems. So we must begin with clear objective and then build a modeling framework

with which to evaluate policies.
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6.3.1 Fundamental Objective

We have already stated a “final cause” for the manufacturing system and it serves well

as a fundamental objective:

Make money now and in the future in ways that are consistent with our core values.

We realize that this is a “Mom and apple pie” statement, which is too vague to yield

much concrete guidance. But that is the nature of a fundamental objective. It provides

a point of common ground for all the various stakeholders in the company and helps

define the problem of manufacturing management.

In many organizations, considerable time is spent on developing the fundamental

objective into a mission statement. A good mission statement addresses how the funda-

mental objective is to be attained at the strategic level. For example, the mission statement

of Levi-Strauss is “We will market the most appealing and widely worn casual clothing

in the world.” This brief declaration makes it clear that quality (measured as appeal)

is the dominant competitive dimension for the company. Of course, price, variety, and

service must be competitive, but these are not the reasons Levi-Strauss expects us to buy

their products.

Not all mission statements are so clearly focused. For instance, Amazon.com has the

following as its mission: “Amazon.com seeks to be the world’s most customer-centric

company, where customers can find and discover anything they may want to buy online

at a great price.” But it is clear to anyone who interacts with Amazon that it is variety

above all else that distinguishes the company from its competition. While the mission

statement certainly says this, it also throws in secondary objectives of price and service,

even though Amazon clearly has no intention of being the lowest price or highest service

e-retailer. So, these extra elements in the mission statement distract from Amazon’s true

fundamental objective.

Finally, some mission statements diverge altogether from the fundamental objective.

For example, Mary Kay Cosmetics gives its mission as “to enrich women’s lives” and

Walt Disney’s mission statement is “to make people happy.” While these may be inspiring,

they are not very useful for guiding business decisions.

Hence, while mission statements can be valuable as uplifting slogans, largely for

external consumption, they are not generally part of the process of converting the fun-

damental objective into concrete operational directives.

6.3.2 Hierarchical Objectives

To provide a basis for operations decisions, we need to identify narrower objectives that

support the fundamental objective. To do this, it is useful to define “making money” in

measurable terms by refining our fundamental objective to the following:

Make a “good” return on investment (ROI) over the long term.

This statement still serves as a basic goal upon which the various stakeholders can

agree. It will satisfy stockholders because ROI supports stock price. It will also satisfy

employees at least in one regard, since they will continue to be employed and in a position

to receive better wages. Finally, it implies that customers must be satisfied, because if

they are not, maintaining a good ROI will be impossible over the long run.

Now, to derive more specific supporting objectives, we note that ROI (as well

as profit) is determined by three financial quantities—(1) revenue, (2) assets, and
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(3) costs—as follows:

Profit = revenue − costs

ROI = profit

assets

But these measures are still too high-level for day-to-day plant operation. So we further

reduce revenue, assets, and costs to their factory equivalents of: (1) throughput, the

amount of product sold per unit time (it does no good to make it and not sell it); (2) assets,

particularly controllable assets such as inventory; and (3) costs, consisting of operating

expenditures of the plant, particularly cost variances such as overtime, subcontracting,

and scrap. These three basic measures provide the link between high-level financial

measures (e.g., ROI), and lower-level operations measures (e.g., machine availability)

that are more directly related to manufacturing activities.

We can now trace the links from the fundamental objective to the various sup-

porting subordinate objectives. Figure 6.3 illustrates a sample hierarchy of objectives

that might result from such an exercise. The logic behind this hierarchy follows from

the formulas for ROI and profit. High ROI is achieved via high profit and low assets.

High profit requires low costs and high sales. Low costs imply low unit costs, which

require high throughput, high utilization, and low inventory. As we will see later in

Part II, achieving low inventory while keeping throughput and utilization high requires

variability in production to be kept low. High sales requires a high-quality product that

people want to buy, plus good customer service. High customer service requires fast and

reliable response. Fast response requires short cycle times, low equipment utilization,

and/or high inventory levels. To keep many products available requires high inventory

levels and more (product) variability. However, to obtain high quality, we need less

(process) variability and short cycle times (to facilitate rapid defect detection). Finally,
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on the assets side of the hierarchy, we need high utilization to minimize investment

in capital equipment and low inventory in order to reduce money tied up in stock. As

noted above, the combination of low inventory and high utilization requires low vari-

ability.

Note that this hierarchy contains some conflicts. For instance, we want high inventory

for fast response, but low inventory to keep total assets low so that the return on assets will

be high. We want high utilization to keep assets and unit costs down, but low utilization

for good responsiveness. We want more variability for greater product variety, but less

variability to keep inventory low and throughput high. Despite the reluctance of some

lean consultants to use the “t word,” we have no choice but to make trade-offs to resolve

these conflicts.

Finally, it is useful to observe from Figure 6.3 that short cycle times support both

lower costs and higher sales. This is the motivation behind the emphasis during the

1990s on speed, embodied in practices such as quick response manufacturing. We will

take up the important topic of cycle time reduction in Part III, after establishing basic

relationships involving variability later on in Part II.

6.3.3 Strategic Positioning

To identify the most important leverage points in a manufacturing system, it is not enough

to lay out a list of subordinate objectives that support the fundamental objectives. Not all

of these are of equal importance and, as we noted above, some objectives conflict with

each other. So, we need a framework in which we can prioritize subordinate objectives and

make appropriate trade-offs. Such a framework must incorporate both strategy (because

this determines how we choose to pursue the fundamental objective) and operations

(because these determine the capabilities of the manufacturing system).

To develop such a framework, we return to the expression for ROI, which divides

objectives into those related to increasing revenue and those related to reducing costs and

assets. As Figure 6.3 illustrates, the cost and asset portions of the equation are relatively

straightforward and simple. High utilization (and throughput) plus low inventory are the

keys to cost efficiency in almost all manufacturing settings. While the degree to which

these can be achieved will vary across environments, it is always the case that lower

inventory and higher utilization are better.

The complexity, and hence the need for strategic guidance, is much greater on the

revenue side of the equation. All manufacturing firms make a value proposition to their

customers that is some mix of:

1. Price: While pricing is a management decision that must take into

consideration market competition, it is strongly dependent on unit cost, which

is influenced by a variety of operations policies.

2. Time: A key component of the value a customer receives from a product is lead

time (i.e., speed of delivery), which is determined by manufacturing cycle time

(in make-to-order systems) and inventory control policies (in make-to-stock

systems).

3. Quality: As we will discuss in Chapter 12, quality consists of many dimensions

and can be measured by a variety of ways. Some of these, such as product

design and customer service, may be outside the scope of the manufacturing

function. But others, such as defect rates, are influenced by practices within the

plant.
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4. Variety: Offering more products enables customers to better match purchases to

their tastes (as long as the variety is not so extensive as to overwhelm customers

with too many choices). But variety also introduces complexity and variability,

which increase cost.

These can be thought of as “order winners,” since it is the desirability of products

along these dimensions that enables a firm to make sales. The emphasis given to each

dimension is a function of the firm’s business strategy. For example, the U.S. Postal

Service and Federal Express are both in the mail delivery business. But USPS emphasizes

price, while Fed Ex emphasizes time. Similarly, Kia sells cars predominantly on the basis

of price, while Bentley makes sales based on quality.

The strategic decision of how to prioritize these dimensions is beyond the scope

of the manufacturing problem addressed in this book. But it must be made in order to

determine what operations capabilities are needed. For example, the USPS makes use

of point-to-point delivery in order to minimize transportation costs in support of its low-

price strategy, while Fed Ex makes use of a hub-and-spoke structure to facilitate rapid

delivery in support of its high-service strategy.

Efficient Frontiers

A concept that can help structure our thinking about these trade-offs, as well as the strate-

gic role of operational efficiency, is that of efficient frontiers. For example, Figure 6.4

illustrates the efficient frontier for cost versus delivery speed trade-off negotiated by Fed

Ex and the USPS. Each point on the curve represents the lowest-cost solution (given

current technology) for a given delivery time. Points above this curve are inefficient,

since they represent high-cost solutions, while points below the efficient frontier are

by definition infeasible, since they represent costs that are not achievable with current

technology.

The efficient frontier highlights the strategic need for operational efficiency. A firm

whose offerings lie off the efficient frontier are vulnerable to an efficient competitor

who can charge a lower price for a similar product. As we noted in Chapter 1, this was

exactly the strategy used by Andrew Carnegie to dominate the steel market. By being the

lowest-cost producer of steel (i.e., the only producer on the efficient frontier), he could

charge high prices and make large profits when demand was strong. When demand was

weak, he could undercut the competition on price and drive his competition right out of

the market.

But steel is a commodity, for which almost all competition is on price. In noncom-

modity markets, competition occurs on other dimensions beyond price. For example,

in the package delivery industry, customers are concerned about speed as well as price.

C
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Infeasible
USPS

Fed Ex

Speed

Figure 6.4

A cost-responsiveness

efficient frontier.
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So an efficient frontier of interest is that shown in Figure 6.4. Other efficient frontiers,

showing trade-offs of quality versus cost or variety versus cost, will be of interest in

different market settings.

Notice in Figure 6.4 that the offerings of Fed Ex and USPS are positioned at distant

points on this curve. Both are efficient, but they represent very different balances of

the cost versus speed trade-off. By differentiating their offerings in this way, Fed Ex

and USPS address different segments of the market. USPS satisfies cost-conscious cus-

tomers, while Fed Ex satisfies those in a hurry and willing to pay for speed. The efficient

frontier concept underscores the strategic importance of market differentiation, as well

as operational efficiency.

What differentiates an efficient offering from an inefficient one is the cost of buffering

variability. In an efficient offering, variability is minimized and the three types of buffer—

capacity, time and inventory—are used in the most cost-efficient manner. Hence, from

an operational standpoint, the problem of achieving a point on the efficient frontier is a

matter of appropriately managing system variability and the attendant buffers.

To illustrate this, let us consider a very simple example from Chapter 2—a base

stock system. Recall that the base stock system has one control parameter, the base

stock level. Each time a customer demand occurs, a replenishment order is sent to the

production facility. If there is on-hand inventory available, the customer order is filled

immediately. If no stock is available, the order becomes a backorder. When there are

outstanding backorders, the inventory position (on-hand inventory plus replenishment

orders minus backorders) is negative. This system is illustrated in Figure 6.5.

Under a base stock policy, the inventory position is always equal to the base stock

level. Hence, the base stock level represents the maximum amount of on-hand inventory

we can ever have in the system. The minimum amount of on-hand inventory is zero (i.e.,

when we are stocked out). But, since backorders are unlimited, the inventory position

can become arbitrarily negative.

To delve further into this example, let us assume that the variability of customer

demand and the variability of the production process are not subject to our control, so

that we have only two controls: (1) the base stock level and (2) the rate (capacity) of the

production process. With these, we can strike different balances between the capacity,

inventory, and time buffers.

The base stock level adjusts the balance between inventory and time. For example,

if we set the base stock level at a very high level, then customer service will be very good

(i.e., most customers will have their orders filled from stock and hence will spend no

time waiting for a backorder), but the average on-hand inventory level will be high. If we

set the base stock level very low, the on-hand inventory level will be low, but stockouts

will be frequent and so the average time a customer waits for a backorder will be long.

Inventory

Backorders

Production
Replenishments

Replenishment signals Customer orders

Shipments

Zero

Base stock
level

Figure 6.5

A base stock system fed

by a simple production

process.
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The rate of the production process adjusts the balance between capacity and both

inventory and time. For example, if the production rate is set only slightly above the

demand rate, then the plant will have a hard time keeping up, which will result in long

and highly variable replenishment times. This in turn will either cause long backorder

times (if the base stock level is low) or high inventory levels (if the base stock level

is high). On the other hand, if production rate is set much higher than the demand

rate, replenishment times will be short and predictable. This will enable us to achieve

good customer service (low backorder times) with little inventory. Of course, setting

production rate well above demand rate means that we will invest in a considerable

amount of idle capacity.

These trade-offs are illustrated in Figure 6.6. The x axis represents the average time

a customer order waits on backorder; this is the time buffer of the system. The y axis

represents the average amount of on-hand inventory, measured in months of supply;

this is the inventory buffer. The three different curves represent the trade-off between

inventory and time for the cases where the production rate exceeds the demand rate by

2.5 percent, 5 percent, and 10 percent. Note that reducing the time buffer increases the

inventory buffer, and vice versa, while increasing the capacity buffer reduces both the

time and inventory buffers.

In practical terms, we see that a very small capacity buffer of only 2.5 percent

forces us to have either a large inventory level or a long average backorder time. For

example, if we want the backorder time to be near zero, we will have to carry 5 months

of inventory. Alternatively, if we want inventory to be near zero, we will have to subject

our customers to an average backorder delay of a month.4 If we increase the capacity

buffer to 5 percent, inventory levels and backorder times are somewhat better. We can

have almost no inventory with average backorder times less than 1 month, or we can

have nearly zero average backorder time by carrying only 3 months’ worth of inventory.

Increasing the capacity buffer to 10 percent enables us to run with nearly zero inventory

with an average backorder time of only 1
2

month, or reduce average backorder time to

near zero by carrying only around 1 month of inventory.

4Note that Figure 6.6 shows only average inventory levels and backorder times. If we wanted to set the

inventory level so that there were virtually no waiting at all, we would need around a 6-month supply of

inventory.
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Efficient Policies

While Figure 6.6 illustrates the trade-offs in our simple base stock system, it does not

show us which policy is best. The answer to that question depends both on the market

and our corporate strategy. For instance, if the customers we have decided to target are

not particularly time-sensitive but do care about price, then we should opt for a small

capacity and inventory buffers (i.e., by setting production rate close to demand and using

a small base stock level) and a large time buffer.5

Of course, curves like those in Figure 6.6 exist only in textbooks. These smooth and

continuous curves are the result of the simple underlying system that consists of a single-

station production process coupled with a base stock inventory control policy. With only

two controls (production rate and base stock level) we can easily map out all possible

trade-offs.

In the real world, things are much messier. Actual factories have hundreds or even

thousands of control variables. For example, a firm might adopt kanban, MRP, or a (Q, r )

policy. It might make use of a computer scheduling program or a preventive maintenance

program. It might implement various staffing or operator training programs. For the same

demand profile, same set of machines, same workforce, and so on, each operating policy

will result in some combination of capacity, inventory, and time buffers. For a set of

policies that achieve the same capacity, the outcomes might look like those shown in

Figure 6.7.

Notice that some policies result in outcomes whose inventory and/or time buffer

is larger than another feasible policy’s. These are inefficient policies. A case of such

inefficiency that we have observed frequently in industry occurs when companies who

spend hundreds of millions of dollars to upgrade and integrate information systems,

and then are content to run the plant floor with a collection of homemade spreadsheets

and simplistic inventory policies. Frequently the inventory policy sets a fixed number

of weeks of inventory to hold for all items, which we showed in Chapter 2 is always
wrong! The result is usually too much inventory, with only adequate customer service

levels—an inefficient policy.

To illustrate the danger in settling for an inefficient policy, we have called out two

points in Figure 6.7, one labeled “Inefficient policy” and the other labeled “Efficient

5We will see in Chapter 12 that there are additional reasons related to quality that may make shorter cycle

times attractive. While these complicate the analysis, the basic concept of seeking an appropriate point on an

appropriate efficient frontier remains the same.
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policy.” The inefficient policy results in 33 percent more inventory, with slightly worse

time performance (i.e., longer average wait time) than the efficient policy. Remember

that both points are for the same physical plant, the same machines, the same laborers,

the same customers, and so forth. The only difference between these two points is the

policy used. Clearly, a firm that adopts the efficient policy will have a substantial cost

advantage over a firm using the inefficient policy, even without any improvements in the

physical plant or workforce.

In Figure 6.7 the efficient frontier consists of those points for which there is no

feasible alternative whose buffers are all less than or equal to those achieved by the

policy corresponding to those points. Since there may be a discrete number of candidate

policies, the efficient frontier may consist of a finite number of points, rather than a

smooth curve.

However, even if the current policy is on the efficient frontier, we cannot be com-

placent. The reason is that the efficient frontier is defined only for current technology.

It is always possible to improve production technology in a way that alters the efficient

frontier. For example, Figure 6.8 shows a plant whose efficient frontier is better than that

in Figure 6.7.

Both lean production and Six Sigma deal with the problem of continually improving

production technology. Lean focuses on reducing waste (e.g., by eliminating unnecessary

processing steps, reducing setup times, or improving equipment availability) in order to

increase effective capacity. Six Sigma focuses on reducing variability in the production

process, which lessens the need for costly buffers. However, neither lean nor Six Sigma

provide a framework for prioritizing improvements or for understanding the interactions

between capacity, cycle time, inventory, utilization, and variability.

In Chapters 7–9 and 12, we develop a set of principles that underlie both lean and

Six Sigma and provide a framework for prioritizing improvement alternatives. These

results represent the core of Factory Physics.

6.4 Models and Performance Measures

To develop a science of manufacturing that enables us to identify and prioritize improve-

ment policies, we must (a) understand the relationships between the the three buffers and

variability, and (b) translate this understanding into detailed operational policies. This
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requires the use of models. The challenge is to develop models that are accurate enough

to represent the key relationships, but simple enough to give us good intuition. This is

not a trivial challenge. Indeed, as we noted in Section 6.1.2, it is altogether too easy to

latch on to overly simple models that, at first, appear to be right but are, in fact, wrong.

Much of the remainder of Part II is devoted to models that will underlie our discussion

of operating procedures in Part III. But before developing specific models, we make some

macro observations about models as a whole.

6.4.1 Cost Accounting

The mathematical models one normally studies in a course on operations management

(EOQ, MRP, forecasting models, linear programming models, etc.) are by no means the

only models for measuring performance and evaluating management policies in man-

ufacturing systems. Indeed, some of the most common models used by manufacturing

managers are those related to accounting methods. Although accounting is sometimes

viewed as mere bookkeeping or cost tracking, it is actually based on models and is

therefore subject to the same pitfalls concerning assumptions that face any modeling

exercise.

One of the key functions of cost accounting is to estimate how much individual

products cost to make. Such estimates are widely used to make both long-term decisions

(Should we continue to make this product in house?) and short-term decisions (What

price should we quote to this customer?). But because many costs in manufacturing

systems are not directly attributable to individual products, they can only be estimated

by means of a model.

Direct costs, such as raw materials, are simple to assign. If castings are purchased

and machined into switch housings, then the price of the castings must be included in the

unit cost of the switches. Direct labor can be slightly more difficult to assign if workers

produce more than one type of product. For instance, if a machinist makes two types

of switch housings, then we must decide what fraction of her time she spends on each,

in order to allocate the cost of her time accordingly. But this is still a relatively simple

computation.

The difficulty, and hence the need for a model, arises in the allocation of overhead

costs. Overhead (also called fixed costs or burden) refers to costs that are not directly

associated with products. Mortgage payments on the factory, the salary of the chief

executive officer, the cost of a research and development laboratory, and the cost of the

company mail room are examples of costs that do not vary directly with the production

of individual products. But since they are part of the cost of doing business, they are

indirectly part of the cost of producing products. The challenge is to apportion the

overhead cost among the different products in a reasonable manner.

The traditional approach (model) for allocating overhead costs was to use labor

hours. That is, if a particular product used 2 percent of the hours spent by workers

producing products, then it would be assigned 2 percent of the overhead cost. The

rationale for this was that at the turn of the century, when “modern” accounting techniques

were developed, direct labor and material typically represented up to 90 percent of the

total cost of a product (see Johnson and Kaplan 1987 for an excellent history of accounting

methods). Today, direct labor constitutes less than 15 percent of the cost of most products,

and hence the traditional methods have been increasingly challenged as inappropriate.

The title of the book by Johnson and Kaplan is Relevance Lost.
The leading contender to replace traditional cost accounting techniques is known as

activity-based costing (ABC). ABC differs from traditional methods in that it seeks to
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link overhead costs to activities instead of directly to products. For instance, purchasing

might be an activity that is responsible for overhead costs. By measuring the amount

of purchasing activity in units of purchase orders and then allocating the purchasing

overhead costs to each product on the basis of the fraction of purchase orders it generates,

the ABC approach tries to accurately apportion this part of the overhead cost. Similar

allocations are done for any other portions of the overhead cost that can be assigned to

specific activities. Appendix 6A gives an example illustrating the mechanics of ABC

and contrasting it with the traditional labor-hour approach.

Because ABC divides overhead costs into categories, it can promote better under-

standing, and eventually reduction, of these costs. As such, it is a positive step in the area

of cost modeling. However, it is by no means a panacea. Cost-based models, however

detailed, can sometimes be misleading.

First, there are cases when the allocation of costs is simply a poor modeling focus

from a systems point of view. One of the authors worked in a chemical plant in which

considerable debate and analysis were devoted to determining the price that should be

exchanged for a commodity that was a by-product of one product and a raw material for

another. The users of the commodity argued that the price should be zero since it would

be wasted if they were not using it. The producers of the commodity argued that the users

should pay what it would cost if they had to produce the product themselves. In actuality,

neither of the processes would have been profitable as a stand-alone operation, but they

were quite profitable when taken together. A better focus for the analysis and debate

would have been on how and where to improve yields (how much product produced) of

the two processes.

Second, no matter how detailed the model, it is extremely difficult to accurately

represent the value of limited resources by using a cost-based approach common to all

accounting methodologies. This applies to both the full costing or absorption costing

method described above and variable costing where overhead is not considered.

Full absorption costing is appropriate if we are building a new plant and so are

concerned with all the costs of the plant. Variable costing is suited to operating an

existing plant, where we should concern ourselves only with costs that can be controlled

within a short time frame. For instance, in a new plant, machine and labor costs should all

be considered. If one plan requires more setups and those setups take labor to perform,

then that plan will truly cost more than a plan requiring fewer setups. On the other hand,

in an existing plant we should completely ignore the cost of machines since they have

already been purchased. It is a sunk cost. Managers are sometimes tempted to run more

product on a more expensive machine in order to “recover its cost.” But from an overall

perspective this may not make sense, especially if the more expensive machine is less

suited to running some products than a cheaper one is.

Most product costing (ABC included) is based on fully absorbed and not variable

costs. This can lead to bad decisions. For instance, if a customer is asking for a part that

requires a long time at the process center that currently has the most work, the cost is

great. But if there is demand for an item that flows only through processes that currently

have little work to do, the cost is essentially raw materials cost. In essence, the machines

and labor are both free, since they are there with little else to do. The following example

illustrates the danger of using fully absorbed costs to make production decisions.

Example: Production Planning

Consider a plant consisting of three machines that make two products, A and B, as

illustrated in Figure 6.5. Product A costs $50 in raw material and requires 2 hours on

machine 1 and 2 hours on machine 3. Product B costs $100 in raw material and requires
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Table 6.1 Data for Two-Product Plant Example

Product Raw Material Total Labor Unit Minimum; Maximum

Name Price ($) Cost ($) Hours Cost ($) Demand per Month

A 600 50 4 130 75; 140

B 600 100 4 180 0; 140

2 1
2

hours on machine 2 and 1 1
2

hours on machine 3. Thus, both products require 4 hours

of machine and 4 hours of labor time. Labor cost is $20 per hour (including benefits

etc.). The plant runs an average of 21 days per month with two shifts or 16 hours per

day (workers relieve one another for breaks etc.), for a total of 336 hours per month.

Nonmaterial expenditures to run the plant (labor, supervision, administration, etc.) are

$100,000 per month. Both products sell for $600 per unit and make use of exactly the

same amount of overhead activities. Marketing estimates a demand of no more than

140 units per month for both products. Also, to maintain market position, the company

needs to produce at least 75 units of product A per month. Table 6.1 summarizes the data

for this example.

Suppose we cost the products by using an absorption method and then use these

costs to help plan how much of each product to make. Since both products require the

same number of labor hours and activities, they will receive the same overhead charge

regardless of how we allocate overhead. Since these would not affect the relative costs of

the two products, we can ignore them when choosing between products to produce. The

profit per unit of A sold (neglecting overhead and labor costs) is $600 − $50 = $550,

while the profit per unit of B sold is $600 − $100 = $500. Since A is more profitable, it

would seem that our production plan should favor production of A.

There are 21 × 16 = 336 hours available in a month. Since each unit of B requires

2 hours of time on machines 1 and 3 to produce, maximum monthly production of either

is 336/2 = 168 units. Since potential demand is only 140, it seems reasonable to set

production to maximum demand level for A (140 units per month) which, of course,

meets our minimum demand requirement of 75. This uses up 280 hours per month on

machine 3, leaving 336 − 280 = 56 hours on machine 3 for the production of B. Hence,

we can produce 56/1.5 = 37 units of B per month (actually 37.33, but we round to the

nearest integer quantity).6

The monthly profit from this plan can be computed by multiplying the production

quantities of A and B by their unit profits and subtracting the nonmaterial costs:

Profit = 140($550) + 37($500) − $100,000 = −$4,500

This plan loses money!

Instead of relying on an accounting model, we could have used an optimization

model based on linear programming (see Chapter 16). The idea behind linear pro-

gramming is to formulate a model to maximize profit subject to the demand and capacity

constraints. For this example, the solution results in a plan calling for 75 units of A and

124 units of B per month. Notice that this plan is completely counterintuitive when we

consider the “cost” of the products; we are making more of the lower-profit product!

6Note that we did not have to worry about machine 2, since it is used only by product B. The entire 336

hours per month are available for production of B, which is enough to produce 336/2.5 = 134 units. Hence,

it is capacity on machine 3 that determines how much B we can produce.
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However, the profit from this plan is

Profit = 75($550) + 124($500) − $100,000 = $3,250

which is quite profitable!

The moral of this example is that the value of limited resources depends on how they
are used. A static cost-based model, no matter how detailed, cannot accurately assign

costs to limited resources, such as machines subject to capacity constraints, and therefore

may produce misleading results. Only a more sophisticated optimization model, which

dynamically determines the costs of such resources as it computes the optimal plan, can

be guaranteed to avoid this.

In addition to offering an alternative to the cost accounting perspective, constrained

optimization models are useful in a wide variety of operations management problems.

In Part III, we will specifically address problems related to scheduling, long-range pro-

duction planning, and workforce planning with such models. Methods for analyzing

constrained optimization models, such as linear programming, are therefore key tools

for the manufacturing manager.

6.4.2 Tactical and Strategic Modeling

As useful as models are, it is important to remember that they are only tools, not reality.

The appropriate formulation of a model depends on the decision it is intended to assist.

Parameters that are reasonably considered constrained for the purposes of tactical de-

cision making are often subject to control at the strategic level. Thus, while one model

may be effective in planning production quantities over the intermediate term, another

(possibly still a constrained optimization model) is needed for planning over the long

term. Chapter 13 explains the hierarchical relationship between production planning and

control models in greater detail. Here we will highlight the distinctions between tactical

and strategic planning by means of the previous example.

Because the above example focused on the tactical problem of planning production

over the next month, it made perfect sense to treat capacity and demand as constrained.

Over the longer strategic term, however, both capacity and demand are subject to influ-

ence. Capacity could be increased by adding a third shift or decreased by reducing the

second shift. Price discounts could boost demand, while an announcement of a competing

(e.g., next-generation) product could reduce demand.

Models can clarify the relationships between tactical and strategic decisions and

help ensure consistency between them. For instance, by using the sensitivity analysis

capabilities of linear programming (Chapter 16), we can determine that the constraint to

produce at least 75 units per month of product A is detrimental to profit. In fact, if we

eliminate this constraint and re-solve the model, it generates a plan to produce 68 units

of A and 133 units of B, which yields a monthly profit of $3,900, an increase of $650

per month.

This suggests that we should consider the strategic reasons for the constraint to

produce at least 75 units per month of A. If the reason is a firm commitment to a specific

customer, it may be necessary. But if it is only an approximation of the number needed

to meet our commitments, then using a lower limit of 68 might be just as reasonable,

and more profitable.

Another piece of information provided by the sensitivity analysis function of linear

programming is that for every additional hour of time available at machine 3 (up to

7 extra hours per day), profits increase by $275. Since overtime does not cost nearly
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$275 per hour, we should probably consider adding some to the short-term plan. But in

the longer term, the tactical decision of whether to use overtime relates to the strategic

decisions of whether to increase the size of the workforce, add equipment, subcontract

production, and so on. Thus, the model also suggests that these be considered as potential

future options.

Effective planning calls for the use of different models for different problems and

coordination between models. A tactical model, such as the constrained optimization

model used earlier to generate a production plan for the next few months, can provide

intuition (i.e., what variables are important), sensitivity information (i.e., where there

is leverage), and data (e.g., identification of the current bottleneck resource) for use in

strategic planning. Conversely, a strategic model, such as a long-term capacity plan-

ning model, can provide data (e.g., capacity constraints) and suggest alternatives (e.g.,

dynamic subcontracting) for use at the tactical level. We will discuss coordination in

Chapter 13 and specific models for various levels throughout Part III.

6.4.3 Considering Risk

There are many sources of uncertainty in manufacturing management situations, in-

cluding demand fluctuations, disruptions in materials procurement, variable yield loss,

machine breakdowns, labor unrest, actions by competitors, and so on. In some cases,

uncertainty should be explicitly represented in models. In other cases, as we will see

in Part III, uncertainty can be safely ignored in the modeling process. But in all cases

related to both modeling and management, the existence of uncertainty makes it essential

to consider in some fashion what will happen if an assumption fails to hold.

As a high-level strategic example, consider the experience of a major American

automobile manufacturer. In the late 1970s and early 1980s, many people in the corpo-

ration recognized a need to invest in improved product quality and proposed product and

process changes to achieve this. However, funding for many of these projects was denied

as not financially justified. The implicit assumption on the part of the corporate staff

was that the competitive position of the company’s products relative to the competition

would remain unchanged. Hence, the cost of such products could not be justified by the

promise of greater sales revenues. But when the competition upgraded the quality of its

products at a faster pace than anticipated, the corporation experienced a disastrous loss of

market share, and only in the 1990s, after a decade of huge losses and widespread plant

closings, did the company return to profitability (but nowhere near its former market

share). Today the future of that company is very uncertain.

The flaw in the firm’s analysis was fundamental. The quality improvement projects

were evaluated on the basis of their potential to improve profits instead of their need to

avoid lost profits. Thus, management failed to consider adequately what would happen if

the competition outpaced the company by offering better products. Product and process

improvement should not have been viewed as an option for increased profitability but

rather as a constraint to stay in business.

The procedure of evaluating the potential negative consequences in an uncertain

situation is known as risk analysis and has been widely used in riskier industries such as

petroleum exploration. Using a model, the analyst conjectures several possible scenarios

and assigns a probability of each occurring.7 Since the scenarios often involve strate-

gic moves on the part of the competition, such analyses are generally undertaken by a

7One can also perform scenario analysis without the use of probabilities for contingency planning. See,

for example, Wack (1985).
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senior manager working with a technical expert and a model. One approach for evalu-

ating potential decisions is to weight the various outcomes with the probabilities and to

compute an expected value of some performance measure (e.g., profit). An alternative,

and sometimes more realistic, approach is to examine the various scenarios and choose

a course of action that prevents really bad things from happening. This is the minimax

(i.e., minimize the maximum damage) strategy that is often used by the military.

Had the previously mentioned automotive company employed a minimax strat-

egy, most likely it would have approved many more product and process improvement

projects than it did, as a hedge against improvements by the competition. Of course,

since hindsight is 20/20, it is easy for us to say this in retrospect. The best policy is

generally not obvious in advance. Indeed, the primary job of upper-level management is

to chart reasonable long-term strategies in the face of considerable uncertainty about the

future. These executives are highly paid in large part because their task is so difficult.

(The question of whether they are smart or just lucky is moot so long as the company is

successful.)

At the plant level, operations managers must perform an analogous function to that

of upper management, only with a shorter time horizon and on a smaller scale. For

example, consider the commonly faced operations problem of selecting machines for a

new line.

6.5 A Methodology for Improvement

Before leaving this topic, we offer a methodology that we have used to help companies

to quickly improve their operations and to make those improvements stick. Keeping in

mind the ideas of efficient frontiers, we can state the methodology as four steps:

1. Where are we compared to the efficient frontier and how far off are we?

2. What can be done to put us back on the efficient frontier? What can be done to

improve the frontier curve?

3. Change the system (e.g., controls, buffers, variability reduction) to put us on the

(improved) efficient frontier.

4. Implement management systems to stay on the frontier.

The first step begins with a simple lean technique discussed in Chapter 5 known as

value stream mapping. This involves making a process map of both the material and

information flows. The result is a visual map of the entire system along with a source

of data.8 The data collected can then be used in a Factory Physics analysis tool called

absolute benchmarking and is discussed in Chapter 7 for flows and in Chapter 17 for

stocks. This step shows where we are compared to where we could and should be.

The second step is the use of Factory Physics models in order to “experiment”

with the factory without actually experimenting with the factory.9 In other words, we

experiment with models. If our model is an accurate representation of the factory, then

when we change something in the model and it results in a good improvement doing the

8We stop with the “current state map” and do not create a “future state map” because we do not yet have

a model to tell us what will happen when we make certain changes. It seems pointless to spend effort

predicting the “future state” when, in all but the simplest cases, no one really knows how well the proposed

changes will work. Without using some sort of model, people who do this are just making things up!
9Actually experimenting with the factory can be a very career-limiting option, particularly when the

experiment goes awry.
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same change in the factory should also result in a good improvement. If the result is bad,

you go on to the next idea!

It is important to realize that most of the models in this book are for intuition building

and are not typical of models needed to represent realistic manufacturing systems. The

models needed to analyze today’s complex manufacturing systems go beyond simple

value stream maps and even absolute benchmarking. Most of these are computer models

and involve either the use of Monte Carlo simulation, some kind of queueing network

analysis, or a stochastic model of inventories. There are many sources of software that

enable one to build such models. These include Monte Carlo simulation software such

as Arena, AutoMod, ProModel, Simscript, Witness, and many others. There are also

queueing network models such as the Lean Physics Support Tools and MPX. The ad-

vantage of queueing network models is speed. While not as accurate as Monte Carlo

models, they are much faster and easier to use. The Lean Physics Support Tools also

provide inventory models for stocks.

Nonetheless, intuition is key to good modeling. Without good intuition, the model

becomes a “black box” with the analyst randomly changing parameters and hoping for

the best. With good intuition, one knows immediately where to look for improvements.

Developing this intuition is another reason to study Factory Physics.

Once we have experimented with the model, we are ready to implement the improve-

ments. This could be a simple change in policy such as changing lot sizes or inventory

controls. Or it could represent a change to the manufacturing system itself such as re-

ducing setup times at key machines, increasing up times, and so on. The important point

is that having used a model, we have already developed a good design before we begin

making changes.

Changes to the manufacturing system should be implemented with one or more

kaizen events involving all the stakeholders of the process. It is particularly important to

involve the operators for two reasons:

1. Buy-in on the part of the operators. This is very important since these people

will either make the system work or not.

2. The operators have knowledge of details that management and engineering

never will.

Finally, we want to make the improvements stick. There is a joke in consulting

that all one needs is 5 years of clients because after that, one can go back and do it

all over again. The reason many improvements do not last is because the measures

used to evaluate employee performance are not consistent with what we are trying to

accomplish (see Chapter 11). For instance, if we want to achieve better flow, we should

not measure utilization of every machine. If we do, then don’t be surprised when a

fast machine early in the line brings in more material than a slow machine downstream

can handle. The result is high WIP levels, long cycle times, and no real increase in

output.

Another reason for the failure of improvement projects is that they never become

real in that the improvements never become part of the management system. Bob’s cool

spreadsheet or Jill’s scheduling model will not last after Bob and Jill have moved on.

Thus, like it or not, the improvements must become part of the ERP/SCM system that

is used by management. This does not mean that we have to replace the ERP or SCM

system, only that whatever new procedures are developed are both fed by and integrated

into the existing system. This is less difficult than it once was with integration via an

intranet and new data exchange languages such as XML.
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Finally, people need to understand what is going on. Factory Physics is a com-

prehensive framework for understanding manufacturing operations, for analyzing and

improving the manufacturing system, and for improved planning and execution (see

Part III). However, if management does not understand the basics of Factory Physics,

the seemingly radical ideas will never be implemented. Moreover, if the engineers and

managers charged with making the improvements do not have a rather comprehensive

understanding of Factory Physics, the project will fail. Finally, if the operators do not

have a basic understanding of why they are doing what we are doing, it will never work.

Thus, some sort of training program is key to the success of the project.

So the three keys to success of any improvement project are:

1. Measures alignment.

2. Integration into existing management systems.

3. Training operators, engineers, middle managers, and executives.

6.6 Conclusions

This chapter lays the foundation for our factory-physics approach to developing the

basics, intuition, and synthesis skills needed by the modern manufacturing manager.

The main observations about the need for and use of scientific models represented by

this approach are as follows:

1. Manufacturing management needs a science. Although considerable folk

wisdom exists about manufacturing, there is still only a small body of

empirically verified, generalizable knowledge for supporting the design,

control, and management of manufacturing facilities. If we are to move beyond

fads and slogans, researchers and practitioners need to join forces to evolve a

true science of manufacturing.

2. A scientific approach is a valuable manufacturing management tool. By using a

holistic view of the manufacturing enterprise and promoting a clear link

between policies and objectives, improvements are both significant and

predictable.

3. Good descriptive models lead to good prescriptive models. Trying to optimize

a system we do not understand is futile. We need descriptive models to sharpen

our intuition and focus our attention on the parameters with maximum leverage.

Furthermore, policies based on accurate descriptions of system behavior are

more likely to work with, rather than against, the system’s natural tendencies.

Such policies are apt to be more robust than those that try to force the system to

behave unnaturally.

4. Models are a necessary, but not complete, part of a manufacturing manager’s
skill set. Because systems analysis demands that alternatives be evaluated with

respect to objectives, some form of model is needed to make trade-offs for

virtually all manufacturing decision problems. Models can range from simple

quantification procedures to sophisticated optimization and analysis

methodologies. The art of modeling is in the selection of the proper model for a

given situation and the coordination of the many models used to assist the

decision-making process.

5. Cost accounting typically provides poor models of manufacturing operations.
The purpose of accounting is to tell where the money went, not where to spend
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new money. Operations decisions require good characterization of marginal,
not fully absorbed, costs and appropriate consideration of resource constraints.

6. A coherent and unified methodology for improvement must be employed. A

good scientific framework is only the beginning. To be successful there must be

a clear methodology that takes into consideration management issues such as

“measures alignment” as well as integration into existing management systems.

Furthermore, the methodology must provide for training at the appropriate level

of detail for all levels of management and in the workforce.

The remainder of Part II will focus on developing specific models to increase our under-

standing and intuition of the behavior of manufacturing systems. This will allow us to

better design new systems and improve existing ones. Part III will take these concepts

and provide a framework for improved planning and execution.
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Activity-Based Costing (ABC)

There are four basic steps to ABC cost allocation (Baker 1994):

1. Determine the relevant activities.

2. Allocate overhead costs to these activities.

3. Select an allocation base appropriate for each activity.

4. Allocate cost to products using the base.

To illustrate the mechanics of ABC and contrast it with the traditional labor-hour approach, let
us consider an example. Suppose a production facility makes two different products, hot and mild,
and sells 6,000 units per month of hot and 3,000 units per month of mild. Total overhead costs are
$250,000 per month. The plant runs 5,000 hours per month, of which 2,500 hours are devoted to
hot and 2,500 to mild.

Traditional accounting would allocate the overhead equally among the two products because
the number of labor hours devoted to each is the same. Hence, we would add $125,000 to the
total cost of each product. This implies a unit charge of $125,000/6,000 = $20.83 for hot and
$125,000/3,000 = $41.67 for mild. The unit cost of each product would then be computed by
adding these unit overhead charges to the direct material and labor costs per unit. Notice that
because fewer units of mild are produced, this procedure serves to inflate its unit cost more than
that of hot.

Now reconsider the overhead allocation problem, using the ABC approach. Suppose that we
determine that the principal activities that account for the overhead (OH) cost are (1) requisition of
material, (2) engineering support, (3) shipping, and (4) sales. Furthermore, suppose we can allocate
the overhead cost to each activity as follows: $50,000 for requisition, $65,000 for engineering,
$35,000 for shipping, and $100,000 for sales. The base (i.e., unit of measure) for requisition is
the number of purchase orders (a total of 900); for engineering, the number of machine hours
(5,000 hours); for shipping, the number of units shipped (9,000); and for sales, the number of
sales calls made (600). Using these, a cost per base unit can be computed. The overhead allocation
for a given product is then determined by the number of the base units used by that product
times the cost per base unit. Finally, the unit overhead allocation is computed by dividing the total
overhead allocation by the number of units. Table 6.2 summarizes the data and calculations for this
example.

The unit overhead charge for hot is the sum of the “Total OH, Hot” entries divided by the
number of units sold, that is, $155,833/6,000 = $25.97. Similarly, the unit overhead charge for
mild is $94,164/3,000 = $31.38. Notice that while mild still receives a higher unit overhead
charge than hot (because of its smaller volume), the difference is not as great as that resulting from
the traditional labor-hour approach. The reason is that ABC recognizes that because of its higher
volumes, greater effort, and hence cost, in the activities of requisition, engineering, and sales is
devoted to hot. The net effect is to make mild look relatively more profitable than it would under
traditional accounting methods.

Table 6.2 Calculations for ABC Example

Category Requisition Engineering Shipping Sales Sum

Total cost $50,000 $65,000 $35,000 $100,000 $250,000
Units used, hot 600 2,500 6,000 400 —
Units used, mild 300 2,500 3,000 200 —
Unit cost $55.56 $13.00 $3.89 $166.67 —
Total OH, hot $33,336 $32,500 $23,333 $66,667 $155,836
Total OH, mild $16,664 $32,500 $11,667 $33,333 $94,164
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Study Questions

1. What relevance does something as abstract as a “science of manufacturing” have to

manufacturing management?

2. Discuss the “fallacy of affirming the consequent” in which if A implied B and B is true, we

conclude A is true. Give an example from either a beer commercial or a clothing

advertisement.

3. How many consistent observations does it take to prove a conjecture? How many

inconsistent observations does it take to disprove a conjecture?

4. How can the concept of “conjectures and refutations” be used in a practical problem-solving

environment?

5. Give a new example of a tautology.

6. List some dimensions along which manufacturing environments differ. How might these

affect the “laws” governing their behavior? Do you think that a single science of

manufacturing is possible for every manufacturing environment?

7. Indicate how each of the following might promote and impede the objective to maximize

long-run profitability:

(a) Decrease average cycle time

(b) Decrease WIP

(c) Increase product diversity

(d) Improve product quality

(e) Improve machine reliability

(f) Reduce setup times

(g) Enhance worker cross-training

(h) Increase machine utilization

8. Why do you think that many writers in the lean and Six Sigma literature are loath to

acknowledge the existence of trade-offs? Do you think this has had positive, negative, or

both effects?

9. Why might the objective to maximize profits be difficult to use at the plant level?

What advantages, or disadvantages, are there to using “minimize unit cost”

instead?

10. We have suggested net profit and return on investment as firm-level measures. Do these

capture the essence of a healthy firm? What characteristics are not adequately reflected in

these measures? Can you suggest alternatives?

11. We have suggested

� Revenue (total quantity of good product sold per unit time)
� Operating expenses (operating budget of the plant)
� Assets (money tied up in plant, including inventories)

as plant-level measures. How do these translate to the firm-level measures of total

profit and ROI? Are there plant-level activities that are not reflected in the

plant-level measures that affect the firm-level objectives? How might these be

addressed?

12. Why does the distinction between objectives and constraints tend to blur in actual

decision-making practice?

13. Give a specific example where “gaming behavior” (i.e., considering the other guy) is

important in a manufacturing environment.



Chapter 6 Activity-Based Costing (ABC) 225

Problems

1. Consider a two-station production line in which no inventory is allowed between stations (i.e.,

the stations are tightly coupled). Station 1 consists of a single machine that has potential daily

production of one, two, three, four, five, or six units, each outcome being equally likely (i.e.,

potential production is determined by the roll of a single die). Station 2 consists of a single

machine that has potential daily production of either three or four units, both of which are

equally likely (i.e., it produces three units if a fair coin comes up heads and four units if it

comes up tails).

(a) Compute the capacity of each station (i.e., in units per day). Is the line balanced (i.e., do

both stations have the same capacity)?

(b) Compute the expected daily throughput of the line. Why does this differ from your

answer to (a)?

(c) Suppose a second identical machine is added to station 1. How much does this increase

average throughput? What implications might this result have concerning the desirability

of a balanced line?

(d) Suppose a second identical machine is added to station 2 (but not station 1). How much

does this increase average throughput? Is the impact the same from adding a machine at

stations 1 and 2? Explain why or why not.

2. A manufacturer of vacuum cleaners produces three models of canister-style vacuum

cleaners—the X-100, X-200, and X-300—on a production line with three stations—motor

assembly, final assembly, and test. The line is highly automated and is run by three operators,

one for each station. Data on production times, material cost, sales price, and bounds on

demand are given in the following tables:

Material Cost Price Minimum Demand Maximum Demand
Product ($/Unit) ($/Unit) (Units per Month) (Units per Month)

X-100 80 350 750 1,500

X-200 150 500 0 500

X-300 160 620 0 300

Motor Assembly Final Assembly Test
Product (Minimum per Unit) (Minimum per Unit) (Minimum per Unit)

X-100 8 9 12

X-200 14 12 7

X-300 20 16 14

Labor costs $20 per hour (including benefits), and overhead for the line is $460,000 per

month. The current production plan calls for production of X-100, X-200, and X-300 to be

625, 500, and 300 units per month, respectively.

(a) What is the monthly profit that results from the current production plan (i.e., sales

revenue minus labor cost minus material cost minus overhead)?

(b) Estimate the profit per unit of each model, using direct labor hours to allocate the

overhead cost per month. Which product appears most profitable? Is the current

production plan consistent with these estimates? If not, propose an alternative production

plan and compute its monthly profit.
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(c) Suppose overhead costs are categorized into plant and equipment, management,

purchasing, and sales and shipping. Plant and equipment costs use square footage as a

base, where floor space dedicated to specific products (e.g., product-specific inventory

sites) is assigned to individual products, while shared space is allocated equally.

Management costs use labor hours as the base (i.e., as used in part b for all overhead

costs). Purchasing uses purchase orders, where parts ordered for a specific product are

counted toward that product and common parts are divided equally. Sales and shipping

costs are allocated according to customer orders, where, again, orders for unique products

are counted by product and orders for multiple products are split equally. The breakdown

of overhead costs and the allocation of base units by product are given as follows:

Plant and Sales and
Category Equipment Management Purchasing Shipping

Total cost $250,000 $100,000 $60,000 $50,000

Base Square feet Labor hours Purchase orders Customer orders

Total units used 120,000 49,625 2,000 150

Units X-100 40,000 18,125 500 100

Units X-200 50,000 16,500 600 30

Units X-300 30,000 15,000 900 20

(i) Compute the unit profit for each product, using an ABC allocation of overhead cost

based on the above breakdowns. Compare these with the estimates of unit profits

obtained by using a labor-hours allocation scheme.

(ii) Do the ABC unit profits suggest a different production plan? If not, suggest one and

compute its monthly profit and compare to that of the current plan and that

suggested by the labor-hours cost allocation.

(iii) What is wrong with using the approach of computing unit profits for each product

and then using them to produce as much as possible of the most profitable products?
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7 Basic Factory Dynamics

I do not know what I may appear to the world; but to myself I seem to have been only
like a boy playing on the seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.

Isaac Newton

7.1 Introduction

In the previous chapter, we argued that manufacturing management needs a science of

manufacturing. In this chapter, we begin the development of such a science by examining

some basic behavior of production lines. Our intent here is not to specify how to optimize

or improve manufacturing systems, but instead to simply describe how they can and do

behave. Using the descriptive understanding of the factors that influence performance

we develop in Part II, we will address the prescriptive problem of how to improve

performance in Part III.

In this and other chapters of Part II we will adopt the reductionist viewpoint com-

mon to science. That is, we will reduce the complexity of manufacturing systems to a

manageable level by restricting our attention to specific components and behaviors. In

particular, throughout Part II we will focus almost exclusively on production lines. The

reason for this is that lines are simple enough to analyze but complex enough to provide

a realistic link between operational and financial measures. In contrast, a single station

is analytically simple, but only distantly connected to overall financial performance. On

the other end of the spectrum, an entire factory is obviously directly associated with

financial performance, but extremely difficult to analyze. For this reason, the dynamics

of production lines (or process flows) represent the foundation of manufacturing science.

In this chapter, we first characterize production lines in terms of three parameters.

Two of these are simple measurable descriptors of the line, while the third is a more

abstract characterization of the line’s efficiency. Then we examine the extremes of be-

havior (i.e., efficiency) that are possible for a given pair of measurable descriptors. This

leads us to a method for classifying production lines in terms of their efficiency. Finally,

we illustrate by means of a realistic case how this classification scheme can be used to

give an “internal benchmark” against which actual performance can be compared.

But, before we can do all this, we must define our terms.

227
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7.2 Definitions and Parameters

The scientific method requires precise terminology. Unfortunately, manufacturing terms

in industry and the operations management literature are far from standardized. This can

make it extremely difficult for managers and engineers from different companies (and

even the same company) to communicate and learn from one another. What it means for

us is that the best we can do is to define our terms carefully and warn the reader that other

sources will use the same terms differently or use different terms in place of ours.

7.2.1 Definitions

In Part II, we focus on the behavior of production lines, because these are the links

between individual processes and the overall plant. Therefore, the following terms are

defined in a manner that allows us to describe lines with precision. Some of these terms

also have broader meanings when applied to the plant, as we note in our definitions and

will occasionally adopt in Part III. However, to develop sharp intuition about production

lines, we will maintain these rather narrow definitions for the remainder of Part II.

A workstation is a collection of one or more machines or manual stations that

perform (essentially) identical functions. Examples include a turning station made up

of several vertical lathes, an inspection station made up of several benches staffed by

quality inspectors, and a burn-in station consisting of a single room where components

are heated for testing purposes. In process-oriented layouts, workstations are physically

organized according to the operations they perform (e.g., all grinding machines located

in the grinding department). In product-oriented layouts they are organized in lines

making specific products (e.g., a single grinding machine dedicated to an individual line).

The terms station, workcenter, and process center are synonymous with workstation.

A part is a piece of raw material, a component, a subassembly, or an assembly that

is worked on at the workstations in a plant. Raw material refers to parts purchased from

outside the plant (e.g., bar stock). Components are individual pieces that are assembled

into more complex products (e.g., gears). Subassemblies are assembled units that are

further assembled into more complex products (e.g., transmissions). Assemblies (or final

assemblies) are fully assembled products or end items (e.g., automobiles). Note that one

plant’s final assemblies may be another’s raw material. For instance, transmissions are the

final assemblies of a transmission plant, but are raw materials or purchased components

to the automotive assembly plant.

A part that is sold directly to a customer, whether or not it is an assembly, is called an

end item. The relationship between end items and their constituent parts (raw materials,

components, and subassemblies) is maintained in the bill of material (BOM), which

Chapter 3 presented in detail.

For the most part, consumables are materials such as bits, chemicals, gases, and

lubricants that are used at workstations but do not become part of a product that is

sold. More formally, we distinguish between parts and consumables in that parts are

listed on the bill of material, while consumables are not. This means that some items

that do become part of the product, such as solder, glue, and wire, can be considered

either parts if they are recorded on the bill of material or consumables if they are not.

Since different purchasing schemes are typically used for parts and consumables (e.g.,

parts might be ordered according to an MRP system, while consumables are purchased

through a reorder point system), this choice may influence how such items are managed.

A routing describes the sequence of workstations passed through by a part. Routings

begin at a raw material, component, or subassembly stock point and end at either an
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intermediate stock point or finished-goods inventory. For instance, a routing for gears

may start at a stock point of raw bar stock; pass through cutting, hobbing, and deburring;

and end at a stock point of finished gears. This stock of gears might in turn feed another

routing that builds gear subassemblies. The bill of material and the associated routings

contain the basic information needed to make an end item. We frequently use the terms

line and routing interchangeably.

A customer order is a request from a customer for a particular part number, in a

particular quantity, to be delivered on a particular date. The paper or electronic purchase

order sent by the customer might contain several customer orders. Henceforth, we will

refer to a customer order as simply an order. Inside the plant, an order can also be an

indication that certain inventories (e.g., safety stocks) need to be replenished. While

timing may be more critical for orders originating with customers, both types of orders

represent demand.

A job refers to a set of physical materials that traverses a routing, along with the

associated logical information (e.g., drawings, BOM). Although every job is triggered by

either an actual customer order or the anticipation of a customer order (e.g., forecasted

demand), there is frequently not a one-to-one correspondence between jobs and orders.

This is because (1) jobs are measured in terms of specific parts (uniquely identified by

a part number), not the collection of parts that may make up the assembly required to

satisfy an order, and (2) the number of parts in a job may depend on manufacturing

efficiency considerations (e.g., batch size considerations) and thus may not match the

quantities ordered by customers.

With the above terminology in hand, we can now define the key performance mea-

sures in which we are interested.

The average output of a production process (machine, workstation, line, plant) per

unit time (e.g., parts per hour) is defined as the system’s throughput (TH), or sometimes

throughput rate. At the firm level, throughput is defined as the production per unit time

that is sold. However, managers of production lines generally control what is made rather

than what is sold. Therefore, for a plant, line, or workstation, we define throughput to be

the average quantity of good (nondefective) parts (the manager does have control over

quality) produced per unit time. In a line made up of workstations in tandem dedicated

to a single family of products and where all products pass through each station exactly

once, the throughput at every station will be the same (provided there is no yield loss). In

a more complex plant, where workstations service multiple routings (e.g., a job shop),

the throughput of an individual station will be the sum of the throughputs of the routings

passing through it (where throughput is measured in dollars or standard parts to allow

summation of the separate flows). When throughput is measured in cost dollars (rather

than in prices), it is typically called cost of goods sold.

An upper limit on the throughput of a production process is its capacity. In most

cases, releasing work into the system at or above the capacity causes the system to become

unstable (i.e., build up WIP without bound). Only very special systems can operate stably

at capacity. Because this concept is subtle and important, we will investigate it more

thoroughly later in this chapter, once we have introduced the appropriate concepts.

As noted, the physical inputs at the start of a production process are typically called

raw material inventory (RMI). This could represent bar stock that is cut up and then

milled into gears, sheets of copper and fiberglass that are laminated together to make

circuit boards, wood chips that become pulp and then paper stock, or rolls of sheet steel

that are pressed into automobile fenders. Typically, the stock point at the beginning of

a routing is termed raw material inventory even though the material may have already

undergone some processing.
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The stock point at the end of a routing is either a crib inventory location (i.e., an

intermediate inventory location) or finished goods inventory (FGI). Crib inventories

are used to gather different parts within the plant before further processing or assembly.

For instance, a routing to produce gear assemblies may be fed by several crib inventories

containing gears, housings, crankshafts, and so on. Finished goods inventory is where

end items are held prior to shipping to the customer.

The inventory between the start and end points of a product routing is called work

in process (WIP). Since routings begin and end at stock points, WIP is all the product

between, but not including, the ending stock points. Although in colloquial use WIP

often includes crib inventories, we make a distinction between crib inventory and WIP

to help clarify the discussion.

A commonly used measure of the efficiency with which inventory is used is inven-

tory turns, or the turnover ratio, which is defined as the ratio of throughput to average

inventory. Typically, throughput is stated in yearly terms, so that this ratio represents the

average number of times the inventory stock is replenished or turned over. Exactly which

inventory is included depends on what is being measured. For instance, in a warehouse,

all inventory is FGI, so turns are given by TH/FGI. In a plant, we generally consider

both WIP (inventory still in the line) and FGI (inventory waiting to ship), so turns are

given by TH/(WIP + FGI). In any case, it is essential to make sure that throughput and

inventory are measured in the same units. Since inventory is usually measured in cost

dollars (i.e., rather than price or sales dollars), throughput should also be measured in

cost dollars (i.e., cost of goods sold).

The cycle time (CT), which is also called variously average cycle time, flow time,

throughput time, and sojourn time, of a given routing is the average time from release

of a job at the beginning of the routing until it reaches an inventory point at the end of

the routing (i.e., the time the part spends as WIP).1 Although this is a precise definition

of cycle time, it is also narrow, allowing us to define cycle time only for individual

routings. It is common for people to refer to the cycle time of a product that is composed

of many complex subassemblies (e.g., automobiles). However, it is not clear exactly what

is meant by this. When does the clock start for an automobile? When the chassis starts

down the assembly line? When the engine begins production? Or, as in Henry Ford’s

terms, when the ore is mined from the ground? We will discuss measuring cycle time

for such assembled parts later, but for now we restrict our definition to single routings.

The lead time of a given routing or line is the time allotted for production of a part

on that routing or line. As such, it is a management constant.2 In contrast, cycle times

are generally random. Therefore, in a line functioning in a make-to-order environment

(i.e., it produces parts to satisfy orders with specific due dates), an important measure of

line performance is service level, which is defined as

Service level = P{cycle time ≤ lead time}
Notice that this definition implies that for a given distribution of cycle time, service level

can be influenced by manipulating lead time (i.e., the higher the lead time, the higher

the service level).

If the line is functioning in a make-to-stock environment (i.e., it fills a buffer from

which customers or other lines expect to be able to obtain parts without delay), then a

1Cycle time also has another meaning in assembly lines as the time allotted for each station to complete

its task. It can also refer to the processing time of an individual machine (e.g., the time for a punch press to

cycle). We will avoid these other uses of the term cycle time to prevent confusion.
2Recall that the time phasing function of MRP is critically dependent on the choice of such lead times.
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different performance measure may be more appropriate than service level. A logical

choice is fill rate, which is defined as the fraction of orders that are filled from stock and

was discussed in Chapter 2. Since fill rate and many other performance measures are

often referred to as “service levels,” the reader is cautioned to look for a precise definition

whenever this term is encountered. We will consistently use the former definition of

service level throughout Part II, but will return to the fill rate measure in Chapter 17.

The utilization of a workstation is the fraction of time it is not idle for lack of parts.

This includes the fraction of time the workstation is working on parts or has parts waiting

and is unable to work on them because of a machine failure, setup, or other detractor.

We can compute utilization as

Utilization = arrival rate

effective production rate

where the effective production rate is defined as the maximum average rate at which the

workstation can process parts, considering the effects of failures, setups, and all other

detractors that are relevant over the planning period of interest.3

7.2.2 Parameters

Parameters are numerical descriptors of manufacturing processes and therefore vary in

value from plant to plant. Two key parameters for describing an individual line (routing)

are the bottleneck rate and the raw process time. We define these below, along with a

third parameter, the critical WIP level, that can be computed from them.

The bottleneck rate (rb) of the line, rb, is the rate (parts per unit time or jobs per unit

time) of the workstation having the highest long-term utilization. By long term we mean

that outages due to machine failures, operator breaks, quality problems, and so forth,

are averaged out over the time horizon under consideration. This implies that the proper

treatment of outages will differ depending on the planning frequency. For example, for

daily replanning, outages typically experienced during a day should be included; but

unplanned long outages, such as those resulting from a major breakdown, should not. In

contrast, for planning over a year-long horizon, time lost to major breakdowns should

be included, if such occurrences are not unlikely over the course of a year.

In lines consisting of a single routing in which each station is visited exactly once

and there is no yield loss, the arrival rate to every workstation is the same. Hence, the

workstation with the highest utilization will be that with the least long-term capacity (i.e.,

slowest effective rate). However, in lines with more complicated routings or yield loss, the

bottleneck may not be at the slowest workstation. A faster workstation that experiences

a higher arrival rate may have higher utilization. For this reason, it is important to define

the bottleneck in terms of utilization as we have done here.

To see this, consider the line in Figure 7.1 with arrival rate r parts per minute and

processing time of 1 and 2 minutes, respectively, at stations 1 and 2. Since station 2

processes parts at a rate of 0.5 per minute, while station 1 processes them at a rate of

3It is not uncommon to find utilization defined without consideration of detractors. That is, effective
production rate is replaced in the above equation by maximum production rate. We do not do this because it

can distort the picture of where capacity is tightest. For instance, a machine may have a fairly low utilization

relative to its maximum possible rate, but be very highly utilized once detractors are taken into consideration.

Looking at utilization relative to maximum production rate would therefore not give an indication that the

machine is liable to become overloaded if the arrival rate increases only slightly. Hence, in order to give an

accurate picture of the capacity situation, we will consistently make use of utilization as defined above.
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Figure 7.1

Bottleneck in line with
yield loss.

1 per minute, station 2 is clearly the slower of the two. So by rate alone, it would be the
bottleneck. However, because y percent of the parts processed at station 1 are scrapped
before reaching station 2, station 1 processes a heavier load than does station 2. To
accurately gauge which station is more heavily loaded, we compute their utilizations,
which are:

u(1) = r

1
= r

u(2) = yr

0.5
= 2yr

If y < 0.5 then the utilization of station 1 is higher than that of station 2 and hence
it is the bottleneck. The reason is that when more than half of the output from station
1 is scrapped, station 1 must process more than twice as much as station 2. This more
than offsets the fact that station 1 is twice as fast. Hence, if we progressively increase
the arrival rate r when y < 0.5, station 1 will become overloaded before station 2 does.
Since the bottleneck is the resource with the least “slack” in its capacity, station 1 is
reasonably defined as the bottleneck in this case.

The raw process time (T0) of the line is the sum of the long-term average process
times of each workstation in the line. Alternatively, we can define raw process time as
the average time it takes a single job to traverse the empty line (i.e., so it does not have to
wait behind other jobs). Again, we must be concerned about the length of the planning
horizon when deciding what to include in the “average” process times. Over the long
term, T0 should include infrequent random and planned outages, while over a shorter
term it should include only the more frequent delays.

The critical WIP (W0) of the line is the WIP level for which a line with given values
of rb and T0 but having no variability achieves maximum throughput (rb, that is) with
minimum cycle time (T0). We show below that critical WIP is defined by the bottleneck
rate and raw process time by the following relationship:

W0 = rbT0

7.2.3 Examples

We now illustrate these definitions with two simple examples.

Penny Fab One. Penny Fab One consists of a simple production line that makes giant
one-cent pieces used exclusively in Fourth of July parades. As illustrated in Figure 7.2,

Head
stamping
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Tail
stamping

2 h

Rimming

2 h

Deburring

2 h

Figure 7.2

Penny Fab One.

bottleneck. However, because 1 –  y percent of the parts processed at station 1 are scrapped
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this line consists of four machines in sequence; the first machine is a punch press that

cuts penny blanks, the second stamps Lincoln’s face on one side and the Memorial on

the back, the third places a rim on the penny, and the fourth cleans away any burrs. Each

machine takes exactly two hours to perform its operation. (We will relax this unrealistic

assumption that process times are deterministic later.) After each penny is processed, it

is moved immediately to the next machine. The line runs 24 hours per day and the market

for giant pennies is unlimited, so that all product made is sold. Hence, more throughput

is unambiguously better for this system.

Since this is a tandem line with no yield loss, the arrival rate to each station is

the same. Hence, the bottleneck (highest-utilization station) is the slowest workstation.

However, the capacity of each machine is the same and equals one penny every 2 hours, or

one-half part per hour. Hence, any of the four machines can be regarded as the bottleneck

and

rb = 0.5 penny per hour

or 12 pennies per day. Such a line is said to be balanced, since all stations have equal

capacity.

Next, note that the raw process time is simply the sum of the processing times at the

four stations, so

T0 = 8 hours

The critical WIP level is given by

W0 = rbT0 = 0.5 × 8 = 4 pennies

We will illustrate later that this is indeed the level of WIP that causes the line to achieve

throughput of rb = 0.5 penny per hour and cycle time of T0 = 8 hours. Notice that W0 is

equal to the number of machines in the line. This is always the case for balanced lines,

since having one job per machine is just enough to keep all machines busy at all times.

However, as we will see, it is not true for unbalanced lines.

Penny Fab Two. Now consider a somewhat more complex Penny Fab Two, which

represents an unbalanced line with multimachine stations. As illustrated in Figure 7.3,

Penny Fab Two still produces giant pennies in four steps: punching, stamping, rim-

ming, and deburring; but the workstations now have different numbers of machines and

processing times.
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Figure 7.3

Penny Fab Two.
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Table 7.1 Penny Fab Two: An Unbalanced Line

Station Number of Process Station Capacity

Number Machines Time (hours) (Jobs per hour)

1 1 2 0.50

2 2 5 0.40

3 6 10 0.60

4 2 3 0.67

The presence of multimachine stations complicates the capacity calculations some-

what. For a single machine, the capacity is simply the reciprocal of the process time

(e.g., if it takes one-half hour to do one job, the machine can do two jobs per hour). The

capacity of a station consisting of several identical machines in parallel must be calcu-

lated as the individual machine capacity times the number of machines. For example, in

Penny Fab Two, the capacity per machine at station 3 is

1
10

penny per hour

so the capacity of the station is

6 × 1
10

= 0.6 penny per hour

Notice that the station capacity can be computed directly by dividing the number of

machines by the process time. This is done for each station in Table 7.1.

The capacity of the line with multimachine stations is still defined by the rate

of the bottleneck, or slowest station in the line. In Penny Fab Two, the bottleneck is

station 2, so

rb = 0.4 penny per hour

Notice that the bottleneck is neither the station that contains the slowest machines

(station 3) nor the one with the fewest machines (station 1).

The raw process time of the line is still the sum of the process times. Notice that

adding machines at a station does not decrease T0, since a penny can be worked on by

only one machine at a time. Hence, the raw process time for Penny Fab Two is

T0 = 2 + 5 + 10 + 3 = 20 hours

Regardless of whether the line has single- or multiple-machine stations, the critical

WIP level is always defined as

W0 = rbT0 = 0.4 × 20 = 8 pennies

In Penny Fab Two, as in Penny Fab One, W0 is a whole number. This, of course, need

not be the case. If W0 comes out to a fraction, it means that there is no constant WIP

level that will achieve throughput of exactly rb jobs per hour and cycle time of T0 hours.

Furthermore, notice that the critical WIP level in Penny Fab Two (eight pennies) is

less than the number of machines (11). This is because the system is not balanced (i.e.,

stations have different amounts of capacity), and therefore some stations will not be fully

utilized.
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Penny Fab One with

WIP = 1.

7.3 Simple Relationships

Now, in the pursuit of a science of manufacturing, we ask the fundamental question, What

are the relationships among WIP, throughput, and cycle time in a single production line?

Of course, the answer will depend on the assumptions we make about the line. In this

section, we will give a precise (i.e., quantitative) description of the range of possible

behavior. This will serve to sharpen our intuition about how lines perform and will give

us a scale on which to benchmark actual systems.

A problem with characterizing the relationship between measures such as WIP and

throughput is that in real systems they tend to vary simultaneously. For instance, in an

MRP system, the line may be flooded with work one month (due to a heavy master

production schedule) and very lightly loaded the next. Hence, both WIP and throughput

are apt to be high during the first month and low during the second. For clarity of

presentation, we will eliminate this problem by controlling the WIP level in the line so

as to hold it constant over time. For instance, in the Penny Fabs, we will start the lines

with a specified number of pennies (jobs) and then release a new penny blank into the

line each time a finished penny exits the line.4

7.3.1 Best-Case Performance

To analyze and understand the behavior of a line under the best possible circumstances,

namely, when process times are absolutely regular, we will simulate Penny Fab One.

This is easily done by using a piece of paper and several pennies, as shown in Figure 7.4.

We begin by simulating the system when only one job is allowed in the line. The

first penny spends 2 hours successively at stations 1, 2, 3, and 4, for a total cycle time of

8 hours. Then a second penny is released into the line, and the same sequence is repeated.

Since this results in one penny coming out of the line every 8 hours, the throughput is

4We say that such a line is operating under a CONWIP (Constant WIP) protocol, which is treated more

thoroughly in Chapters 10 and 14.
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Figure 7.5

Penny Fab One with

WIP = 2.

1
8

penny per hour. Notice that the cycle time is equal to the raw process time T0 = 8,

while the throughput is one-fourth of the bottleneck rate rb = 0.5.

Now we add a second penny to the line (where both are released simultaneously into

the line). After 2 hours, the first penny completes processing at station 1 and starts on

station 2. At the same time, the second penny starts processing on station 1. Thereafter,

the second penny will follow the first, switching stations every 2 hours, as shown in

Figure 7.5. After the initial wait experienced by the second penny, it never waits again.

Hence, once the system is running in steady state, every penny released into the line still

has a cycle time of exactly 8 hours. Moreover, since two pennies exit the line every 8

hours, the throughput increases to 2
8

penny per hour, double that when the WIP level was

1 and 50 percent of line capacity (rb = 0.5).

We add a third penny. Again, after an initial transient period in which pennies wait

at the first station, there is no waiting, as shown in Figure 7.6. Hence, cycle time stays at

8 hours. Since three pennies exit in any 8-hour interval, throughput increases to 3
8

part

per hour, or 75 percent of rb.

When we add a fourth penny, we see that all the stations stay busy all the time once

steady state has been reached (see Figure 7.7). Because there is no waiting at the stations,

cycle time is still T0 = 8 h. Since the last station is busy all the time, it completes one

penny every other hour, so throughput becomes 1
2

penny per hour, which equals the line

capacity rb. This very special behavior, in which cycle time is T0 (its minimum value)

and throughput is rb (its maximum value) is only achieved when the WIP level is set at

the critical WIP level, which we recall for Penny Fab One is

W0 = rbT0 = 0.5 × 8 = 4 pennies

Now we add a fifth penny to the line. Because there are only four machines, a penny

will wait at the first station, even after the system has settled into steady state. Since we

measure cycle time as the time from when a job is released (the time it enters the queue

at the first station) to when it exits the line, it now becomes 10 hours, due to the extra two

hours of waiting time in front of station 1. Hence, for the first time, cycle time becomes
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Penny Fab One with

WIP = 3.

larger than its minimal value T0 = 8. However, since all stations are always busy, the

throughput remains at rb = 0.5 penny per hour.

Finally, consider what happens when we allow 10 pennies in the line. In steady state,

a queue of six pennies persists in front of the first station, meaning that an individual

penny spends 12 hours from the time it is released to the line until it begins processing at

t = 0

t = 2

t = 4

t = 6

t = 8

Figure 7.7

Penny Fab One with

WIP = 4.
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Table 7.2 WIP, Cycle Time, and Throughput of
Penny Fab One

WIP CT % T0 TH % rb

1 8 100 0.125 25

2 8 100 0.250 50

3 8 100 0.375 75

4 8 100 0.500 100

5 10 125 0.500 100

6 12 150 0.500 100

7 14 175 0.500 100

8 16 200 0.500 100

9 18 225 0.500 100

10 20 250 0.500 100

station 1. Hence, the cycle time is 20 hours (12 queueing plus 8 processing). As before,

all machines remain busy all the time, so throughput is still rb = 0.5 penny per hour. It

should be clear at this point that each penny we add increases cycle time by 2 hours with

no increase in throughput.

We summarize the behavior of Penny Fab One with no variability for various WIP

levels in Table 7.2, and present the results graphically in Figure 7.8. From a performance

standpoint, it is clear that Penny Fab One runs best when there are four pennies in WIP.

Only this WIP level results in minimum cycle time T0 and maximum throughput rb—any

less and we lose throughput with no decrease in cycle time; any more and we increase

cycle time with no increase in throughput. This special WIP level is the critical WIP

(W0).

In this particular example, the critical WIP is equal to the number of machines. This

is always the case when the line consists of stations with equal capacity (i.e., a balanced

line). For unbalanced lines, W0 will be less than the number of machines, but still has

the property of being the WIP level that achieves maximum throughput with minimum

cycle time, and is still defined by W0 = rbT0.

It is important to note that while the critical WIP is optimal in the case with zero

variability, it will not be optimal in other cases. Indeed, the concept of an optimal WIP
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level is not even well defined when processing times are variable; in general, increasing

WIP will increase both throughput (good) and cycle time (bad).

Little’s Law. Close examination of Table 7.2 reveals an interesting, and fundamental,

relationship among WIP, cycle time, and throughput. At every WIP level, WIP is equal to

the product of throughput and cycle time. This relation is known as Little’s law (named

for John D. C. Little, who provided the mathematical proof) and represents our first

Factory Physics relationship:

Law (Little’s Law):

WIP = TH × CT

It turns out that Little’s law holds for all production lines, not just those with zero

variability. As we discussed in Chapter 6, Little’s law is not a law at all but a tautology.
For special cases (e.g., the case where time goes to infinity), the relationship can be

proved mathematically. However, it does not hold precisely for less-than-infinite times

(which, of course, are the only times we can observe in real life) except under very

special circumstances. Nonetheless, we will use it as a conjecture about the nature of

manufacturing systems and use it as an approximation when it is not exact.

In this approximate sense Little’s law is very broadly applicable, in that it can be

applied to a single station, a line, or an entire plant. As long as the three quantities

are measured in consistent units, the above relationship will hold over the long term.

This makes it immensely applicable to practical situations. Some straightforward uses

of Little’s law include these:

1. Queue length calculations. Since Little’s law applies to individual stations, we

can use it to calculate the expected queue length and utilization (fraction of time

busy) at each station in a line. For instance, consider Penny Fab Two, which was

summarized in Table 7.1, and suppose it is running at the bottleneck rate (that is,

0.4 job per hour). From Little’s law, the expected WIP at the first station will be

WIP = TH × CT = 0.4 job per hour × 2 hour = 0.8 job

Since there is only one machine at station 1, this means it will be utilized 80

percent of the time. Similarly, at station 3, Little’s law predicts an average WIP

of four jobs. Since there are six machines, the average utilization will be

4/6 = 66.7 percent. Notice that this is equal to the ratio of the rate of the

bottleneck to the rate of station 3 (that is, 0.4/0.6), as we would expect.

2. Cycle time reduction. Since Little’s law can be written as

CT = WIP

TH

it is clear that reducing cycle time implies reducing WIP, provided throughput

remains constant. Hence, large queues are an indication of opportunities for

reducing cycle time, as well as WIP. We will discuss specific measures for WIP

and cycle time reduction in Chapter 17.

3. Measure of cycle time. Measuring cycle time directly can sometimes be

difficult, since it entails registering the entry and exit times of each part in the
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system. Since throughput and WIP are routinely tracked, it might be easier to

use the ratio WIP/TH as a perfectly reasonable indirect measure of cycle time.

4. Planned inventory. In many systems, jobs are scheduled to finish ahead of their

due dates in order to ensure a high level of customer service. Because, in our

era of inventory consciousness, customers often refuse to accept early

deliveries, this type of “safety lead time” causes jobs to wait in finished goods

inventory prior to shipping. If the planned inventory time is n days, then

according to Little’s law, the amount of inventory in FGI will be given by nTH

(where TH is measured in units per day).

5. Inventory turns. Recall that inventory turns are given by the ratio of throughput

to average inventory. If we have a plant in which all inventory is WIP (i.e.,

product is shipped directly from the line so there is no finished goods inventory),

then turns are given by TH/WIP, which by Little’s law is simply 1/CT. If we

include finished goods, then turns are TH/(WIP + FGI). But Little’s law still

applies, so this ratio represents the inverse of the total average time for a job to

traverse the line plus the finished goods crib. Hence, intuitively, inventory turns

are one divided by the average residence time of inventory in the system.

6. Multiproduct systems. So far, we have talked as if inventory must be measured

in units of parts and throughput in units of parts per day (or some other time

interval). But Little’s law does not require this. If we have many different types

of parts with different WIP, CT, and TH levels, we can certainly apply Little’s

law to each one separately. But we can also measure stocks and flows in units of

dollars. For instance, if we measure TH in cost of goods sold (dollars per day),

and WIP in dollars, then Little’s law can be applied to compute average cycle

time across all products as CT = WIP/TH. Note, however, that we must measure

throughput as cost of goods sold, instead of in units of prices, in order to match

the units of WIP.

In a sense, Little’s law is the “F = ma” of Factory Physics. It is a broadly applicable

equation that relates three fundamental quantities. At the same time, Little’s law can be

viewed as a truism about units. It merely indicates the obvious fact that we can measure

WIP level in a station, line, or system in units of jobs or time. For instance, a line that

produces 100 crankcases per day and has a WIP level of 500 crankcases has 5 days of

WIP in it. Little’s law is a statement that this conversion is valid for average WIP, cycle

time, and throughput, so

CT = WIP

TH

or

5 days = 500 crankcases

100 crankcases per day

We can now generalize the results shown in Table 7.2 and Figure 7.8 to achieve

our original objective of giving a precise summary of the relationship between WIP and

throughput for a “best-case” (i.e., zero-variability) line. We can then apply Little’s law to

extend this to describe the relationship between WIP and cycle time. Since these relation-

ships were derived for perfect lines with no variability, the following expressions indicate

the maximum throughput and minimum cycle time for a given WIP level for any system

having parameters rb and T0. The resulting equations are our next Factory Physics law.
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Law (Best-Case Performance): The minimum cycle time for a given WIP level w is
given by

CTbest =

⎧

⎪

⎨

⎪

⎩

T0 if w ≤ W0

w

rb
otherwise

The maximum throughput for a given WIP level w is given by

THbest =
⎧

⎨

⎩

w

T0

if w ≤ W0

rb otherwise

One conclusion we can draw from this is that, contrary to the popular slogan,

zero inventory is not a realistic goal. Even under perfect deterministic conditions, zero

inventory yields zero throughput and therefore zero revenue. A more realistic “ideal”

WIP is the critical WIP W0.

Penny Fab One represents an ideal (zero-variability) situation, in which it is optimal

to maintain a WIP level equal to the number of machines. Of course, in the real world

there are not many factories that run with such low WIP levels. Indeed, in many of the

production lines we have seen, the WIP-to-machines ratio is closer to 20:1. If this ratio

were to hold for Penny Fab One, the cycle time would be almost 7 days with 80 jobs in

WIP. Obviously, this is much worse than a cycle time of 8 hours at a WIP level of four

jobs (i.e., the “optimal” level). Why, then, do actual plants operate so far from the ideal

of the critical WIP level?

Unfortunately, Little’s law offers little help. Since TH = WIP/CT, we can have the

same throughput with large WIP levels and long cycle times, or with low WIP levels

and short cycle times. The problem is that Little’s law is only one relation among three

quantities. We need a second relation if we are to uniquely determine two quantities,

given the third (e.g., predict both WIP and cycle time from throughput). Sadly, there is

no universally applicable second relationship among WIP, cycle time, and throughput.

The best we can do is to characterize the behavior of a line under specific assumptions. In

addition to the best case, which we considered above, we will treat two other scenarios,

which we term the worst case and the practical worst case.

7.3.2 Worst-Case Performance

In sharp contrast to the best possible behavior of a line, we now consider the worst.

Specifically, we seek the maximum cycle time and minimum throughput possible for a line

with bottleneck rate rb and raw process time T0. This will enable us to bracket the behavior

and gauge the performance of real lines. If a line is closer to the worst case than to the best

case, then there are some real problems (or opportunities, depending on your perspective).

To facilitate our discussion of the worst case, recall that we are assuming a constant

amount of work is maintained in the line at all times. Whenever a job finishes, another

is started. One way that this could be achieved in practice would be to transport jobs

through the line on pallets. Whenever a job is finished, it is removed from its pallet and

the pallet immediately returns to the front of the line to carry a new job. The WIP level,

therefore, is equal to the (fixed) number of pallets.

Now, imagine yourself sitting on a pallet riding around and around a best-case line

with WIP equal to the critical WIP (e.g., Penny Fab One with four jobs). Each time you
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arrive at a station, a machine is available to begin work on the job immediately. It is

precisely because there is no waiting (queueing) that this line achieves the minimum

possible cycle time of T0.

To get the longest possible cycle times for this system, we must somehow increase

the waiting time without changing the average processing times (otherwise we would

change rb and T0). The very worst we could possibly make waiting time would be that

every time our pallet reached a station, we found ourselves waiting behind every other

job in the line. How could this possibly occur?

Consider the following. Suppose that you are riding on pallet number 4 in a modified

Penny Fab One with four pallets. However, instead of all jobs requiring exactly 2 hours

at each station, suppose that jobs on pallet 1 require 8 hours, while jobs on pallets 2, 3,

and 4 require 0 hours. The average processing time at each station is

8 + 0 + 0 + 0

4
= 2 hours

as before, and hence we still have rb = 0.5 job per hour and T0 = 8 hours. However,

every time your pallet reaches a station, you find pallets 1, 2, and 3 ahead of you (see

Figure 7.9). The slow job on pallet 1 causes all the other jobs to pile up behind it at all

times. This is the absolute maximum amount of waiting time it is possible to introduce,

and hence this represents the worst case.

The cycle time for this system is

8 + 8 + 8 + 8 = 32 hours
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Evolution of worst-case

line.
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or 4T0, and since four jobs are output each time pallet 1 finishes on station 4, the

throughput is

4
32

= 1
8

job per hour

or 1/T0 jobs per hour. Notice that the product of throughput and cycle time is 1
8

× 32 = 4,

which is the WIP level, so, as always, Little’s law holds.

We summarize these results for a general line as our next Factory Physics law.

Law (Worst-Case Performance): The worst-case cycle time for a given WIP level w

is given by

CTworst = wT0

The worst-case throughput for a given WIP level w is given by

THworst = 1

T0

It is interesting to note that both the best-case and worst-case performances occur

in systems with no randomness. There is variability in the worst-case system, since jobs

have different process times; but there is no randomness, since all process times are com-

pletely predictable. The literature on quality management stresses the need for variability

reduction, but sometimes implies that variability and randomness are synonymous. The

above Factory Physics results show that this is not the case; variability can be the result

of randomness or bad control (or both). We will examine this distinction in greater depth

after we have developed the tools for treating variability in Chapters 8 and 9.

Finally, the reader may be justifiably skeptical about the realism of the worst case.

After all, we arrived at this case by forcing the maximum amount of waiting time (in

order to make cycle times as long as possible) by making the processing times as variable

as possible. To do this, we assumed jobs on one of the pallets had long processing times,

while all the others had zero processing times. Surely this could never happen in real life.

But it can and (at least to some extent) does happen. To see how, suppose that the four

pallets used to carry jobs in Penny Fab One (when WIP equals four jobs) are themselves

moved between stations with a forklift. Further, suppose that because the forklift has

other obligations, it cannot afford to make the number of trips necessary to move each

pallet individually. Instead, it waits until all four jobs are finished on a station and then

moves them as a group to the next station. Similarly, it waits until all four pallets are

empty at the end of the line to bring them back to the front to receive new jobs. Assuming

that processing times of each job at each station are 2 hours (as in the original Penny Fab

One), and that move times on the forklift are sufficiently short as to be reasonably treated

as zero, the progress of the system will be exactly the same as that shown in Figure 7.9.

Hence, worst-case behavior can result from batch moves.

Of course, it is rare to find real plants in which batch moves are so extreme as to

cause every job in the line to travel together. More commonly, the WIP in a line will

be transported in several batches, possibly of varying size. While this kind of more

modest batching will not produce worst-case behavior, it is one factor that can push the

performance of a line closer to that of the worst case than the best case. Consequently,

batching is a genuine problem (opportunity) in many production systems.
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7.3.3 Practical Worst-Case Performance

Virtually no real-world line behaves literally according to either the best case or the worst

case. Therefore, to better understand the behavior between these two extreme cases, it is

instructive to consider an intermediate case. We do this by means of a case that, unlike

the previous two, involves randomness. In fact, in a sense, it represents the “maximum

randomness” case. We term this the practical worst case to express our belief that

virtually any system with worse behavior is a target for improvement.

To describe the practical worst case and show why it can be regarded as the maximum

randomness case, we must first define the concept of a system state. The state of the

system is a complete description of the jobs at all the stations: how many there are and

how long they have been in process. Under special conditions, which we assume here

and describe below, the only information needed is the number of jobs at each station.

Hence, we can give a concise summary of a state by using a vector with as many elements

as there are stations in the line.

For instance, in a line with four stations and three jobs, the vector (3, 0, 0, 0)

represents the state in which all three jobs are at the first station, while the vector

(1, 1, 1, 0) represents the state in which there is one job each at stations 1, 2, and 3.

There are 20 possible states for a system consisting of four machines and three jobs,

which are enumerated in Table 7.3.

Depending on the specific assumptions about the line, not all states will necessarily

occur. For instance, if all processing times in the four-station, three-job system are 1 hour

and it behaves according to the best case, then only four states—(1, 1, 1, 0), (0, 1, 1, 1),

(1, 0, 1, 1), and (1, 1, 0, 1)—will be repeated as illustrated in Figure 7.10. Similarly, if it

behaves according to the worst case, then four different states—(3, 0, 0, 0), (0, 3, 0, 0),

(0, 0, 3, 0), and (0, 0, 0, 3)—will be repeated, as illustrated in Figure 7.11. Because both

of these systems have no randomness, other states are never reached.

When randomness is introduced into a line, more states become possible. For in-

stance, suppose the processing times are deterministic, but every once in a while a

machine breaks down for several hours. Then most of the time we will observe “spread-

out” states, like those in Figure 7.10, but occasionally we will see “clumped-up” states,

like those in Figure 7.11. If there is only a little randomness (e.g., machine failures

are very rare), then the frequency of the spread-out states will be very high, whereas if

there is a lot of randomness (e.g., machines fail frequently), then all the states shown in

Table 7.3 Possible States for a System with
Four Machines and Three Jobs

State Vector State Vector

1 (3, 0, 0, 0) 11 (1, 0, 2, 0)

2 (0, 3, 0, 0) 12 (0, 1, 2, 0)

3 (0, 0, 3, 0) 13 (0, 0, 2, 1)

4 (0, 0, 0, 3) 14 (1, 0, 0, 2)

5 (2, 1, 0, 0) 15 (0, 1, 0, 2)

6 (2, 0, 1, 0) 16 (0, 0, 1, 2)

7 (2, 0, 0, 1) 17 (1, 1, 1, 0)

8 (1, 2, 0, 0) 18 (1, 1, 0, 1)

9 (0, 2, 1, 0) 19 (1, 0, 1, 1)

10 (0, 2, 0, 1) 20 (0, 1, 1, 1)



Chapter 7 Basic Factory Dynamics 245

t = 2, 6, 10, . . .

t = 3, 7, 11, . . .

t = 4, 8, 12, . . .

t = 5, 9, 13, . . .

Figure 7.10

States in best-case,

four-machine, three-job

line.

Table 7.3 may occur quite often. Hence, we define the maximum randomness scenario

to be that which causes every possible state to occur with equal frequency.

In order for all states to be equally likely, three special conditions are required:

1. The line must be balanced (i.e., all stations must have the same average process

times).

2. All stations must consist of single machines. (This assumption also allows us to

avoid the complexities of parallel processing and jobs passing one another.)

3. Process times must be random and occur according to a specific probability

distribution known as the exponential distribution. The exponential is the only

t = 0, 12, 24, . . .

t = 3, 15, 27, . . .

t = 6, 18, 30, . . .

t = 9, 21, 33, . . .

Figure 7.11

States in worst-case,

four-machine, three-job

line.
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continuous distribution that has a special property known as the memoryless

property (see Appendix 2A). What this means is that if the processing time on

a machine is exponentially distributed, then knowledge of how long a part has

been in process offers no information about when it will be finished. For

instance, if process times on a machine are exponential with mean 1 hour and

the current job has been in process for 5 seconds, then the expected remaining

process time is 1 hour. If the current job has been in process for 1 hour, the

remaining process time is 1 hour. If the current job has been in process for 942

hours, the expected remaining process time is 1 hour.5 It is as if the machine

forgets its past work when predicting the future—hence the term memoryless.

Thus, if process times are exponentially distributed, there is no need to know

how long a job has been in process to completely define the system state.

To understand how the practical worst case (PWC) works, return to the thought

experiment in which you envisioned yourself riding around on a pallet that cycles through

the line again and again. Suppose there are N (single-machine) stations, each with average

processing times of t , and a constant level of w jobs in the line. Thus, the raw process

time is T0 = Nt , and the bottleneck rate is rb = 1/t for this line.

Since the above three conditions guarantee that all states are equally likely, then,

from your vantage point on a pallet, you would expect to see on average the w − 1 other

jobs equally distributed among the N stations each time you arrive at a station. So the

expected number of jobs ahead of you upon arrival is (w − 1)/N . Since the average time

you spend at the station will be the time for the other jobs to complete processing plus

the time for your job to be processed, we can write

Average time at a station = time for your job + time for other jobs

= t + w − 1

N
t

=
(

1 + w − 1

N

)

t

By assuming that the (w − 1)/N jobs ahead of you require an average of

[(w − 1)/N ]t time to complete, we are ignoring the fact that the job in process at the

station was partially finished when you arrived. It is the memoryless property of the

exponential distribution that enables us to do this.

Finally, since all stations are assumed identical, we can compute the average cycle

time by simply multiplying the average time at each station by the number of stations

N , to get

CT = N

(

1 + w − 1

N

)

t

= Nt + (w − 1)t

= T0 + w − 1

rb

5Although it may be a stretch to imagine processing times behaving in this way, there certainly seem to

be examples of this type of behavior in daily life, for instance, times until departure of delayed flights, times

until the arrival of trains on certain railways, times until some contractors finish home improvement jobs, etc.
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Here we used the facts that rb = 1/t and T0 = Nt because the line is balanced. To get

the corresponding throughput, we simply apply Little’s law:

TH = WIP

CT

= w

T0 + (w − 1)/rb

= w

W0/rb + (w − 1)/rb

= w

W0 + w − 1
rb

This provides our definition of practical worst-case performance.

Definition (Practical Worst-Case Performance): The practical worst-case (PWC)
cycle time for a given WIP level w is given by

CTPWC = T0 + w − 1

rb

The PWC throughput for a given WIP level w is given by

THPWC = w

W0 + w − 1
rb

Notice that the behavior of this case is reasonable for both extremely low and

extremely high WIP levels. At one extreme, when there is only one job in the system

(w = 1), cycle time becomes raw process time T0, as we would expect. At the other

extreme, as the WIP level grows very large (that is, w → ∞), throughput approaches

capacity rb, while cycle time increases without bound. The intuition behind this latter

result is that achieving throughput close to capacity in systems with high variability

requires high WIP levels, to ensure that the bottleneck(s) (i.e., all stations in the balanced

case) never starve for lack of work. But high WIP also ensures a great deal of waiting

and hence high cycle times.

The throughput and cycle time of the practical worst case are always between those

of the best case and the worst case. As such, the PWC provides a useful midpoint that

approximates the behavior of many real systems. By collecting data on average WIP,

throughput, and cycle time (actually, because of Little’s law, any two of these will suffice)

for a real production line, we can determine whether it lies in the region between the best

and practical worst cases, or between the practical worst and worst cases. Systems with

better performance than the PWC (i.e., that have larger throughput and smaller cycle

time for a given WIP level) are “good” (lean), and systems with worse performance are

“bad” (fat). It makes sense to focus our improvement efforts on the bad lines because

they are the ones with room for improvement. Thus, our three cases offer a sort of

internal benchmarking methodology (i.e., as opposed to external benchmarking in

which comparisons are made against outside systems). We will illustrate the internal

benchmarking procedure explicitly in Section 7.3.5.

If internal benchmarking indicates that a line is bad, we can get some guidance on

how to improve it by looking at the three assumptions under which the PWC was derived:

1. Balanced line

2. Single-machine stations

3. Exponential (memoryless) processing times
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Since these three conditions were chosen to maximize randomness in the line, improving

any of them will tend to improve the performance of the line.

First, we could unbalance the line by adding capacity at a station. This could be

accomplished by adding physical equipment, reducing downtime due to worker breaks

or equipment failures, speeding up the process through more efficient work methods,

and so on. Obviously, if we increase capacity at all stations, throughput will increase.

But even if we increase capacity at only some stations, so that rb does not change, this

serves to reduce randomness (i.e., the states in Table 7.3 are no longer equally likely)

and therefore causes the throughput-versus-WIP curve to increase more rapidly (i.e., less

WIP in the system achieves the same throughput). We realize that line unbalancing is

somewhat counter to the traditional industrial engineering emphasis on line balancing.

However, as we will see in Chapter 18, line balancing is primarily applicable to paced
assembly lines, not a line of independent workstations like those we are considering here.

Second, we could make use of parallel machines in place of single machines

at workstations. If this is accomplished by adding extra machines, then it serves to

increase capacity and therefore has essentially the same effects as those discussed

above. But even replacing single machines with parallel ones with the same capacity

can improve performance in some cases. For instance, reconsider Penny Fab One

under the assumption that process times are exponential instead of deterministic and

average process times are still 2 hours at each station. Suppose stations 3 and 4

(rimming/deburring) are collapsed into a single station with two parallel machines,

where the machines perform both rimming and deburring in a single step and take

twice as long as before (i.e., an average of 4 hours per penny). Since the capacity of the

station is 1
2

penny per hour, the bottleneck rate of the line is still rb = 0.5. Also, the raw

process time remains T0 = 8 hours. But in the former arrangement, two pennies could

have wound up at either rimming or deburring, with the consequence that one has to

wait. In the revised line, anytime there are two pennies in rimming or deburring, we are

guaranteed that both are being worked on. The result will be less waiting, and hence

shorter cycle times, for a given WIP level in the revised system with parallel machines.

Finally, we could reduce the variability of the processing times to less than that

implied by the exponential distribution. Reducing the likelihood of jobs clumping up be-

hind stations, and hence waiting, will improve throughput and cycle time for a given WIP

level. We will examine what is meant by variability reduction relative to the exponential

in Chapter 8, and we will discuss practical methods for achieving it in Part III.

Figures 7.12 and 7.13 illustrate some of these concepts by plotting cycle time and

throughput as a function of WIP level for Penny Fab Two under the assumption of expo-

nentially distributed process times at all stations. For comparison, we have also plotted

the best, worst, and practical worst cases for the same bottleneck rate and raw process

time (i.e., for rb = 0.4 and T0 = 20). Even though processing times are exponential,

because Penny Fab Two has an unbalanced line and parallel machine stations, it out-

performs the practical worst case. If we were to reduce the variability of the processing

times, this would improve it even more.

7.3.4 Bottleneck Rates and Cycle Time

Since the 1980s, a great deal of attention has been focused on the importance of bot-

tlenecks in production systems (see, e.g., Goldratt and Cox 1984). Our discussion here

certainly confirms that the bottleneck rate rb is important, since it establishes the capacity

of the line. But the Factory Physics laws also give us insights into the role of bottlenecks

beyond this obvious conclusion.
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Cycle time versus WIP in

Penny Fab Two.

First, if we are operating a “good” line (i.e., throughput greater than the practical

worst case for any WIP level), then at typical WIP levels (e.g., between 5 and 10 times

W0) the cycle time will be very close to w/rb, where w is the WIP level. (This can be

observed in Figures 7.12 and 7.13.) Hence, increasing the bottleneck rate rb will reduce

cycle time for any given WIP level.

Unfortunately, there are times when it is physically or economically impractical to

speed up the bottleneck. For example, suppose the copper plater is the bottleneck in

a printed-circuit-board plant. The rate at which this machine runs is governed by the

chemistry of the process. Therefore, if it is already running for the maximum number of

hours per day (i.e., it does not suffer from staffing or maintenance problems that could

be resolved to increase the effective capacity), then the only way to increase capacity

is to add another plater. This is an extremely expensive option that would probably be

overkill, since it would result in a 100 percent increase in capacity. In a situation like this,

it may make economic sense to consider increasing capacity of nonbottleneck resources.

To see this, consider a system with four single-machine stations. Each station takes

10 minutes to perform a job except the last station (the bottleneck) which takes 15

minutes. Thus, the bottleneck rate is four jobs per hour.
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Throughput time versus

WIP in Penny Fab Two.
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Now, suppose we speed up the bottleneck to 10 minutes per job (6 jobs per hour),

thereby balancing the line. Figure 7.14 illustrates the impact on the throughput versus

WIP curve for the line. Notice that the improved line has a higher limiting production

rate (a new rb), but the throughput curve stays further from it than the original system.

The reason is that a balanced line tends to starve its bottleneck more frequently than

an unbalanced line, and hence requires more WIP for throughput to approach capacity.

Nevertheless, speeding up the bottleneck causes throughput to increase for any WIP

level.

Alternatively, suppose we speed up all of the nonbottleneck processes so that they

require only 5 minutes, but keep bottleneck time at 15 minutes. Figure 7.15 shows

that this also increases throughput for any WIP level. Indeed, for small WIP levels,

the increase in throughput is actually greater than that achieved by speeding up the

bottleneck. However, for large WIP levels (six or above), increasing the bottleneck rate

achieves a greater increase in throughput than does the increase in nonbottleneck rates.

Also we note that we made a bigger change to the nonbottleneck stations than we did to

the bottleneck station (i.e., we cut the process time in half at three machines as opposed

to reducing the time at a single machine by 33 percent). If we had the freedom to reduce

any process time by 5 minutes, the best place to do it would be the bottleneck, always!
But since this is not always possible (economical), it is good to know that performance

gains can be achieved by improving nonbottleneck resources.

7.3.5 Internal Benchmarking

We now have the tools to evaluate the performance of a line. The basic idea is to compare

actual performance to that of the best, worst, and practical worst cases. The PWC serves

as the benchmark; performance worse than this indicates problems (opportunities), while

performance better than this suggests that the line is not vastly inefficient. To show how

this works in practice, we introduce a real case.
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HAL Case:

HAL, a computer company, manufactures printed-circuit boards (PCBs), which are sold to

other plants, where the boards are populated with components (“stuffed”) and then sent to be

used in the assembly of personal computers. The basic processes used to manufacture PCBs

are as follows:

1. Lamination. Layers of copper and prepreg (woven fiberglass cloth impregnated with

epoxy) are pressed together to form cores (blank boards).

2. Machining. The cores are trimmed to size.

3. Circuitize. Through a photographic exposing and subsequent etching process,

circuitry is produced in the copper layers of the blanks, giving the cores “personality”

(i.e., a unique product character). They are now called panels.

4. Optical test and repair. The circuitry is scanned optically for defects, which are

repaired if not too severe.

5. Drilling. Holes are drilled in the panels to connect circuitry on different planes of

multilayer boards. Note that multilayer panels must return to lamination after being

circuitized to build up the layers. Single-layer panels go through lamination only

once and do not require drilling or copper plating.

6. Copper plate. Multilayer panels are run through a copper plating bath, which deposits

copper inside the drilled holes, thereby connecting the circuits on different planes.

7. Procoat. A protective plastic coating is applied to the panels.

8. Sizing. Panels are cut to final size. In most cases, multiple PCBs are manufactured on

a single panel and are cut into individual boards at the sizing step. Depending on the

size of the board, there could be as few as two boards made from a panel, or as many

as 20.

9. End-of-line test. An electrical test of each board’s functionality is performed.

HAL engineers monitor the capacity and performance of the PCB line. Their best estimates

of capacity are summarized in Table 7.4, which gives the average process rate (number of

panels per hour) and average process time (hours) at each station. (Note that because panels
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Table 7.4 Capacity Data for HAL Printed-Circuit-Board Line

Process Rate (parts per hour) Time (hours)

Lamination 191.5 4.7

Machining 186.2 0.5

Internal circuitize 114.0 3.6

Optical test/repair—int. 150.5 1.0

Lamination—composites 158.7 2.0

External circuitize 159.9 4.3

Optical test/repair—ext. 150.5 1.0

Drilling 185.9 10.2

Copper plate 136.4 1.0

Procoat 117.3 4.1

Sizing 126.5 1.1

EOL test 169.5 0.5

rb , T0 114.0 33.9

are often processed in batches and because many processes have parallel machines, the rate

of a process is not the inverse of the time.) These values are averages, which account for

the different types of PCBs manufactured by HAL and also the different routings (e.g.,

some panels may visit lamination twice). They also account for “detractors,” such as machine

failures, setup times, and operator efficiency. As such, the process rate gives an approximation

of how many panels each process could produce per hour if it had unlimited inputs. The process

time represents the average time a typical panel spends being worked on at a process, which

includes time waiting for detractors but does not include time waiting in queue to be worked on.

The main performance measures emphasized by HAL are throughput (how many PCBs

are produced), cycle time (the time it takes to produce a typical PCB), work in process

(inventory in the line), and customer service (fraction of orders delivered to customers on

time). Over the past several months, throughput has averaged about 1,400 panels per day, or

about 71.8 panels per hour (HAL works three shifts per day, which results in 19.5 productive

hours per day after considering breaks, lunches, shift changes, and meetings). WIP in the line

has averaged about 47,000 panels, and manufacturing cycle time has been roughly 34 days,

or 816 hours. Customer service has averaged about 75 percent.

The question is, how is HAL doing?

We can answer part of this question with no analysis at all. HAL management is not

happy with 75 percent customer service because it has a corporate goal of 90 percent.

So this aspect of performance is not good. However, perhaps the reason for this is that

overzealous salespersons are promising unrealistic due dates to customers. It may not

be an indication of anything wrong with the line.

To evaluate performance along the other metrics—throughput, WIP, and cycle

time—we make use of the internal benchmarking procedure. To do this, observe from

Table 7.4 that the bottleneck rate is rb = 114 panels per hour and raw process time is

T0 = 33.9 hours. Hence, the critical WIP for the line is

W0 = rb × T0 = 114 × 33.9 = 3,869 panels

Before making the benchmark calculations we make a quick Little’s law check of

the data:

TH × CT = 1,400 panels/day × 34 days = 47,600 panels
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which is very close to the actual value of 47,000 panels. Since Little’s law applies

precisely only to long-term averages, we would not expect it to hold exactly. However,

this is certainly well within the precision of the data and hence suggests no problems.

We now compare actual performance to that of the PWC with the same rb, T0, and

WIP level as the HAL line:

THPWC = w

W0 + w − 1
rb = 47,000

3,869 + 47,000 − 1
(114) = 105.3 panels per hour

Actual throughput is 71.8 panels per hour, which is significantly smaller than 105.3 and

hence indicates that performance that is much worse than that of the practical worst case.

We can put these calculations in graphical terms by plotting the best, worst, and

practical worst throughput versus WIP curves and plotting the actual performance. This

results in the graph in Figure 7.16, which shows dramatically that the (WIP, TH) pair of

(47,000, 71.8) is well into the “bad” region between the worst and practical worst cases.

Clearly, lines that exhibit such behavior offer much more opportunity for improvement

than lines in the “good” region between the practical worst and best cases.

This example shows that the models presented in this chapter can help diagnose a

production line and determine whether it is operating efficiently or not. But they do not

tell us why a line is operating poorly and therefore do not help us determine how to

improve it. For this, we require a deeper investigation of what causes some lines to be

very efficient at converting WIP to throughput and others to be very inefficient. This is

the subject of the next two chapters.

7.4 Labor-Constrained Systems

Throughout this chapter, we have focused on lines in which machines are the constraint

(bottleneck). We have implicitly assumed that if there are human operators, they are

assigned to machines and can therefore be viewed as part of the workstations. However,

in some systems, workers perform multiple tasks or tend more than one workstation.

These types of systems exhibit more complex behavior than the simple lines considered
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so far, since the flow of work is affected by the number and characteristics of both

machines and operators.

Although the subject of flexible labor is much too broad for us to treat comprehen-

sively here, we can make some observations about how labor-constrained lines relate to

the simple lines presented earlier. We do this by considering three situations below.

7.4.1 Ample Capacity Case

We begin with the case in which labor is the only constraint on output. That is, we as-

sume sufficient equipment at each workstation to ensure that a worker is never blocked

for lack of a machine. While one might think that such a situation would never arise

in practice, there are realistic situations that approximate this behavior. An example the

authors encountered was that of a prepress graphical production facility of catalogs and

other marketing materials. This firm received content (text, photos, etc.) from its clients

and converted these materials into electronic engraving data via a series of steps (e.g.,

scanning, color correction, page finishing), which it then sent to a printer to be made

into paper products. Most of the prepress steps required a computer along with some pe-

ripheral equipment. Because computer equipment was inexpensive relative to the cost of

delays, the firm installed enough duplicates of each station to ensure that technicians vir-

tually never had to wait for equipment to perform the various tasks. The result was many

more machines than people, which meant that labor was the key constraint in the system.

A primary reason the graphics company installed ample capacity at its stations was

to facilitate its flexible labor policy. Instead of having specialists for each operation,

the company had cross-trained the workforce so that almost everyone could do almost

every operation. This allowed the company to assign workers to jobs instead of stations.

A worker would follow a job through the system, performing each operation on the

appropriate workstation, as shown in Figure 7.17. The extra computers made it very

unlikely that someone would ever have to wait for equipment at a station. Having workers

stay with a job all the way through the system meant that customers had a single person

to contact and also made one person clearly responsible for quality.

In a system like this, capacity is defined by labor rather than equipment. To char-

acterize capacity, we will continue to let T0 represent the average time for one job to

traverse the system, which we assume is independent of which worker is assigned to the

job. Furthermore, we suppose that once a worker starts a job, he or she continues with

it until it is done. Stopping work midway through a job cannot improve throughput and

will only increase cycle time, so unless some customers have higher priority than others,

there is no reason to do this. Under these assumptions, jobs are released into the system

only when a worker becomes available, and since there is no blocking due to equipment,

1

Worker

2

3

1 2 3 4 Station

Figure 7.17

Ample capacity line with

fully cross-trained

workers.
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cycle time is always T0. If there are n workers in the line, all working at the same rate,

then each puts out a job every T0 time units, which means that throughput is n/T0.

Since the ample capacity case is an ideal situation, any changes to our assumptions

can only decrease throughput. Examples of such changes include less-than-ample equip-

ment so that blocking occurs, intermittent arrival of work that may cause starving, partial

cross-training so that jobs may have to wait for a “specialist” at some stations, or any

other change that prevents workers from being completely busy. Hence, we can define

the capacity of a labor-constrained system as follows.

Definition (Labor Capacity): The maximum capacity of a line staffed by n cross-
trained operators with identical work rates is

THmax = n

T0

This definition provides a way to introduce labor into the capacity calculations. For

instance, in a line that has more stations than workers, the bottleneck rate of the equipment

rb may be a poor estimate of the capacity of the line. Where throughput is constrained

by labor, n/T0 may be a more realistic and useful upper bound on throughput. This

bound is applicable to a wide range of systems, including those with fully or partially

cross-trained workers.

One class of systems to which it does not apply, however, is that in which a worker can

process more than one job simultaneously. For instance, a manufacturing cell where a sin-

gle operator can tend several automated machines at the same time may have throughput

exceeding n/T0. Such systems are often appropriately viewed as equipment-constrained,

where operator unavailability acts as a capacity detractor and variability inflator. We will

examine detractors in Chapter 8.

7.4.2 Full Flexibility Case

To deepen our insight into how both equipment and labor affect capacity, we next consider

the case in which workers are completely cross-trained (i.e., can operate every station

in the line). Furthermore, we begin by assuming that workers are tied to jobs as in the

ample capacity case. However, unlike in the ample capacity case, equipment is limited

so workers may become blocked, as shown in Figure 7.18. Once a worker finishes a job

at the end of the line, she goes back to the beginning and starts a new one.

If the workers in Figure 7.18 have identical work rates, then this line is logically

identical to the CONWIP lines we considered previously, except that the WIP level is

now the number of workers. Hence, the behavior of the line will lie somewhere between

the best and worst cases, with the practical worst case defining the division between

good and bad lines. Furthermore, all the improvement strategies we listed earlier—

increasing capacity, reducing line balance, using parallel machine stations, and reducing

variability—still apply to this case.

The assumption of fully cross-trained workers who walk jobs all the way through the

line may not be realistic in many situations. For instance, if the workstations require very

different skills, it may make sense to have workers pass jobs from one to another. One

mechanism is the bucket brigade (see Bartholdi and Eisenstein 1996). In this system,
Figure 7.18

Line with fully

cross-trained workers tied

to jobs.
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whenever the worker farthest downstream in the line completes a job, he or she moves

up the line and takes the job from the next worker upstream. That worker in turn moves

upstream and takes the job from the next worker. And so on, until the worker farthest

upstream takes a new job. If all workers work at the same speed and there is no delay

due to the handing off of the jobs, then there is no logical difference in this system from

the one depicted in Figure 7.18. The line still operates as a CONWIP line with the WIP

level set by the number of workers. Only the identities of the workers assigned to each

job are changed.

While the bucket brigade system may not differ logically from the system with

workers tied to jobs, it does differ practically. Each worker will tend to operate stations

in a zone. Indeed, in the case where all process times are perfectly deterministic (i.e., the

best case), the line will settle into a repetitive cycle where each worker processes jobs

through the same sequence of stations. Cross-training and job transfers allow the line

to balance itself so that each worker spends the same amount of time with a job. This

type of system has been used effectively in automobile seat construction (see Chapter 10

for a discussion of this system at Toyota), warehouse picking, and fast-food sandwich

construction (Subway).

Notice that blocking is still possible in bucket brigades. Whenever an upstream

worker catches up with the next worker downstream, she or he will be blocked unless

the station has extra equipment. Hence, it makes sense to organize the workers so as

to minimize the frequency with which this happens, by placing the fastest workers

downstream and the slowest workers upstream. Bartholdi and Eisenstein (1996) showed

that this arrangement from slowest to fastest can significantly improve throughput and

observed that this tends to be the practice in industry where such systems are used.

7.4.3 CONWIP Lines with Flexible Labor

If workers stay tied to jobs (or hand off jobs directly from one to another as in the

bucket brigade system), then the number of jobs in the system always equals the number

of workers and the system behaves logistically as a CONWIP line. But in many, if

not most, systems, the number of jobs will typically exceed the number of workers. If

workers can rove through the system and work at different stations, then the performance

of the system will depend on how effectively labor is allocated to promote flow through

the system. This can get complex, since there are countless ways that labor can be

dynamically allocated in the system.

One approach, which is a natural extension of the bucket brigade system to the

case with more jobs than workers, is to have any worker who becomes free take the

next job upstream, either from the upstream worker or from a buffer (see Figure 7.19

for an illustration of the mechanics). Whenever a worker becomes blocked because a

downstream station is busy, the worker drops the job in the buffer in front of the station

and moves upstream to get another job. This continues as long as the total number of

Dropped job
Released jobs

awaiting workers

Figure 7.19

CONWIP line using

bucket brigade with job

dropping.
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jobs in the system does not exceed some preset limit (without such a limit, a fast worker

at the front of the line would flood the line with WIP).

If all stations consist of single machines, so that no passing is possible, then at any

time worker n (the last worker in the line) will be working on the job farthest downstream.

Worker n − 1 will be working on the next-farthest job downstream that is not blocked by

worker n. And so on. If passing on multimachine stations is possible, then the workers can

get out of order. But the basic intent is still to keep workers working whenever possible

on the jobs farthest downstream. Keeping workers busy tends to maximize throughput;

working on downstream jobs tends to minimize cycle times. Hence, we would expect

this policy to work reasonably well.

Systems where job processing requires both a machine and an operator are more

complex than those we discussed in earlier sections of this chapter, where only machines

were constraints. However, in some cases, the behavior of systems with labor can be

described in similar terms. For instance, if there is no difference in the speed of workers,

then the throughput of the system depends entirely on how often unblocked jobs are idle

for lack of a worker. If this never happens, then the system will operate like a regular

CONWIP line. If it happens so frequently that the workers might just as well be tied to

one job each, then the system will operate as a CONWIP line with only as many jobs as

workers. If jobs with an available machine occasionally wait for an operator, then perfor-

mance will be somewhere in between that of a regular CONWIP line (i.e., with WIP equal

to the number of jobs) and a CONWIP line with WIP equal to the number of workers.

7.4.4 Flexible Labor System Design

In practice, making use of flexible labor to improve operational efficiency involves two

levels of management decisions:

1. Training: determining which operators will be trained to do which tasks within

the system.

2. Assignment: allocating operators to tasks in real time according to system needs

and operator capabilities.

Because training can be expensive and time-consuming, it is often impractical to

equip every operator with the necessary skills to do every job. So, assignment policies

that require operators to follow jobs through the entire line, or even a large segment

of it, may not be practical options. Fortunately, however, recent research suggests that

policies based on much more restrictive levels of cross-training can achieve most of

the performance benefits achievable with full cross-training. One approach is the use of

chaining policies, in which operators are trained to cover limited zones of workstations,

but where the zones overlap. Figure 7.20 depicts a U-shaped line in which operators are

Material flowFigure 7.20

Example of production
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operator skills.
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able to cover their base station and the next station in the sequence (with the operator

of the last station trained to cover the first station, to complete the chain). In chaining

systems, capacity can be dynamically shifted from any station to any other by reassigning

operators within their zones (see Hopp, Tekin, and Van Oyen 2004 for details). This makes

them very robust to fluctuations in workloads (e.g., due to temporary shifts in product

mix) or staffing levels (e.g., due to absenteeism).

In addition to affecting operational efficiency, cross-training and dynamic assign-

ment of operators can affect quality, ergonomics, customer service, and other dimensions

of a production system. Because both strategic needs and environmental characteristics

vary greatly among systems, many different approaches have been used to develop and

use labor flexibility. Determining the best approach for a given system involves evalu-

ating the strategic objectives that can be addressed through cross-training and matching

the policy to the environmental characteristics of the system (see Hopp and Van Oyen

2004 for a formal framework with which to make such evaluations).

7.5 Conclusions

In this chapter we examined the fundamental behavior of a single production line by

studying the relationships among cycle time, WIP, throughput, and capacity. We observed

the following:

1. A single line can be reasonably summarized by two independent parameters:

the bottleneck rate rb and the raw process time T0. However, as we observed, a

wide range of behavior is possible for lines with the same rb and T0. We will

investigate the causes of this disparity in the next two chapters.

2. Little’s law (WIP = TH × CT) provides a fundamental relationship between

three long-term average measures of the performance of any production station,

line, or system.

3. The best case defines the maximum throughput and minimum cycle time for a

given WIP level for any line with specified values of rb and T0. The worst case

defines the minimum throughput and maximum cycle time for any line with

specified values of rb and T0. The practical worst case provides an intermediate

scenario that serves as a useful demarcation between “good” and “bad” systems.

4. The critical WIP level, defined as W0 = rbT0, represents a realistic ideal WIP

level (as opposed to the unrealistic ideal of zero inventory, which would result

in zero throughput). At W0, a best-case (i.e., zero-variability) line achieves both

maximum throughput (i.e., rb) and minimum cycle time (i.e., T0).

5. Both the best case and the worst case occur in systems with zero randomness.

The worst case results from high variability caused by bad control rather than

randomness. The practical worst case represents the maximum randomness

situation.

6. When WIP levels are high, reducing raw process time T0 has little effect on

cycle times, while increasing rb can have a great impact.

7. Other things being equal (that is, rb and T0 are the same), unbalanced lines

exhibit less congestion than balanced lines.

8. Production lines can be constrained by a combination of equipment and labor.

Equipment capacity is bounded by the bottleneck rate rb, while labor capacity is

bounded by n/T0, where n is the number of workers in the line.
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9. Systems with high process variability and balanced stations are most amenable

to cross-training and flexible labor policies. In addition, parallel machine

stations help facilitate flexible work policies.

A thread that has emerged from this analysis of basic factory dynamics is that a line

can achieve the same throughput at a lower WIP level by either increasing capacity or

improving the efficiency of the line. As we hinted in our treatment of the practical worst

case, a primary way of increasing line efficiency is by reducing variability at individual

stations. To be able to evaluate the relative effectiveness of capacity increases versus

variability reduction, we must further develop the science of Factory Physics to describe

the behavior of production systems involving variability. We do this next in Chapters 8

and 9.

Study Questions

1. Suppose throughput TH is near capacity rb. Using Little’s law, relate

(a) WIP and cycle time in a production line.

(b) Finished goods inventory and time spent in finished goods inventory.

(c) The number of cars waiting at a toll booth and the average wait time.

2. Is it possible for a line to have the same throughput with both high WIP with high cycle time

and low WIP with low cycle time? Which would you rather have? Why?

3. For a given set of production line characteristics (i.e., raw process time T0 and bottleneck

rate rb) and a given WIP level w , what is the best cycle time that can be achieved? What is

the “worst”? What is the corresponding throughput for these two cases?

4. What are the conditions for the practical worst-case throughput? What types of behavior can

lead to performance worse than that in this case? What would this do to throughput? To cycle

times?

5. Can the critical WIP level W0 ever exceed the number of machines in the line?

6. Suppose process times on a machine are exponentially distributed with a mean of 10 minutes.

A job has currently been running for 90 minutes. What is the expected time until completion?

Problems

1. Compute the capacity in parts per hour of the following:

(a) A station with three machines operating in parallel with 20-minute process times at each

station.

(b) A balanced line with single-machine stations, all with average processing times of 15

minutes.

(c) A four-station line with single-machine stations, where the average processing times are

15, 20, 10, 12 minutes, respectively for stations 1, 2, 3, 4.

(d) A four-station line with multimachine stations, where the number of (parallel) machines

at stations 1, 2, 3, 4 is 2, 6, 10, 3, respectively. The average processing times at stations

1, 2, 3, 4 are 10, 24, 40, 18 minutes, respectively.

(e) A three-station line with ample equipment (i.e., such that operators are never prevented

from processing a job by a lack of equipment) staffed by six operators who are identical

with regard to average processing times and require 10, 15, and 5 minutes, respectively,

on stations 1, 2, 3.

(f) The same line as in the above case except that station 2 consists of only two parallel

machines. All other stations still have ample capacity.
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2. Consider a three-station line with single-machine stations. The average processing times on

stations 1, 2, 3 are 15, 12, and 14 minutes, respectively. However, station 2 is subject to

random failures, which cause its fraction of uptime (availability) to be only 75 percent.

(a) Which station is the bottleneck of this line?

(b) What are the bottleneck rate rb, raw process time T0, and critical WIP W0 for the line?

(c) If availability of station 2 is reduced to 50 percent, what happens to the critical WIP W0?

Briefly describe the likely impacts of this change.

3. A powder metal (PM) manufacturing line produces bushings in three steps, compaction,

sinter-harden, and rough/finish turn, which are accomplished at three single-machine

stations with average processing times of 12, 10, and 6 minutes, respectively. However,

while compaction and sinter-harden are dedicated to the bushing line, the rough/finish turn

station also processes bearings from another line; the average processing times for bearings

are 14 minutes.

(a) If the production volumes of bushings and bearings are the same, what is the bottleneck

of the PM line?

(d) If you had to pick one process for the bottleneck, which one would it be?

4. A print shop runs a two-station binding line, in which the first station punches holes in the

pages and the second station installs the binders. On average, the punch machine can

process 15,000 pages per hour, while the binder can process 10,000 pages per hour. The

shop receives work that requires both punching and binding at a rate of 8,000 pages per

hour. It also receives work requiring only punching at a rate of 5,000 pages per hour. Which

station is the bottleneck of this line and why?

5. Consider a four-station line in which all stations consist of single machines. Station 2 has

average processing times of 2 hours per job, while the remaining stations have average

processing times of 1 hour per job. Answer the following, under the assumption that process

times are deterministic (as in the best case).

(a) What are rb and T0 for this line?

(b) How do rb and T0 change if a second identical machine is added to station 2? What

effects will this have on performance?

(c) How do rb and T0 change if the machine at station 2 is speeded up to have average

processing times of 1 hour? What effects will this have on performance?

(d) How do rb and T0 change if a second, identical machine is added to station 1? What

effects will this have on performance?

(e) How do rb and T0 change if the machine at station 1 is speeded up to have average

processing times of 1

2
hour? What effects will this have on performance? Do your

results agree or disagree with the statement “An hour saved at a nonbottleneck is a

mirage (i.e., of no value)”?

6. Repeat Problem 4 under the assumption that all jobs are processed at a station before

moving (as in the worst case).

7. Repeat Problem 4 under the assumption that process times are exponentially distributed and

the line is balanced at the bottleneck rate (as in the practical worst case).

8. Consider the following three-station production line with a single product that must visit

stations 1, 2, and 3 in sequence:
� Station 1 has five identical machines with average processing times of 15 minutes

per job.
� Station 2 has 12 identical machines with average processing times of 30 minutes

per job.
� Station 3 has one machine with average processing time of 3 minutes per job.

(a) What are the bottleneck rate rb, the raw process time T0, and the critical WIP w0?

(b)  If the volume of bearings is 1/2 that of bushings, what is the bottleneck of the PM line?
(c)  If the volume of bearings is 1/3 that of bushings, what is the bottleneck of the PM line?
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(b) Compute the average cycle time when the WIP level is set at 20 jobs, under the

assumptions of:

(i) The best case

(ii) The worst case

(iii) The practical worst case

(c) Suppose you desire the throughput of a line to be 90 percent of the bottleneck rate.

Find the WIP level required to achieve this under the assumptions of:

(i) The best case

(ii) The worst case

(iii) The practical worst case

(d) If the cycle time at the critical WIP is 100 minutes, where does performance fall

relative to the three cases? Is there much room for improvement?

9. Positively Rivet Inc. is a small machine shop that produces sheet metal products. It had one

line dedicated to the manufacture of light-duty vent hood shells, but because of strong

demand it recently added a second line. The new line makes use of higher-capacity

automated equipment but consists of the same basic four processes as the old line. In

addition, the new line makes use of one machine per workstation, while the old line has

parallel machines at the workstations. The processes, along with their machine rates,

number of machines per station, and average times for a lone job to go through a station

(i.e., not including queue time), are given for each line in the following table:

Old Line New Line

Rate per Machine Number Machines Time Rate per Machine Number Machines Time

Process (parts/hour) per Station (minute) (parts/hour) per Station (minute)

Punching 15 4 4.0 120 1 0.50

Braking 12 4 5.0 120 1 0.50

Assembly 20 2 3.0 125 1 0.48

Finishing 50 1 1.2 125 1 0.48

Over the past 3 months, the old line has averaged 315 parts per day, where one day consists

of one 8-hour shift, and has had an average WIP level of 400 parts. The new line has

averaged 680 parts per 8-hour day with an average WIP level of 350 parts. Management has

been dissatisfied with the performance of the old line because it is achieving lower

throughput with higher WIP than the new line. Your job is to evaluate these two lines to the

extent possible with the above data and identify potentially attractive improvement paths for

each line by addressing the following questions.

(a) Compute rb, T0, and W0 for both lines. Which line has the larger critical WIP? Explain

why.

(b) Compare the performance of the two lines to the practical worst case. What can you

conclude about the relative performance of the two lines compared to their underlying

capabilities? Is management correct in criticizing the old line for inefficiency?

(c) If you were the manager in charge of these lines, what option would you consider first to

improve throughput of the old line? Of the new line?

10. Floor-On, Ltd., operates a line that produces self-adhesive tiles. This line consists of

single-machine stations and is almost balanced (i.e., station rates are nearly equal). A

manufacturing engineer has estimated the bottleneck rate of the line to be 2,000 cases per

16-hour day and the raw process time to be 30 minutes. The line has averaged 1,700 cases

per day, and cycle time has averaged 3.5 hours.

(a) What would you estimate average WIP level to be?

(b) How does this performance compare to the practical worst case?
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(c) What would happen to the throughput of the line if we increased capacity at a

nonbottleneck station and held WIP constant at its current level?

(d) What would happen to the throughput of the line if we replaced a single-machine station

with four machines whose capacity equaled that of the single machine and held the WIP

constant at its current level?

(e) What would happen to the throughput of the line if we began moving cases of tiles

between stations in large batches instead of one at a time?

11. T&D Electric manufactures high-voltage switches and other equipment for electric utilities.

One line that is staffed by three workers assembles a particular type of switch. Currently the

three workers have fixed assignments; each worker fastens a specific set of components onto

the switch and passes it downstream on a rolling conveyor. The conveyor has capacity to

allow a queue to build up in front of each worker. The bottleneck is the middle station with a

rate of 11 switches per hour. The raw process time is 15 minutes. To improve the efficiency

of the line, management is considering cross-training the workers and implementing some

sort of flexible labor system.

(a) If current throughput is 10.5 switches per hour with an average WIP level of five jobs,

how much potential do you think there is for a flexible work system?

(b) If current throughput is eight switches per hour with an average WIP level of seven jobs,

how much potential do you think there is for a flexible work system?

(c) If all three workers were fully cross-trained and equipped to assemble the entire switch

in parallel (i.e., no passing of jobs to one another) and were able to maintain the current

work pace of each operation, what would the capacity of the system be? What

real-world problems might make such a policy unattractive?

(d) Suggest a flexible work system that could improve the efficiency of a line like this with

less than full cross-training (i.e., with workers trained and equipped to assemble only

certain components).

12. Consider a balanced line consisting of five single-machine stations with exponential process

times. Suppose the utilization is 75 percent and the line runs under the CONWIP protocol

(i.e., a new job is started each time a job is completed).

(a) What is the WIP level in the line?

(b) What is the cycle time as a percentage of T0?

(c) What happens to WIP, CT, and TH relative to the original system if you make each of

the following changes (one at a time)?

(i) Increase the WIP level

(ii) Decrease the variability of one station

(iii) Decrease the capacity at one station

(iv) Increase the capacity of all stations

Intuition-Building Exercises

1. Simulate Penny Fab Two by taking a piece of paper and drawing a schematic of the line (see

Figure 7.21). Draw the squares large enough to contain a penny. To the right of each square,

write the time of the completion of the job occupying that square (as the simulation

progresses, you will cross out the old time and replace it with the next time). The simulation

progresses by setting the current “simulated time” to be the earliest completion time and

moving the pennies accordingly.

(a) Run your simulation for several simulated hours with seven pennies. Note how the

second station sometimes starves.

(b) Run your simulation for several simulated hours with eight pennies. Observe that station

2 never starves and there is never any queueing once the initial transient queue is

dissipated in front of the first station.
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Figure 7.21

Penny Fab Two with

w = 9, 22 hours into the

simulation.

(c) Run your simulation for several simulated hours with nine pennies (Figure 7.21 illustrates

this scenario after 22 simulated hours). Note that after the initial transient, there is always

a queue in front of the second station.

2. Simulate Penny Fab Two for 25 hours starting with an empty line and eight pennies in front.

Record the cycle time of each penny that finishes during this time (i.e., record its start time

and finish time and compute cycle time as the difference).

(a) What is the average cycle time CT?

(b) How many jobs finish during the 25 hours?

(c) What is the average throughput TH over 25 hours? Does average WIP equal CT times

TH? Why or why not? (Hint: Did Little’s law hold for the first 2 hours of our simulation

of Penny Fab One?) What does this tell you about the use of Little’s law over short time

intervals?
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8 Variability Basics

God does not play dice with the universe.
Albert Einstein

Stop telling God what to do.
Niels Bohr

8.1 Introduction

Little’s law (TH = WIP/CT) implies that it is possible to achieve the same throughput
with long cycle time and large WIP or short cycle time and small WIP. Of course, the
short-cycle-time, low-WIP system is preferable. But what causes the difference? The
answer, in most cases, is variability.

Penny Fab One from Chapter 7 achieves full throughput (one-half job per hour) at
a WIP level of W0 = 4 jobs (the critical WIP) if it behaves like the best case. But if it
behaves like the practical worst case, it requires a WIP level of 27 jobs to achieve 90
percent of capacity (57 jobs to achieve 95 percent of capacity). If it behaves like the worst
case, 90 percent of capacity is not even feasible. Why the big difference? Variability!

Briar Patch Manufacturing has two very similar workstations as part of its plant.
Both are composed of a single machine that runs at a rate of 4 jobs per hour (when it
is not down). Both are subject to the same pattern of demand with an average workload
of 69 jobs per day (2.875 jobs per hour). And both are subject to periodic unpredictable
outages. However, for one workstation, consisting of a Hare X19 machine, outages are
rather infrequent but tend to be quite long when they occur. For the other station, consist-
ing of a Tortoise 2000 machine, outages are much more frequent and correspondingly
shorter. Both machines have an availability (i.e., the long-term fraction of the time that
the machine is not down for repair) of 75 percent. Thus, the capacity of both stations is
4(0.75) = 3 jobs per hour. Since the two stations have the same capacity and are sub-
ject to the same demand, they should have the same performance—cycle time, WIP, lead
time, and customer service—right? Wrong! It turns out that the Hare X19 is substantially
worse on all measures than the Tortoise 2000. Why? Again, the answer is variability!

Variability exists in all production systems and can have an enormous impact on
performance. For this reason, the ability to measure, understand, and manage variability
is critical to effective manufacturing management. In Chapter 6, we developed a general

264
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formal model of manufacturing supply chains and noted that variability causes perfor-
mance degradation by inflating one or more of three buffers. In this chapter we will
develop basic tools and intuition for characterizing variability in production systems. In
the next chapter, we probe more deeply into the manner in which variability degrades
system performance and how it can be managed.

8.2 Variability and Randomness

What, exactly, is variability? A formal definition is the quality of nonuniformity of a
class of entities. For example, a group of individuals who all weigh exactly the same
have no variability in weight, while a group with vastly different weights is highly
variable in this regard. In manufacturing systems, there are many attributes in which
variability is of interest. Physical dimensions, process times, machine failure/repair times,
quality measures, temperatures, material hardness, setup times, and so on are examples
of characteristics that are prone to nonuniformity.

Variability is closely associated with (but not identical to) randomness. Therefore,
to understand the causes and effects of variability, one must understand the concept
of randomness and the related subject of probability. In this chapter we develop the
necessary ideas in as loose and intuitive a manner as possible. However, for precision,
there are points at which we must invoke the formal language of probability. In particular,
the concept of a random variable and its characterization via its mean and standard

deviation are essential. The reader for whom this terminology is new or rusty should refer
to the review of basic probability in Appendix 2A before proceeding with this chapter.

As mentioned above, both the worst and practical worst cases represent systems
whose performance is degraded by variability. However, the variability in the worst case
is completely predictable—a consequence of bad control—while the variability in the
practical worst case is due to unpredictable randomness. To understand the difference,
we must distinguish between controllable variation and random variation.

Controllable variation occurs as a direct result of decisions. For instance, if several
products are produced in a plant, there will be variability in the product descriptors (e.g.,
their physical dimensions, time to manufacture, etc.). Likewise, if material is moved in
batches from one process to the next, the first part to finish will have to wait longer to move
than the last part, and so waiting times will be more variable than if moved one at a time.

In contrast, random variation is a consequence of events beyond our immediate
control. For example, the times between customer demands are not generally under
our control. Thus, we should expect the load at any particular workstation to fluctuate.
Likewise, we do not know when a machine might fail. Such downtime adds to the
effective process time of a job, since the job must wait for the machine to be repaired
before completing processing. Since such contingencies cannot be predicted or controlled
(at least in the immediate term), machine outages increase the variability of effective
process times in a random fashion.

Although both types of variation can be disruptive to a plant, the effects of random
variation are more subtle and require more sophisticated tools to describe. For this reason,
we will focus mainly on random variation in this chapter.

8.2.1 The Roots of Randomness

There are, at least, two types of randomness—apparent randomness and true randomness.
In the first case, systems only appear to behave randomly because we have imperfect
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(or incomplete) information. The underlying premise of this view is that if we knew all
the laws of physics and had a complete description of the universe at some time, then,
in theory, we could predict every detail of its evolution from then on with certainty. The
practical application is that improving our information about the process will reduce
randomness and thereby variability. Thus, if our forecast is inaccurate, we should seek
more information to improve the forecasting process.

The very notion of a process being truly random gives most people (including
philosophers) trouble. How can something occur that is independent of its initial condi-
tions? Does this not violate the notion of cause and effect? While it is beyond our scope
to discuss this philosophical dilemma thoroughly, it is interesting to make some basic
observations about the nature of randomness. In this interpretation, we see a universe that
actually behaves randomly. In other words, having a complete description of the universe
and the laws of physics is not enough to predict the future. At best, these can provide only
statistical estimates of what will happen. Furthermore, identical starting conditions may
not yield identical futures. Because of the apparent violation of the principle of cause
and effect, this viewpoint has been roundly criticized in philosophical circles. However,
its proponents have pointed out that the cause-and-effect principle can be recovered by
defining other, more fundamental quantities that are not affected by randomness.1

The debate between these two schools of thought became quite heated within the
physics community during the early part of the 20th century. Einstein sided with the first
view (incomplete knowledge) and stated emphatically that “God does not play dice.” Bohr
and others believed in the second (random universe) view and suggested that Einstein
“not tell God what to do” (see Whitaker 1996 for a discussion of this controversy). In
recent years, experimental evidence has tended to side with the random universe view,
much to the distaste of some philosophers.

Regardless of whether randomness is elemental or due to a lack of knowledge, the
effects are the same—many facets of life, including manufacturing management, are
inherently unpredictable. This means that the results of management actions can never
be guaranteed. In fact, starting with the same conditions and using the same control
policy on different days may well lead to different outcomes.

But the distinction between elemental randomness or a lack of knowledge has prac-
tical implications. If the forecast error is due to randomness, then no amount of extra
information is going to improve the forecast. For instance, suppose we are making a de-
vice used by people who have a chronic disease and these people order the device directly
from us, the manufacturer, using the Internet. When they decide to order the device is up
to them. Then, if there are no large changes in the population of those with the disease
and if we have a captive market because of certain patents, we would expect a stable
but random demand. In fact, we would expect the demand to be exactly Poisson because
of the large population involved. This does not mean that we would know the demand
exactly but we would know its probability distribution. Furthermore, no new computer
with a new forecasting program would help predict demand more precisely. The demand
is random and we have to deal with it (using tools from Chapter 2).

This does not mean that we should give up on managing the factory and the supply
chain, only that we need to be concerned with finding robust policies. A robust policy
is one that works well most of the time. This differs from an optimal policy, which is the
best policy for a specific set of conditions. A robust policy is almost never optimal but
is usually “pretty good.” In contrast, an optimal policy may work extremely well for the

1Quantities known as quantum numbers are well-defined and determine the probability distributions of
random observables, such as location and velocity, instead of actual outcomes.
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set of conditions for which it was designed, but perform very poorly for many others.
Unfortunately, companies continue to offer more and more detailed tools to optimize
processes that are inherently random. These are called, variously, finite capacity modules
and advanced planning and optimization (APO) systems. Unfortunately, these involve
detailed optimization models that assume perfect knowledge. Since actual inputs are
random, it should be no surprise that these tools frequently result in a bad schedule.
Hence, investment in such tools usually results in spending an enormous amount of
money for software and integration with few tangible results.

It gets worse. Because the enterprise and supply chain systems do not work well,
most plants are ultimately controlled by a set of planners using ad hoc spread sheets to
“massage” the output of the expensive software. Such a situation is completely unsatis-
factory because (1) the spreadsheets are usually not based on a good understanding of
the underlying logistics and (2) many of the fluctuations the planners are trying to control
are inherently random. This second situation results in feeding back random noise into
the system which ultimately increases variability and reduces effectiveness.

A more powerful tool for the manager is good probabilistic intuition. This, combined
with effective and robust policies, will lead to improved performance in spite of the
randomenss present. Unfortunately, such intuition appears to be rare. A major goal of
this chapter is to develop this critical skill.

8.2.2 Probabilistic Intuition

Intuition plays an important part in many aspects of our everyday lives. Most decisions
we make are based upon some form of intuition. For instance, we slow down when
making turns in an automobile because of our intuition developed after driving for some
time, rather than our detailed understanding of automotive physics. We decide whether
to refinance our house by appealing to our intuition about the economy, rather than a
formal economic analysis. We time our request for a raise according to our intuitive
sense of the boss’s mood, rather than deep theory about his or her psychological profile.

In many situations, our intuition is quite good with respect to “first-order” effects.
For example, if we speed up the bottleneck (busiest workstation) in a production line,
without changing anything else, we expect to get out more product. This type of intuition
typically comes from acting as though the world were deterministic, that is, without
randomness. In the language of probability and statistics, such reasoning is based on
the first moment or the mean (average) of the random variables involved. As long as
the change in the mean quantity (e.g., increase in average speed of a machine) is large
relative to the randomness involved, first-order intuition usually works well.

Our intuition tends to be much less developed for second moments (i.e., for quantities
involving the variance of random variables). For instance, which is more variable, the
time to process an individual part or the time to process a batch of parts? Which are more
disruptive, short, frequent machine failures or long, infrequent ones? Which will result
in a greater improvement in line performance, reducing the variability of process times
at stations closer to raw materials or closer to the customer? These and other variability-
related questions concerning plant behavior require much more subtle intuition than that
required to see that speeding up the bottleneck will improve throughput.

Because people frequently lack well-developed intuition regarding second moments,
they often misinterpret random phenomena. A typical example occurs in the classroom
when students who made low grades on a first examination show relative improvement
on the second examination, while students who made high scores on the first examination
do worse on the second. This is an example of the phenomenon known as regression
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to the mean. An extreme score (high or low) on the first examination is likely to be at
least partially due to randomness (e.g., lucky or unlucky guesses, a headache on test day,
etc.). Since the random effects for a given student are unlikely to be extreme twice in a
row, the student with an extreme score on the first examination is likely to have a more
moderate score on the second. Unfortunately, many teachers interpret these results as
a sign that they have finally reached the slower students and are beginning to lose the
better ones. In reality, simple randomness may well account for the effect.

Misinterpretation of the general tendency for regression to the mean also occurs
among manufacturing managers. After a particularly slow period of output, a manager
may react with harsh appraisals and disciplinary action. Sure enough, production goes up.
Similarly, after outstanding performance and much praise, production declines—clear
evidence that the workers have grown complacent. Of course, the same behavior—better
following bad and worse following good—is likely to happen even when there has been
no change, whenever randomness is present.

In addition to the first two moments (mean and variance), random phenomena are
influenced by the third (skewness), the fourth (kurtosis), and higher moments. The effects
of these higher moments are generally much less pronounced than those associated with
the first two, so we will focus on only the mean and the variance. Furthermore, as
noted above, since effects associated with the mean are fairly intuitive, while effects
associated with the variance are much more subtle, we will devote particular attention
to understanding variance.

8.3 Process Time Variability

The random variable of primary interest in Factory Physics is the effective process time

of a job at a workstation. We use the label effective because we are referring to the total
time “seen” by a job at a station. We do this because, from a logistical point of view, if
machine B is idle because it is waiting for a job to finish on machine A, it does not matter
whether the job is actually being processed or is being held up because machine A is being
repaired, undergoing a setup, reworking the part because of a quality problem, or waiting
for its operator to return from a break. To machine B, the effects are the same. For this
reason, we will combine these and other effects into one aggregate measure of variability.

8.3.1 Measures and Classes of Variability

To effectively analyze variability, we must be able to quantify it. We do this by using
standard measures from statistics to define a set of factory-physics variability classes.

Variance, commonly denoted by σ 2 (sigma squared), is a measure of absolute vari-
ability, as is the standard deviation σ , defined as the square root of the variance. Often,
however, absolute variability is less important than relative variability. For instance, a
standard deviation of 10 micrometers (μm) would indicate extremely low variability in
the length of bolts with a nominal length of 2 inches, but would represent a very high level
of variation for line widths on a chip whose mean width is 5 micrometers. A reasonable
relative measure of the variability of a random variable is the standard deviation divided
by the mean, which is called the coefficient of variation (CV). If we let t denote the
mean (we use t because the primary random variables we are considering here are times)
and σ denote the variance, the coefficient of variation c can be written

c = σ

t
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Table 8.1 Classes of Variability

Variability Class Coefficient of Variation Typical Situation

Low (LV) c < 0.75 Process times without outages
Moderate (MV) 0.75 ≤ c < 1.33 Process times with short adjustments (e.g., setups)
High (HV) c ≥ 1.33 Process times with long outages (e.g., failures)

In many cases, it turns out to be more convenient to use the squared coefficient of

variation (SCV):

c2 = σ 2

t2

We will make extensive use of the CV and the SCV for representing and analyzing
variability in production systems. We will say that a random variable has low variability

(LV) if its CV is less than 0.75, that it has moderate variability (MV) if its CV is
between 0.75 and 1.33, and that it has high variability (HV) if the CV is greater than
1.33. Table 8.1 presents these cases and provides examples.

8.3.2 Low and Moderate Variability

When we think of process times, we tend to think of the actual time that a machine or
an operator spends on the job (i.e., not including failures or setups). Such times tend
to have probability distributions that look like the classic bell-shaped curve. Figure 8.1
shows the probability distribution for process times with a mean of 20 minutes and
a standard deviation of 6.3 minutes. Notice how most of the area under the curve is
symmetrically distributed around 20. The CV for this case is around 0.32, so it is in
the low-variability (LV) range. It is a characteristic of most LV process times to have a
bell-shaped probability density.

Now consider a situation with a mean process time of 20 minutes but for which the
CV is around 0.75, the beginning of the moderate-variability case. An example might
be process times of a manual operation in which most of the time the operation is easy
but occasionally difficulties occur. Figure 8.2 compares the two distributions. Notice
that the LV case has most of its probability concentrated near the mean of 20. In the

Figure 8.1
A low-variability distribution.
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Figure 8.2
Low- and moderate-variability distributions.
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moderate-variability (MV) case, the most likely times are actually lower than the mean,
around 9 minutes. However, while the LV plot tails off around 40, the MV plot does not
do so until around 80. Thus the means are the same, but the variances are much different.
As we will see, this difference is critical to the operational performance of a workstation.

To get a sense of the operational effects of variability, suppose the LV process is
feeding the MV process. For a while, the MV process will be able to keep up easily.
However, once a long process time occurs, a queue of work begins to build in front of
the second process. Offhand we might think that the long process times will be offset
by the short process times, but this does not happen. A string of short process times at
the second station might deplete the queue, causing the second station to become idle.
When this occurs, capacity is lost and cannot be “saved up” for the next period of longer
process times.2

Another way to look at this is to note that when one process feeds another, what
comes in must go out; that is, there is conservation of material. Unless we turn off the
stream of work from the first process whenever the second process is full (a procedure
called blocking and one which we will discuss later), the amount of work in front of
the second process can grow freely. Since there are times when the second station runs
much faster than the first and since the average rate out must equal the average rate in,
there will tend to be a queue of work.

We will discuss this more fully in Section 8.6. For now, we note that the greater the
variability in effective process times, the larger the average queue. Given Little’s law,
this also implies that the greater the variability, the longer the cycle time.

8.3.3 Highly Variable Process Times

It may be hard to imagine process times whose CV is greater than 1.33. However, it is
easy to construct effective process times with this much variability. Suppose a machine
has an average process time of 15 minutes with a CV of 0.225 when there are no
outages. This would be less variable than the previous low-variability case. But now
suppose the machine has outages that average 248 minutes and occur, on average, after
744 minutes of production. We can show (details are given later) that this results in an
effective mean process time of 20 minutes (as before) and an effective CV of a whopping
2.5! Figure 8.3 compares this high-variability (HV) distribution with the previous LV
distribution. Because the HV distribution is taller and thinner, at first glance, it might
appear less variable than the LV distribution. This is because we cannot see what is
happening farther out in time. Once past 40 minutes or so, the picture changes. Figure 8.4
compares the distributions on a different scale for time greater than 40 minutes. Here
we see the LV distribution immediately drops to almost no probability while the HV
distribution appears almost uniform. It is going down very slowly indeed. This implies
that there is a small probability that the process times will be extremely long. It is also
the reason that the distribution for the highly variable process times appears to have a
lower mean on the other plot. Most of the time, it takes around 15 minutes. However,
about 1 out of every 50 jobs takes around 17 times as long. This inflates the mean to
around 20 and drives the CV up to 2.5.

The effect of this level of variability on the production line can be severe. For
instance, suppose the throughput is one job every 22 minutes. There should be no prob-
lem from a capacity perspective since the average process time including outages is

2In the moderate-variability process shown in Figure 8.2, 20 percent of the process times are nine minutes
or less, and another 20 percent are 31 minutes or more. For the mean to remain at 20, both have to occur.
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Figure 8.3
Comparison of high- and low-variability distributions.
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Figure 8.4
Comparison of high- and low-variability distributions
above 40 minutes.
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20 minutes. However, an outage of 250 minutes will build up a queue of almost 12
jobs. When the machine comes back up, the rate at which this queue is depleted is
1
15 − 1

22 ≈ 1
47 . Thus, the time to clear the queue formed would be around 536 minutes,

assuming no more outages occur! If an outage occurs during this time, it adds to the
queue. Under conditions common for complex equipment (i.e., times to failure that are
exponentially distributed), the probability of such an outage is 1 − e−536/744 = 0.51. This
means that more than 50 percent of the time an outage occurs before the queue would
be cleared. Thus the average queue will be greater than 12 jobs and is, in fact, around 20
(as we will see in Section 8.6).

8.4 Causes of Variability

To identify strategies for managing production systems in the face of variability, it is
important to first understand the causes of variability. The most prevalent sources of
variability in manufacturing environments are:

� “Natural” variability, which includes minor fluctuations in process time due to
differences in operators, machines, and material.

� Random outages.
� Setups.
� Operator availability.
� Rework.

We discuss each of these separately below.

8.4.1 Natural Variability

Natural variability is the variability inherent in natural process time, which excludes
random downtimes, setups, or any other external influences. In a sense, this is a catch-all
category, since it accounts for variability from sources that have not been explicitly called
out (e.g., a piece of dust in the operator’s eye). Because many of these unidentified sources
of variability are operator-related, there is typically more natural variability in a manual
process than in an automated one. But even in the most tightly controlled processes, there
is always some natural variability. For instance, in fully automated machining operations,
the composition of the material might differ, causing processing speed to vary slightly.
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We let t0 and σ0 denote the mean and standard deviation, respectively, of natural
process time. Thus, we can express the coefficient of variation of natural process time as

c0 = σ0

t0

In most systems, natural process times are LV and so c0 < 0.75.
Natural process times are only the starting point for evaluating effective process

times. In any real production system, workstations are subject to various detractors,

including machine downtime, setups, operator unavailability, and so on. As discussed
earlier, these detractors serve to inflate both the mean and the standard deviation of
effective process time. We now provide a way to quantify this effect.

8.4.2 Variability from Preemptive Outages (Breakdowns)

In the high-variability example discussed earlier, we saw that unscheduled downtimes
can greatly inflate both the mean and the CV of effective process times. Indeed, in many
systems, this is the single largest cause of variability. Fortunately, there are often practical
ways to reduce its effects. Since this is a common problem, we will discuss it in detail.

We refer to breakdowns as preemptive outages because they occur whether we want
them to or not (e.g., they can occur right in the middle of a job). Power outages, operators
being called away on emergencies, and running out of consumables (e.g., cutting oil)
are other possible sources of preemptive outages. Since these have similar effects on
the behavior of production lines, it makes sense to combine them and treat them all as
machine breakdowns in the fashion discussed (i.e., include outages due to these other
sources, as well as true machine breakdowns, when computing MTTF and MTTR). We
discuss nonpreemptive outages (i.e., stoppages that occur between, rather than during,
jobs) in the next section.

To see how machine outages cause variability, let us return to the Briar Patch
Manufacturing example and provide some numerical detail. Both the Hare X19 and
the Tortoise 2000 have a natural process time mean of t0 = 15 minutes and a natu-
ral standard deviation of σ0 = 3.35 minutes. Thus, both stations have a natural CV of
c0 = σ0/t0 = 3.35/15.0 = 0.223 (or an SCV of c2

0 = 0.05). Both machines are subject
to failures and have the same long-term availability (i.e., fraction of uptime) of 75 per-
cent. However, the Hare X19 has long but infrequent outages, while the Tortoise 2000
has short, frequent ones. Specifically, the Hare X19 has a mean time to failure (MTTF),
denoted by m f , of 12.4 hours, or 744 minutes, and a mean time to repair (MTTR),
denoted by mr , of 4.133 hours, or 248 minutes. The Tortoise 2000 has an MTTF of
m f = 1.90 hours, or 114.0 minutes, and MTTR of mr = 0.633 hours, or 38.0 minutes.
Note that the times to failure and times to repair are both three times greater for the Hare
X19 than for the Tortoise 2000. Finally, we suppose that repair times are variable and
have CV = 1.0 (moderate variability) for both machines.

Most capacity planning tools used in industry account for random outages when
computing average capacity. This is done by computing the availability, which is given
in terms of m f and mr by

A = m f

m f + mr
(8.1)
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Hence, for both machines, the availability A is

A = 744

744 + 248
= 114

114 + 38
= 0.75

Adjusting the natural process time t0 to account for the fraction of time the machine
is unavailable results in an effective mean process time te of

te = t0
A

(8.2)

So in both cases, te = 20 minutes. Recall that in Chapter 7 we derived the capacity of a
workstation to be the number of machines m divided by the effective mean process time.
So if r0 is the natural capacity (rate), then the effective capacity (rate) re is

re = m

te
= A

m

t0
= Ar0 = 0.75(4 jobs/hour) = 3 jobs/hour (8.3)

So the effective capacity of the Hare X19 and the Tortoise 2000 is the same. Since
almost all maintenance systems used in industry to analyze breakdowns consider only
the effects on availability and capacity, the two workstations would generally be regarded
as equivalent.

However, when we include variability effects, the workstations are very different.
To see why, consider how they will behave as part of a production line. If the Hare
X19 experiences a failure of 4.13 hours (its average failure duration), it will need 4.13
hours of WIP in a downstream buffer to keep it from starving the next station in the
routing. On the other hand, the Tortoise 2000 needs less than one-sixth as much WIP to
be covered for an average-length failure. Since failures are, by their very nature, random,
the WIP in the downstream buffer must be maintained at all times to provide protection
against throughput loss. Clearly, a line with the Tortoise 2000 will be able to achieve
the same level of protection, and hence the same level of throughput, with less WIP,
than the same line with the Hare X19.3 The net effect is that the line with the Hare X19
will be less efficient (i.e., will achieve lower throughput for a given WIP level or will
have higher WIP and cycle time for the same throughput) than the line with the Tortoise
2000.

Earlier, we stated that the CV for the Hare X19 was 2.5. We obtained this by using
a mathematical model, which we now describe. We assume the times to failures are
exponentially distributed (i.e., they are MV).4 However, we make no particular assump-
tions about the repair times other than that they are from some probability distribution.
We define σr to be the standard deviation of these repair times and cr = σr/mr to be
the CV. In our example cr is 1.0 (i.e., we assume repair times have moderate variab-
ility).

3Actually, the line with the Hare X19 will require more than 4.13 hours of WIP, and the line with Tortoise
2000 will require more than 38 minutes of WIP, because these are only average downtimes. But the point
remains the same: The line with the Hare X19 requires substantially more WIP to achieve the same
throughput as the line with the Tortoise 2000.

4This is frequently a good assumption in practice, particularly for complex equipment, since such
machines tend to be combinations of old and new components. Thus, the memoryless property of the
exponential tends to hold for the time between any outage, which could be caused by failure of an old
component or a new one.
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Under these assumptions we can calculate the mean, variance, and squared coeffi-
cient of variation (SCV) of the effective process time (te, σ 2

e , and c2
e , respectively) as

te = t0
A

(8.4)

σ 2
e =

(σ0

A

)2
+ (m2

r + σ 2
r )(1 − A)t0
Amr

(8.5)

c2
e = σ 2

e

t2
e

= c2
0 + (1 + c2

r )A(1 − A)
mr

t0
(8.6)

The CV of effective process time ce can be computed by taking the square root of c2
e .

Notice that the mean effective process time, given by equation (8.4), depends only
on the mean natural process time and the availability and is hence the same for both
stations:

te = t0
A

= 15

0.75
= 20.0 minutes

However, the SCV of effective process time in equation (8.6) depends on more than
the mean process time and availability. To understand the effects involved, we can
rewrite (8.6) as

c2
e = c2

0 + A(1 − A)
mr

t0
+ c2

r A(1 − A)
mr

t0

The first term is due to the natural (unaccounted for) variability in the process. The
second term is due to the fact that there are random outages. Note that this term would
be there even if the outages themselves (i.e., the repair times) were constant (i.e., even if
cr = 0). For instance, a periodic adjustment that always takes the same time to complete
would have c2

r = 0. Thus eliminating variability in repair time will do nothing to reduce
this term. However, the last term is due explicitly to the variability of the repair times
and would vanish if this variability were eliminated. Notice that both of the second two
terms are increasing in mr for a fixed availability. Hence, all other things being equal,
long repair times induce more variability than short ones.

Substituting numbers into these equations yields

c2
e = 0.05 + (1 + 1)0.75(1 − 0.75)

248

15
= 6.25

or ce = 2.5, which shows that the Hare X19 is well up in the HV range. However, the
Tortoise 2000 has

c2
e = 0.05 + (1 + 1)0.75(1 − 0.75)

38

15
= 1.0

and so ce = 1, which shows that it is in the MV range.
Hence a line with the Hare X19 will exhibit much more variability than one with

the Tortoise 2000. How this affects WIP and cycle time will be explored more fully in
Section 8.6.

This analysis leads to the conclusion that a machine with frequent but short outages
is preferable to one with infrequent but long outages, provided that the availabilities are
the same. This may be somewhat contrary to our nonprobabilistic intuition, which might
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suggest that we would be better off with a major headache once per month than a minor
throb every day. But logistically speaking, the daily throb is easier to manage.

This is a potentially valuable insight, since in practice we may be able to convert long,
infrequent failures to shorter, more frequent ones (e.g., through preventive maintenance
procedures). However, lest the reader become complacent—no failures at all are even
better than short, frequent ones. Nothing here should be construed to deflect attention
from efforts to improve overall reliability.

8.4.3 Variability from Nonpreemptive Outages

Nonpreemptive outages represent downtimes that will inevitably occur but for which
we have some control as to exactly when. In contrast, a preemptive outage, which might
be caused by catastrophic failure of a machine or when the machine becomes radically
out of adjustment, forces a stoppage whether or not the current job is completed. An
example of a nonpreemptive outage occurs when a tool starts to become dull and needs
to be replaced or when the mask used to expose a circuit board begins to wear out. In
situations like these we can wait until the current piece or job is finished before stopping
production.

Process changeovers (setups) can be regarded as nonpreemptive outages when they
occur due to changes in the production process (such as changing a mask) as opposed
to changes in the product. Changeovers due to changes in product (e.g., setting up for
a new part) are more under our control (we decide how many to make before changing
to a new part) and are the subject of Chapters 9 and 15. Other nonpreemptive outages
include preventive maintenance, breaks, operator meetings, and (we hope) shift changes.
These typically occur between jobs, rather than during them. Nonpreemptive outages
require somewhat different treatment than preemptive outages. Since the most common
source of nonpreemptive outages is machine setups, we will frame our discussion in
these terms. However, the approach is applicable to any form of nonpreemptive outage,
just as our analysis of breakdowns is applicable to any form of preemptive outage.

As with preemptive outages, ordinary capacity calculations do not fully analyze the
impacts of nonpreemptive setups. Average capacity analysis only tells us that short setups
are better than long ones. It cannot evaluate the differences between a slow machine with
short setups and a fast one with long setups that have the same effective capacity.

For example, consider the decision of whether to replace a relatively fast machine
requiring periodic setups with a slower flexible machine that does not require setups.
Machine 1, the fast one, can do an average of one part per hour, but requires a 2-hour setup
every four parts on average. Machine 2, the flexible one, requires no setups but is slower,
requiring an average of 1.5 hours per part. The effective capacity re for machine 1 is

re = 4 parts

6 hours
= 2

3
parts/hour

Since this is a single-machine workstation, the effective process time is simply the
reciprocal of the effective capacity, so te = 1.5 hours. Thus, machines 1 and 2 have the
same effective capacity.

Traditional capacity analysis, which considers only mean capacity, would consider
the two machines equivalent and hence would offer no support for replacing machine
1 with machine 2. However, our previous Factory Physics treatment of machine break-
downs showed that considering variability can be important in evaluating machines with
breakdowns. All other things being equal, machine 2 will have less variable effective
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process times than machine 1 (i.e., because every fourth job at machine 1 will have a
long setup time included in its effective process time). Thus, replacing machine 1 with
machine 2 will serve to reduce the process time CV and therefore will make the line more
efficient. This variability reduction effect provides further support for the JIT preference
for short setups and is a clear motivation for flexible manufacturing technology.

However, the evaluation of the benefits of flexibility can be subtle. The above condi-
tion of “all other things being equal” requires that the natural variability of both machines
1 and 2 be the same (i.e., so that the setups for machine 1 will unambiguously increase
the CV of effective process times). But what if the flexible machine also has more natural
variability? In this case, we must compute and compare the CV of effective process times
for both machines.

To compute the CV of effective process times for a machine with setups, we first
require data on the natural process times, namely, the mean t0 and variance σ 2

0 . (Equiva-
lently, we could use the mean t0 and the CV c0, since σ 2

0 = c2
0t2

0 .) Next we must describe
the setups, which we do by assuming that the machine processes an average of Ns parts
(or jobs) between setups, where the setup times have a mean duration of ts and a CV of
cs . We also assume that the probability of doing a setup after any part is equal.5 That is,
if an average of 10 parts are processed between setups, there will be a 1-in-10 chance
that a setup will be performed after the current part, regardless of how many have been
done since the last setup.

Under these assumptions, the equations for the mean, variance, and SCV of effective
process time are, respectively,

te = t0 + ts
Ns

(8.7)

σ 2
e = σ 2

0 + σ 2
s

Ns
+ Ns − 1

N 2
s

t2
s (8.8)

c2
e = σ 2

e

t2
e

(8.9)

To illustrate the usefulness of these equations, consider another example that com-
pares two machines. Machine 1 is a flexible machine, with no setups, but has somewhat
variable process times. Specifically, the natural process time has a mean of t0 = 1.2 hours
and a CV of c0 = 0.5. Machine 2 performs an average of Ns = 10 parts between setups
and has natural process times with a mean of t0 = 1.0 hours and a CV of c0 = 0.25. The
average setup time is ts = 2 hours with a CV of cs = 0.25. Which machine is better?

First, consider the effective capacity. Machine 1 has

re = 1

t0
= 1

1.2
= 0.833

while machine 2 has

re = 1

te
= 1

1 + 2
10

= 0.833

5This assumption implies that the number of parts processed between setups is moderately variable (i.e.,
the mean and standard deviation are equal). Similar analysis can be done for other assumptions regarding the
variability of the time between setups.
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so the two machines are equivalent in this regard. Therefore, the question of which is
better becomes, Which machine has less variability?

Using equation (8.9), we can compute c2
e = 0.31 for machine 2, as compared to

c2
e = c2

0 = 0.25 for machine 1. Thus, machine 1, the more variable machine without
setups, has less overall variability than machine 2, the less variable machine with setups.

Of course, this conclusion was a consequence of the specific numbers in the exam-
ple. Flexible machines do not always have less variability. For instance, consider what
happens if machine 2 has a shorter setup (ts = 1 hour) after an average of Ns = 5 parts.
The effective capacity remains unchanged. However, the effective variability for ma-
chine 2 is significantly less, with c2

e = 0.16. In this case, machine 2 with setups would
be the better choice.

8.4.4 Variability from Rework

Another major source of variability in manufacturing systems is quality problems. The
simplest quality case to analyze is that of rework on a single workstation. This happens
when a workstation performs a task and then checks to see whether the task was done
correctly. If it was not, the task is repeated. If we think of the additional processing time
spent “getting the job right” as an outage, it is easy to see that this situation is equivalent to
the nonpreemptive outage case. Hence, rework has analogous effects to those of setups,
namely, that it both robs capacity and contributes greatly to the variability of the effective
process times.

As with breakdowns and setups, the traditional reason for reducing rework is to pre-
vent a loss of effective capacity (i.e., reduce waste). Of course, as with traditional analyses
of breakdowns and setups, this perspective would regard two machines with the same
effective capacity but different rework fractions as equivalent. However, an analysis like
that done above for setups shows that the CV of effective process times increases as the
fraction of rework increases. Hence, more rework implies more variability. More variabil-
ity causes more congestion, WIP, and cycle time. Hence, these variability impacts, cou-
pled with the loss of capacity, make rework a disruptive problem indeed. We will return
to this important interface between quality and operations in greater detail in Chapter 12.

8.4.5 Summary of Variability Formulas

The computations for te, σ 2
e , and c2

e for both the preemptive and the nonpreemptive cases
are summarized in Table 8.2. Note that if we have a situation involving both preemptive
and nonpreemptive outages (e.g., both breakdowns and setups), then these formulas must
be applied consecutively. For instance, we begin with the natural process time parameters
t0 and c2

0. Then we incorporate the effects of failures by computing te, σe, and c2
e for the

effective process times, using the preemptive outage formulas. Finally, we incorporate
the effects of setups by using these values of te, σe, and c2

e in place of t0, σe, and c2
0 in

the nonpreemptive outage formulas. The final mean te, standard deviation σe, and SCV
c2

e will thus be “inflated” to reflect both types of outage.

8.5 Flow Variability

All the above discussion focused solely on process time variability at individual work-
stations. But variability at one station can affect the behavior of other stations in a line by
means of another type of variability, which we call flow variability. Flows refer to the
transfer of jobs or parts from one station to another. Clearly if an upstream workstation
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Table 8.2 Summary of Formulas for Computing Effective Process Time
Parameters

Situation Natural Preemptive Nonpreemptive

Examples Reliable Machine Random Failures Setups; Rework

Parameters t0, c2
0 Basic plus Basic plus

(basic) m f , mr , c2
r Ns , ts , c2

s

te t0
t0
A

, A = m f

m f + mr
t0 + ts

Ns

σ 2
e t2

0 c2
0

σ 2
0

A2
+ (m2

r + σ 2
r )(1 − A)t0
Amr

σ 2
0 + σ 2

s

Ns
+ Ns − 1

N 2
s

t2
s

c2
e c2

0 c2
0 + (1 + c2

r )A(1 − A)
mr

t0

σ 2
e

t2
e

has highly variable process times, the flows it feeds to downstream workstations will
also be highly variable. Therefore, to analyze the effect of variability on the line, we
must characterize the variability in flows.

8.5.1 Characterizing Variability in Flows

The starting point for studying flows is the arrival of jobs to a single workstation. The
departures from this workstation will in turn be arrivals to other workstations. Therefore,
once we have described the variability of arrivals to one workstation and determined how
this affects the variability of departures from that workstation (and hence arrivals to other
workstations), we will have characterized the flow variability for the entire line.

The first descriptor of arrivals to a workstation is the arrival rate, measured in jobs
per unit time. For consistency, the units of arrival rate must be the same as those of
capacity. For instance, if we state capacities of workstations in units of jobs per hour,
then arrival rates must also be stated in jobs per hour. Then just as we can characterize
capacity by either the mean process time te or the average rate of the station re, we can
characterize the arrival rate to the station by either the mean time between arrivals,

which we denote by ta , or the average arrival rate, denoted by ra . These two measures
are simply the inverse of each other

ra = 1

ta

and so are entirely equivalent as information.
In order for the workstation to be able to keep up with arrivals, it is essential that

capacity exceed the arrival rate, that is,

re > ra

In virtually all realistic cases (i.e., those with variability present), the capacity must be
strictly greater than the arrival rate to keep the station from becoming overloaded. We
will examine why more precisely below.

Just as there is variability in process times, there is also variability in interarrival
times. A reasonable variability measure for interarrival times can be defined in exactly
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Low CV arrivals

High CV arrivals

t

t

Figure 8.5

Arrival processes with low
and high CVs.

the same way as for process times. If σa is the standard deviation of the time between
arrivals, then the coefficient of variation of the interarrival times ca is

ca = σa

ta

We refer to this as the arrival CV, to distinguish it from the process time CV, denoted
by ce. Intuitively, a low arrival CV indicates regular, or evenly spaced, arrivals, while
a high arrival CV indicates uneven, or “bursty” arrivals. The difference is illustrated in
Figure 8.5. The arrival CV ca , along with the mean interarrival time ta , summarizes the
essential aspects of the arrival process to a workstation.

The next step is to characterize the departures from a workstation. We can use
measures analogous to those used to describe arrivals, namely, the mean time between

departures td , the departure rate rd = 1/td , and the departure CV cd . In a serial
production line, where all the output from workstation i becomes input to workstation
i + 1, the departure rate from i must equal the arrival rate to i + 1, so

ta(i + 1) = td (i)

Indeed, in a serial production line without yield loss or rework, the arrival rate to every
workstation is equal to the throughput TH. Also, in a serial line where departures from
i become arrivals to i + 1, the departure CV of workstation i is the same as the arrival
CV of workstation i + 1

ca(i + 1) = cd (i)

These relationships are depicted graphically in Figure 8.6.
The one remaining issue to resolve concerning flow variability is how to characterize

the variability of departures from a station in terms of information about the variability
of arrivals and process times. Variability in departures from a station are the result of
both variability in arrivals to the station and variability in the process times. The relative
contribution of these two factors depends on the utilization of the workstation. Recall
that the utilization of a workstation, denoted by u, is the fraction of time it is busy over
the long run and is defined formally for a workstation consisting of m identical machines
as

u = rate
m

i + 1i
rd(i) = ra(i + 1)

cd(i) = ca(i + 1)

re(i + 1)

ce(i + 1)

re(i)

Station i + 1Station i

ce(i)

Rates

CVs

ra(i)

ca(i)

Figure 8.6

Propagation of variability
between workstations in
series.
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Notice that u increases with both the arrival rate and the mean effective process time.
An obvious upper limit on the utilization is one (that is, 100 percent), which implies that
the effective process times must satisfy

te <
m

ra

If u is close to one, then the station is almost always busy. Therefore, under these
conditions, the interdeparture times from the station will be essentially identical to the
process times. Thus, we would expect the departure CV to be the same as the process
time CV (that is, cd = ce).

At the other extreme, when u is close to zero, the station is very lightly loaded.
Virtually every time a job is finished, the station has to wait a long time for another arrival
to work on. Because process time is a small fraction of the time between departures,
interdeparture times will be almost identical to interarrival times. Thus, under these
conditions we would expect the arrival and departure CVs to be the same (that is, cd = ca).

A good, simple method for interpolating between these two extremes is to use the
square of the utilization as follows:6

c2
d = u2c2

e + (1 − u2)c2
a (8.10)

If the workstation is always busy, so that u = 1, then c2
d = c2

e . Similarly, if the machine
is (almost) always idle, so that u = 0, then c2

d = c2
a . For intermediate utilization levels,

0 < u < 1, the departure SCV c2
d is a combination of the arrival SCV c2

a and the process
time SCV c2

e .
When there is more than one machine at a station (that is, m > 1), the following is a

reasonable way to estimate c2
d (although there are others; see Buzacott and Shanthikumar

1993):

c2
d = 1 + (1 − u2)(c2

a − 1) + u2

√
m

(c2
e − 1) (8.11)

Note that this reduces to equation (8.10) when m = 1.
The net result is that flow variability, like process time variability, can vary widely

in practical situations. Using the same classification scheme we used for process time
variability, we can classify arrivals according to the arrival CV ca as follows:

Low variability (LV) ca ≤ 0.75
Moderate variability (MV) 0.75 < ca ≤ 1.33
High variability (HV) ca > 1.33

Departures can be classified in the same manner according to the departure CV cd .
For example, departures from a heavily loaded LV workstation will tend to be

LV, while departures from a heavily loaded HV workstation will tend to be HV. MV
workstations fed by MV arrivals will produce MV departures. All these departures in
turn become arrivals to other stations, so all types of arrivals can occur in practice.

Another way that MV arrivals can arise in practice is when a workstation is fed
by many sources. For instance, a heat-treating operation may receive jobs from many
different lines. When this is the case, the time since the last arrival does not provide much
information about when the next arrival is likely to occur (because it could come from

6Notice that once again an equation involving CVs is written in terms of their SCVs.
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many places). Thus, the interarrival times will tend to be memoryless (i.e., exponential),
and therefore ca will be close to one. Even when the arrivals from any given source are
quite regular (i.e., LV), the superposition of all the arrivals tends to look MV.

8.5.2 Demand Variability and Flow Variability

Very often it is extremely difficult to get any information regarding the variability of
interarrival times. We simply do not collect such information. However, we often do have
information on the variability in demand (as we discussed and assumed in Chapter 2).
Fortunately, we can relate these two variabilities.

The definitions are similar to that in Chapter 2,

Nt = number of demands (arrivals) in period t , a random variable. We assume
demand is stationary over time, so that Nt has same distribution for

each period t ; we also assume the period demands are independent.

μn = E[Nt ] = expected number of demands per period (in units)

σn = standard deviation of the number of demands per period (in units)

Then if the period is long enough (more about what is long enough below),

c2
a = σ 2

a

t2
a

→ σ 2
n

μn
(8.12)

Interestingly, (8.12) looks wrong. Left of the arrow we have something squared divided
by something squared while on the right it is something squared divided by something.
What happened to the “units?” The answer lies in the fact that Nt has no “units” like
inches or kilograms because it is a “count” which is a “pure number.”

Recall in Chapter 2, the Poisson distribution in which the mean and the variance
were equal. In this case, c2

a will be one. It is indeed the case that if demand during a
period is Poisson the times between demand arrivals are exponential (which has c2

a = 1).
The only requirement for the above to be a good approximation is for the time period

to be long enough. In this case, if the mean, μn , is significantly greater than one, then
the period is “long enough.” So (8.12) should work well if μn ≥ 10.

Note that the random variable is the number of demands in the period and not the
total demand. Thus, if we have only three orders (demand) in a month, each ordering
10,000 units, the value for Nt is 3 and not 30,000.

8.5.3 Batch Arrivals and Departures

One important cause of flow variability is batch arrivals. These happen whenever jobs
are batched together for delivery to a station. For example, suppose a forklift brings 16
jobs once per shift (8 hours) to a workstation. Since arrivals always occur in this way
with no randomness whatever, one might reasonably interpret the variability and the
CV to be zero.

However, a very different picture results from looking at the interarrival times of the
jobs in the batch from the perspective of the individual jobs. The interarrival time (i.e.,
time since the previous arrival) for the first job in the batch is 8 hours. For the next 15
jobs it is zero. Therefore, the mean time between arrivals ta is 1

2 hour (8 hours divided
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by 16 jobs), and the variance of these times is given by

σ 2
a = [ 1

16 (82) + 15
16 (02)] − t2

a = 1
16 (82) − 0.52 = 3.75

The arrival SCV is therefore

c2
a = 3.75

(0.5)2
= 15

In general, if we have a batch size k, this analysis will yield c2
a = k − 1.

So which is correct, c2
a = 15 or c2

a = 0? The answer is that the system will behave
“somewhere in between.” The reason is that batching confounds two different effects.
The first effect is due to the batching itself. This is not really a randomness issue, but
rather one of bad control, like that we discussed for the worst case in Chapter 7. The
second is the variability in the batch arrivals themselves (i.e., as characterized by the
arrival CV for the batches). We will examine the relationship between batching and
variability more carefully in Chapter 9.

8.6 Variability Interactions—Queueing

The above results for process time variability and flow variability are building blocks for
characterizing the effects of variability in the overall production line. We now turn to the
problem of evaluating the impact of these types of variability on the key performance
measures for a line, namely, WIP, cycle time, and throughput.

To do this, we first observe that actual process time (including setups, downtime,
etc.) typically represents only a small fraction (5 to 10 percent) of the total cycle time
in a plant. This has been documented in numerous published surveys (e.g., Bradt 1983).
The majority of the extra time is spent waiting for various resources (e.g., workstations,
transport devices, machine operators, etc.). Hence, a fundamental issue in Factory Physics
is to understand the underlying causes of all this waiting.

The science of waiting is called queueing theory. In Great Britain, people do not
stand in line, they stand in a queue. So, queueing theory is the theory of standing in
lines.7 Since jobs “stand in line” while waiting to be processed, waiting to move, waiting
for parts, and so on, queueing theory is a powerful tool for analyzing manufacturing
systems.

A queueing system combines the components that have been considered so far:
an arrival process, a service (i.e., production) process, and a queue. Arrivals can con-
sist of individual jobs or batches. Jobs can be identical or have different characteristics.
Interarrival times can be constant or random. The workstation can have a single ma-
chine or several machines in parallel, which can have constant or random process times.
The queueing discipline can be first-come, first-served (FCFS); last-come, first-served
(LCFS); earliest due date (EDD); shortest process time (SPT); or any of a host of priority
schemes. The queue space can be unlimited or finite. The variety of queueing systems
is almost endless.

7Queueing is also the only word we can think of with five vowels in a row, which could be useful if one
is a contestant on a game show.
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Regardless of the queueing system under consideration, the job of queueing theory
is to characterize performance measures in terms of descriptive parameters. We do this
below for a few queueing systems that are most applicable to manufacturing settings.

8.6.1 Queueing Notation and Measures

To use queueing theory to describe the performance of a single workstation, we will
assume we know the following parameters:

ra = rate of arrivals in jobs per unit time to station. In a serial line without yield
loss or rework, ra = TH at every workstation.

ta = 1/ra = average time between arrivals

ca = arrival CV

m = number of parallel machines at station
b = buffer size (i.e., maximum number of jobs allowed in system)

te = mean effective process time. The rate (capacity) of the workstation is given
by re = m/te.

ce = CV of effective process time

The performance measures we will focus on are

pn = probability there are n jobs at station

CTq = expected waiting time spent in queue

CT = expected time spent at station (i.e., queue time plus process time)

WIP = average WIP level (in jobs) at station

WIPq = expected WIP (in jobs) in queue

In addition to the above parameters, a queueing system is characterized by a host
of specific assumptions, including the type of arrival and process time distributions, dis-
patching rules, balking protocols, batch arrivals or processing, whether it consists of a net-
work of queueing stations, whether it has single or multiple job classes, and many others.
A partial classification of single-station, single-job-class queueing systems is given by
Kendall’s notation, which characterizes a queueing station by means of four parameters:

A/B/m/b

where A describes the distribution of interarrival times, B describes the distribution
of process times, m is the number of machines at the station, and b is the maximum
number of jobs that can be in the system. Typical values for A and B, along with their
interpretations, are

D: constant (deterministic) distribution

M: exponential (Markovian) distribution

G: completely general distribution (e.g., normal, uniform)

In many situations, queue size is not explicitly restricted (e.g., the buffer is very large).
We indicate this case as A/B/m/∞ or simply as A/B/m.

For example, the M/G/3 queueing system refers to a three-machine station with
exponentially distributed interarrival times and generally distributed process times and
an infinite buffer.
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We will focus initially on the M/M/1 and M/M/m queueing systems because they
yield important intuition and serve as building blocks for more general systems. We will
then consider the G/G/1 and G/G/m queueing systems because they are directly useful
for modeling manufacturing workstations. Finally, we discuss what happens when we
limit the buffer in the M/M/1/b and the G/G/1/b cases.

For simplicity, we will restrict our consideration to systems with a single job class
(i.e., a single product). Of course, most manufacturing systems have multiple products.
But we can develop the key insights into the role of variability in production systems with
single-job-class models. Moreover, these models can sometimes be used to approximate
the behavior of multiple-job-class systems. Details on how to do this and the development
of more sophisticated multiple-job-class models are given in Buzacott and Shanthikumar
(1993).

8.6.2 Fundamental Relations

Before considering specific queueing systems, we note that some important relation-
ships hold for all single-station systems (i.e., regardless of the assumptions about arrival
and process time distributions, number of machines, etc.). First is the expression for
utilization, which is the probability that the station is busy, and is given by

u = ra

re
= rate

m
(8.13)

Second is the relation between mean total time spent at the station CT and mean time
spent in queue CTq . Since means are additive,

CT = CTq + te (8.14)

Third, applying Little’s law to the station yields a relation among WIP, CT, and the arrival
rate:

WIP = TH × CT (8.15)

And fourth, applying Little’s law to the queue alone yields a relation among WIPq , CTq ,
and the arrival rate:

WIPq = ra × CTq (8.16)

Using the above relations and knowledge of any one of the four performance measures
(CT, CTq , WIP, or WIPq ), we can compute the other three.

8.6.3 The M/M/1 Queue

One of the simplest queueing systems to analyze is the M/M/1. This model assumes
exponential interarrival times, a single machine with exponential process times, a first-
come first-served protocol, and unlimited space for jobs waiting in queue. While not
an accurate representation of most manufacturing workstations, the M/M/1 queue is
tractable and offers valuable insight into more complex and realistic systems.

The key to analyzing the M/M/1 queue is the memoryless property of the expo-
nential distribution. To see why, consider what information is needed to characterize
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the future (probabilistic) evolution of the system. That is, what do we need to know
about the current status of the system in order to answer such questions as: How likely
is it that the system will be empty by a certain time? How likely is it that a job will
wait less than a specified amount of time before being served? The issue is not how to
compute the answers to such questions, but simply what information about the system
would be needed to do so.

To begin, we require information about the interarrival and process times. Since
both are assumed to be exponential, all we need to know are the means (i.e., because the
standard deviation is equal to the mean for the exponential distribution). The mean time
between arrivals is ta , so that the arrival rate is ra = 1/ta . The mean process time is te,
so the process rate is re = 1/te.

Beyond these, the only other information we need is how many jobs are currently in
the system. Because the interarrival and process time distributions are memoryless, the
time since the last arrival and the time the current job has been in process are irrelevant
to the future behavior of the system. Because of this, the state of the system can be
expressed as a single number n, representing the number of jobs currently in the system.
By computing the long-run probability of being in each state, we can characterize all the
long-term (steady state) performance measures, including CT, WIP, CTq , and WIPq . We
do this for the M/M/1 queue in the following Technical Note.

Technical Note

Define pn to be the long-run probability of finding the system in state n (i.e., with a total of
n jobs in process and in queue).8 Since jobs arrive one at a time and the machine works on
only one job at a time, the system state can change only by one unit at a time. For instance, if
there are currently n jobs at the station, then the only possible state changes are an increase to
n + 1 (an arrival) or a decrease to n − 1 (a departure). The rate the system moves from state
n to state n + 1, given it is currently in state n, is ra , the arrival rate. Likewise, the conditional
rate to move from n to n − 1, given the system is currently in state n, is re, the process rate.
The dynamics of the system are graphically illustrated in Figure 8.7.

It follows that the unconditional (i.e., steady-state) rate at which the system moves from
state n − 1 to state n is given by pn−1ra , that is, the probability of being in state n − 1 times
the rate from n − 1 to n, given the system is in state n. Similarly, the rate at which the system
moves from state n to state n − 1 is pnre. In order for the system to be stable, these two rates
must be equal (i.e., otherwise the probability of being in any given state would “drift” over
time). Hence,

pn−1ra = pnre

or

pn = ra

re
pn−1 = upn−1 (8.17)

where u = rate = ra/re is the utilization which, if there is no blocking, will be the long-run
fraction of time the machine is busy.

By the definition of utilization, it follows that the probability (long-run fraction of time)
that the station is not busy is 1 − u. Since the machine is idle only when there are no jobs in

8These probabilities are meaningful only in steady state (i.e., after the system has been running so long
that the current state does not depend on the starting conditions). This means that we can compute long-term
measures only from the pn values. Fortunately, our key measures CT, WIP, CTq , and WIPq are long-term
measures. Analysis of the transient (i.e., short-term) behavior of queueing systems is difficult and will not
be discussed here.
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Figure 8.7

State transition diagram
for M/M/1 queue.

the system, this implies that p0 = 1 − u. This gives us one of the pn values. To get the rest,
we write out equation (8.17) for n = 1, 2, 3, . . . , which yields

p1 = up0 = u(1 − u)

p2 = up1 = u · u(1 − u) = u2(1 − u)

p3 = up2 = u · u2(1 − u) = u3(1 − u)

...

Continuing in this manner shows that for any state

pn = un(1 − u) n = 0, 1, 2, . . . (8.18)

Since these pn values are probabilities and therefore must sum to 1, we can write

p0 + p1 + p2 + · · · = (1 + u + u2 + · · ·)p0 = 1

By noting that (1 + u + u2 + · · ·) = 1/1 − u,9 we again set

p0 = 1 − u (8.19)

However, if u ≥ 1, then (1 + u + u2 + · · ·) will be infinite, which violates the properties of
probabilities. Therefore, in order for the station to have stable long-run behavior (i.e., not
have a queue that “blows up”), we must have u < 1 (i.e., utilization strictly less than 100
percent).9

The most straightforward performance measure to compute is WIP (i.e., expected number
in the system). For the M/M/1 case

WIP =
∞

∑

n=0

npn

= (1 − u)
∞

∑

n=0

nun

= u(1 − u)
∞

∑

n=1

nun−1

= u

1 − u
(8.20)

9If u < 1, then by noting that 1 + u + u2 + · · · = 1 + u(1 + u + u2 + · · ·) and letting
x = 1 + u + u2 + · · · , we see that x = 1 + ux . Solving for x yields 1 − ux = 1, or x = (1 − u)−1.
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where the last equality follows from the fact that
∑∞

n=1 nun−1 is the derivative of
∑∞

n=0 un ,
which we have already shown is equal to 1/(1 − u). Since the derivative of the sum is the sum
of the derivatives,

∑∞
n=1 nun−1 is equal to the derivative of 1/(1 − u), which is 1/(1 − u)2.

Notice that this is valid only as long as u < 1, which was already required for the queue to
be stable.

8.6.4 Performance Measures

The various steady-state performance measures can be computed from the results derived
in the Technical Note. The expression for expected WIP follows from equation (8.20)
and is given by

WIP(M/M/1) = u

1 − u
(8.21)

Recalling that u = rate and using Little’s law yields a relation for average cycle time

CT(M/M/1) = WIP(M/M/1)

ra
= te

1 − u
(8.22)

Then from equation (8.14) we can compute the average time in queue

CTq (M/M/1) = CT(M/M/1) − te = u

1 − u
te (8.23)

Finally, using u = rate again and applying Little’s law to the queue yields

WIPq (M/M/1) = ra × CTq (M/M/1) = u2

1 − u
(8.24)

Observe that WIP, CT, CTq , and WIPq are all increasing in u. Not surprisingly,
busy systems exhibit more congestion than lightly loaded systems. Also, for a fixed u,
CT and CTq are increasing in te. Hence, for a given level of utilization, slower machines
cause more waiting time. Finally, notice that since these expressions have the term 1 − u
in the denominator, all the congestion measures “explode” as u gets close to one. What
this means is that WIP levels and cycle times increase very rapidly (i.e., nonlinearly) as
utilization approaches 100 percent. We will discuss the implications of this in greater
detail in Chapter 9.

Example:

Recall that in the Briar Patch Manufacturing example, the arrival rate to the Tortoise
2000 was 2.875 jobs per hour (ra = 2.875). Assume now that times between arrivals are
exponentially distributed (not a bad assumption if jobs are arriving from many different
locations). Also, recall that the production rate is three jobs per hour (or te = 1

3 ) and that
ce = 1.0. Since the effective process times have a CV of one, just as the exponential dis-
tribution does, it is reasonable to use the M/M/1 model to represent the Tortoise 2000.10

10The process times are not actually exponential, however, since ce = 1 was the result of failures
superimposed on low-variability natural process times. So the M/M/1 queue is not exact, but will be a
reasonable approximation.
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The utilization is computed as u = 2.875/3 = 0.9583, and the performance measures
are given below:

WIP = u

1 − u
= 0.9583

1 − 0.9583
= 23 jobs

CT = WIP

TH
= 23

2.875
= 8 hours

CTq = CT − te = 8 − 0.3333 = 7.6667 hours

WIPq = TH × CTq = 2.875 × 7.6667 = 22.0417 jobs

We see that WIP and CT are much smaller than those for the Hare X19 under the same
demand conditions. However, to model the nonexponential Hare X19, we need a more
general model than the M/M/1.

8.6.5 Systems with General Process and Interarrival Times

Most real-world manufacturing systems do not satisfy the assumptions of the M/M/1
queueing model. Process times are seldom exponential. When workstations are fed by
upstream stations whose process times are not exponential, interarrival times are also
unlikely to be exponential. To address systems with nonexponential interarrival and
process time distributions, we must turn to the G/G/1 queue.

Unfortunately, without the memoryless property of the exponential to facilitate
analysis, we cannot compute exact performance measures for the G/G/1 queue. But
we can estimate them by means of a “two-moment” approximation, which makes use
of only the mean and standard deviation (or CV) of the interarrival and process time
distributions. Although cases can be constructed for which this approximation works
poorly, it is reasonably accurate in typical manufacturing systems (i.e., for most cases
except those with ce and ca much larger than one, or u larger than 0.95 or smaller than
0.1). Because it works well, this approximation is the basis of several commercially
available manufacturing queueing analysis packages.

As we did for the M/M/1 case, we will proceed by first developing an expression
for the waiting time in queue CTq and then computing the other performance measures.
The approximation for CTq , which was first investigated by Kingman (1961) (see Medhi
1991 for a derivation), is given by

CTq (G/G/1) =
(

c2
a + c2

e

2

) (

u

1 − u

)

te (8.25)

This approximation has several nice properties. First, it is exact for the M/M/1 queue.11

It also happens to be exact for the M/G/1 queue, although this is not evident from our
discussion here. Finally, it neatly separates into three terms: a dimensionless variability

term V , a utilization term U , and a time term T , as

CTq (G/G/1) =
(

c2
a + c2

e

2

)

︸ ︷︷ ︸

V

(

u

1 − u

)

︸ ︷︷ ︸

U

te
︸︷︷︸

T

11When ca and ce are both equal to one, the first fraction becomes one and the other term is the waiting
time in queue for the M/M/1 queue CTq (M/M/1).
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or

CTq = V U T (8.26)

We refer to this as Kingman’s equation or as the VUT equation. From it, we see that if
the V factor is less than one, then the queue time, and hence other congestion measures,
for the G/G/1 queue will be smaller than those for the M/M/1 queue. Conversely, if V
is greater than one, congestion will be greater than in the M/M/1 queue. Thus, the VUT
equation shows that the M/M/1 case represents an intermediate case for single stations
analogous to that represented by the practical worst case for lines.

Example:

Let us return to the Briar Patch Manufacturing example and consider the Hare X19. Recall
that this machine has high variability (c2

e = 6.25). Again, assume the time between job
arrivals is exponential (that is, c2

a = 1). Utilization of the Hare X19 is u = 0.9583. Hence,
we can use the VUT equation to compute the expected queue time as

CTq =
(

c2
a + c2

e

2

) (

u

1 − u

)

te

=
(

1 + 6.25

2

) (

0.9583

1 − 0.9583

)

20

= 1,667.5 minutes = 27.79 hours

which is what we reported in the introduction to the chapter.

Now suppose that the Hare X19 feeds the Tortoise 2000. There is no yield loss, so the rate
into the Tortoise 2000 is the same as that into the Hare X19; and since the two machines
have the same effective rate, they will have the same utilization u = 0.9583. However,
to use the VUT equation, we must find the arrival CV ca to the Tortoise 2000. We do
this by first finding the departure CV from the Hare cd by using linking equation (8.10)

c2
d = c2

e u2 + c2
a(1 − u2)

= 6.25(0.95832) + 1.0(1 − 0.95832)

= 5.8216

Since the Hare X19 feeds the Tortoise 2000, c2
a for the Tortoise 2000 is equal to c2

d for
the Hare X19. Hence, the expected queue time at the Tortoise 2000 will be

CTq =
(

c2
a + c2

e

2

) (

u

1 − u

)

te

=
(

5.82 + 1.0

2

) (

0.9583

1 − 0.9583

)

20

= 1,568.97 minutes = 26.15 hours

which again is what we reported in the introduction.
Notice that the queue time at the Tortoise 2000 is almost as large as that for the

Hare X19, even though the Hare X19 has much higher process variability. The reason
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for this is the high variability of arrivals to the Tortoise 2000 (ca = √
5.8216 = 2.41).

If the Tortoise 2000 were fed by moderately variable arrivals (with ca = 1.0), then its
performance would be represented by the M/M/1 queue, which predicts average queue
time of 7.67 hours. The excess time (and congestion) is a consequence of the propagation
of variability from the upstream Hare X19.

8.6.6 Parallel Machines

The VUT equation gives us a tool for analyzing workstations consisting of single ma-
chines. However, in real-world systems, workstations often consist of multiple machines
in parallel. The reason, of course, is that often more than a single machine is required
to achieve the desired workstation capacity. To analyze and understand the behavior of
parallel machine stations, we need a more general model.

The simplest type of parallel machine station is the case in which interarrival times
are exponential (ca = 1) and process times are exponential (ce = 1). This corresponds to
the M/M/m queueing system. In this model, all jobs wait in a single queue for the next
available machine (unlike in most grocery stores where each server has a separate queue,
but like in most banks where there is a single queue for all the servers). Although the
steady-state probabilities for the M/M/m queue can be computed exactly, they are messy
and provide little additional intuition. More useful is the following closed-form approx-
imation for the waiting time in queue proposed by Sakasegawa (1977) that both offers
intuition and is quite accurate (see Whitt (1993) for a discussion of its merits and uses):

CTq (M/M/m) = u
√

2(m+1)−1

m(1 − u)
te (8.27)

Note that when m = 1, this expression reduces to equation (8.23), which is the exact
expression for queue time in the M/M/1 queue. Using this expression, along with
universal relations (8.14) to (8.16), we can obtain expressions for CT(M/M/m),
WIP(M/M/m), and WIPq (M/M/m).

Example:

Consider the Briar Patch Manufacturing example again. Recall that the Tortoise 2000
had process times with ce = 1 and hence is well approximated by an exponential model.
Suppose now, however, that arrivals to the Tortoise 2000 occur at a rate of 207 jobs per day
and have exponential interarrival times (ca = 1). Since this is beyond the capacity of a
single Tortoise 2000, we now assume that Briar Patch Manufacturing has three machines.

First, consider what would happen if each of the three machines had its own arrival
stream. That is, each machine sees one-third of the total demand, or 69 jobs per day
(2.875 jobs per hour). Since process times are 1

3 hour, the utilization of each machine is
u = 2.875( 1

3 ) = 0.958. Hence, the situation for each machine is precisely that which we
modeled in Section 8.6.4, where we computed the average time in queue to be 7.67 hours.

Now suppose that the three Tortoise 2000s are combined into a single station so that
the entire demand of 207 jobs per day, or 8.625 jobs per hour, arrives to a single queue
that is serviced by the three machines in parallel. Utilization is the same, since

u = rate
m

= (8.625)( 1
3 )

3
= 0.958
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However, average time in queue is now

CTq = u
√

2(m+1)−1

m(1 − u)
te

= (0.958)
√

2(3+1)−1

3(1 − 0.958)

(

1

3

)

= 2.467 hours

which is significantly lower than the case where the three machines had separate queues.
We conclude that when variability and utilization are the same, a station with parallel
machines will outperform one with dedicated machines. The reason, as anyone who has
ever chosen the wrong line at the grocery store knows, is that a long process time will
delay everyone waiting in the queue at a dedicated machine. When the queue is combined,
as at the bank, the machine experiencing a long process time gets bypassed and therefore
does not have such a damaging effect on average queue time. This is an example of the
more general property of variability pooling, which we discuss in Section 8.8.

8.6.7 Parallel Machines and General Times

A parallel machine station with general (nonexponential) process and interarrival times
is represented by a G/G/m queue. To develop an approximation for this situation, note
that approximation (8.25) can be rewritten as

CTq (G/G/1) =
(

c2
a + c2

e

2

)

CTq (M/M/1)

where CTq (M/M/1) = [u/(1 − u)]te is the waiting time in queue for the M/M/1 queue.
This suggests the following approximation for the G/G/m queue (see Whitt 1983 for a
discussion)

CTq (G/G/m) =
(

c2
a + c2

e

2

)

CTq (M/M/m) (8.28)

Using equation (8.27) to approximate CTq (M/M/m) in equation (8.28) yields the fol-
lowing closed-form expression for the waiting time in the G/G/m queue:

CTq (G/G/m) =
(

c2
a + c2

e

2

)

(

u
√

2(m+1)−1

m(1 − u)

)

te (8.29)

Expression (8.29) is the parallel machine version of the VUT equation. The V and
T terms are identical to the single-machine version given in expression (8.26), but the
U term is different. Although it may appear complicated, it does not require any type
of iterative algorithm to solve and is therefore easily implementable in a spreadsheet
program. This makes it possible to couple the single-station approximation (8.29) with
the multimachine “linking equation” (8.11) to create a spreadsheet tool for analyzing the
performance of a line.
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8.7 Effects of Blocking

Thus far, we have considered only systems in which there is no limit to how large
the queue can grow. Indeed, in every system we have examined, the average queue
(and cycle time) grows to infinity as utilization approaches 100 percent. But in the real
world, queues never become infinite. They are bounded by limitations of space, time, or
operating policy. Therefore, an important topic in the science of Factory Physics is the
behavior of systems with finite queueing space.

8.7.1 The M/M/1/b Queue

Consider the case where process and interarrival times are exponential, as they are in
the M/M/1 queue, but where there is only enough space for b units in the system (in
queue and in process). In Kendall’s notation this corresponds to the M/M/1/b queue.
This system behaves in much the same way as the M/M/1 queue except now whenever
the system becomes full, the arrival process is stopped. When this happens, the machine
is said to be blocked. This model represents a very common situation in manufacturing
applications.

For instance, consider a manufacturing cell consisting of two stations with a finite
buffer in between. The first machine processes raw material and delivers it to the buffer
of the second machine. If we can assume that raw material is always available (e.g.,
raw material is bar stock or sheet metal, which is in ample supply), then the M/M/1/b
model can be a good approximation of the behavior of the second machine. Indeed, if
both machines have exponential process times, the model will be exact. This type of
configuration is not uncommon. In fact, by their very nature all kanban systems exhibit
blocking behavior.

In a queueing model with blocking, like the M/M/1/b, the arrival rate ra takes on
a different meaning than it does in models with unbounded queues. Here it represents
the rate of potential arrivals, assuming that the system is not full. Thus, u = rate, is no
longer the long-run probability that the machine is busy, but instead represents what the
utilization would be if no arrivals were turned away. Consequently, u can equal or exceed
one. We compute the probabilities and measures for the M/M/1/b queue in the next
Technical Note.

Technical Note

As in the M/M/1 queue, we define the state of the M/M/1/b queue to be the number of jobs
in the system. However, unlike the M/M/1 case, the M/M/1/b queue has a finite number
of states n = 0, 1, 2, . . . , b. Proceeding as we did for the M/M/1 queue, we can show that
the long-run probability of being in state n is

pn = un p0

for the M/M/1/b queue. A little algebra shows that in order to have p0 + · · · + pb = 1, we
must have

p0 = 1 − u

1 − ub+1
(8.30)

Thus,

pn = un(1 − u)

1 − ub+1
(8.31)
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Note that equations (8.30) and (8.31) reduce to those for the M/M/1 queue as b goes to
infinity (because ub+1 → 0 as b → ∞).

Equation (8.30) is valid as long as u �= 1. For the special case where u = 1, all states of
the system are equally likely and have the same probability, so

pn = 1

b + 1
for n = 0, 1, . . . , b (8.32)

We can compute the average WIP level from

WIP =
b

∑

n=0

npn (8.33)

Since the system accepts arrivals whenever it is not full and the rate in equals the rate out,
we can compute throughput from

TH = (1 − pb)ra (8.34)

For the case where u �= 1, the average WIP and throughput are

WIP(M/M/1/b) = u

1 − u
− (b + 1)ub+1

1 − ub+1
(8.35)

TH(M/M/1/b) = 1 − ub

1 − ub+1
ra (8.36)

For the case where u = 1, WIP and throughput simplify to

WIP(M/M/1/b) = b

2
(8.37)

TH(M/M/1/b) = b

b + 1
ra = b

b + 1
re (8.38)

For either case, we can use Little’s law to compute the cycle time, queue time, and
queue length as

CT(M/M/1/b) = WIP(M/M/1/b)

TH(M/M/1/b)
(8.39)

CTq (M/M/1/b) = CT(M/M/1/b) − te (8.40)

WIPq (M/M/1/b) = TH(M/M/1/b) × CTq (M/M/1/b) (8.41)

We can gain some useful insights from these formulas by interpreting the M/M/1/b
model as a system of two machines in series. The first machine is assumed to have enough
raw material so that it never starves. Similarly, the second machine can always move its
product out (i.e., it is never blocked). However, the buffer between the two machines
is finite and is equal to B. If both machines have exponential process times, the model
for the behavior of the second machine and the buffer is given by the M/M/1/b queue,
where b = B + 2. The two extra buffer spaces are the two machines themselves.

Notice that the WIP for the M/M/1/b queue will always be less than that for
the M/M/1 system. This is because the second machine has blocking, which prevents
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the WIP level from growing beyond b. If b is small, the effect can be dramatic. Indeed,
kanban, which acts just like a finite buffer, is specifically intended to prevent WIP buildup.

However, reducing WIP has a price—lost throughput. Recall that in the M/M/1
case the arrival rate is equal to the output rate. This is because, in steady state, whatever
comes in must go out. This is not so in the case with blocking since the input rate is equal
to the output rate (throughput) plus the balking rate (rate at which arrivals are rejected).
Using equations (8.36) and (8.38), we see that

TH = 1 − ub

1 − ub+1
ure < ure

if u �= 1, and

TH = b

b + 1
re < re

if u = 1. These last expressions show that the throughput in a system with blocking will
always be less than that in a system without blocking. Furthermore, the smaller the buffer
size b, the greater the reduction in throughput.

Example:

Consider a line consisting of two machines in series. The first machine takes, on average,
te(1) = 21 minutes to complete a job. The second machine takes te(2) = 20 minutes.
Both machines have exponential process times (ce(1) = ce(2) = 1). Between the two
machines there is enough room for two jobs, so b = 4 (two in the buffer and two at the
machines themselves).

First consider what would happen if there were an infinite buffer. Since the first
machine runs constantly, the arrival rate to the second machine is simply the rate of the
first machine. Hence, utilization of the second machine is u = ra/re = 1

21/ 1
20 = 0.9524.

The other performance measures for the second machine can be computed by using the
M/M/1 formulas to be

WIP = u

1 − u
= 0.9524

1 − 0.9524
= 20 jobs

TH = ra = 1
21 minute = 0.0476 job/minute

CT = WIP

TH
= 420.18 minutes

Now, consider the finite buffer case. We first compute TH, using the M/M/1/b
queueing model.

TH = 1 − ub

1 − ub+1
ra

= 1 − 0.95244

1 − 0.95245

(

1

21

)

= 0.039 job/minute

We can now compute the partial WIP (denoted by WIPP) in the system represented by
the M/M/1/b model, namely, the second machine, the two-job buffer, and the buffer
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involving the first machine. We note that WIP at the first machine is only included
in WIPP if it is in queue (i.e., when the first machine is blocked). WIP that is being
processed at the first machine is not included, since it is viewed as “on its way” to the
system represented by the M/M/1/b model. From equation (8.35), the partial WIP is

WIPP = u

1 − u
− (b + 1)ub+1

1 − ub+1

= 20 − 5(0.95245)

1 − 0.95245
= 20 − 18.106 = 1.894 jobs

The cycle time for the line is the time spent in partial WIP at the second machine plus the
time in process at the first machine. Note that we do not consider any queue time at the
first machine since it would be infinite due to the assumption of unlimited raw materials.

CT = WIPP

TH
+ te(1) = 1.894

0.039
+ 21 = 69.57 minutes

A second application of Little’s law shows that the WIP in the system line is

WIP = TH × CT = 0.039 job/minute × 69.57 minutes = 2.71 jobs

Comparison of the buffered and unbuffered cases is revealing. Limiting the intersta-
tion queue greatly reduces WIP and CT (by more than 83 percent) but also reduces TH
(but by only 18 percent). However, a decline in throughput of 18 percent could more than
offset the savings in inventory costs. This highlights why kanban cannot be implemented
simply by reducing buffer sizes. The loss in throughput is typically too great. The only
way to reduce WIP and CT without sacrificing too much throughput is to also reduce
variability (i.e., we have to remove the rocks, not just lower the water). Unfortunately,
we cannot examine variability reduction with the M/M/1/b model because it assumes
exponential process times. We discuss nonexponential models in the next section.

A second observation we can make using the M/M/1/b model is that finite buffers
force stability regardless of ra and re. The reason is that WIP, and consequently CT,
cannot “blow up” in a system with a finite buffer. For instance, suppose the speeds of
the two machines above were reversed with the faster one feeding the slower one. If the
buffer were infinite, WIP would go to infinity (in the long run), as would CT. But in the
finite buffer case u = 21/20 = 1.05, so

TH = 1 − ub

1 − ub+1
ra = 1 − 1.054

1 − 1.055

(

1

20

)

= 0.0390 job/minute

The partial WIP is

WIPP = u

1 − u
− (b + 1)ub+1

1 − ub+1

= 1.05

1 − 1.05
− 5(1.055)

1 − 1.055

= 2.097 jobs
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and cycle time is

CT = WIP

TH
+ te(1) = 2.097

0.0390
+ 20 = 73.78 minutes

Finally, WIP in the line is

WIP = TH × CT = 0.0390 × 73.78 = 2.88 jobs

which is somewhat larger than in the case with the faster machine in second position,
because the rate of arrival to the system is greater. However, throughput is unaffected by
the order of the machines. This latter result is known as reversibility and holds for lines
with more than two machines and general process times (see Muth 1979 for a proof). It
is a fascinating theoretical result, but since firms seldom get the opportunity to run their
lines backward, it does not often come up in practice.

8.7.2 General Blocking Models

To analyze variability effects, we need to extend the M/M/1/b model to more general
process and interarrival time distributions. In general, this is very difficult. We refer
the interested reader to Buzacott and Shanthikumar (1993, Chapter 4) for a more com-
plete treatment. However, we can make some useful approximations by modifying the
M/M/1/b queue in a manner analogous to the way we modified the M/M/1 queue to
model the G/G/1 queue.

We consider three cases: (1) when the arrival rate is less than the production rate
(u < 1), (2) when the arrival rate exceeds the production rate (u > 1), and (3) when the
arrival and production rates are the same (u = 1).

Arrival Rate Less than Production Rate. First we compute the expected WIP in
the system without any blocking, denoted by WIPnb, by using Kingman’s equation and
Little’s law.

WIPnb ≈ ra

{(

c2
a + c2

e

2

) (

u

1 − u

)

te + te

}

=
(

c2
a + c2

e

2

) (

u2

1 − u

)

+ u (8.42)

Now recall that for the M/M/1 queue, WIP = u/(1 − u), so that

u = WIP − u

WIP

We can use WIPnb in analogous fashion to compute a “corrected” utilization ρ

ρ = WIPnb − u

WIPnb
(8.43)

Then we substitute ρ for (almost) all the u terms in the M/M/1/b expression for TH to
obtain

TH ≈ 1 − uρb−1

1 − u2ρb−1
ra (8.44)
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By combining Kingman’s equation (to compute ρ) with the M/M/1/b model, we in-
corporate the effects of both variability and blocking. Although this expression is sig-
nificantly more complex than that for the M/M/1/b queue, it is straightforward to
evaluate by using a spreadsheet. Furthermore, because we can easily show that ρ = u if
ca = ce = 1, equation (8.44) reduces to the exact expression (8.36) for the case in which
interarrival and process times are exponential.

Unfortunately, the expressions for expected WIP and CT become much more messy.
However, for small buffers, WIP will be close to (but always less than) the maximum
in the system (that is, b). For large buffers, WIP will approach (but always be less than)
that for the G/G/1 queue. Thus,

WIP < min{WIPnb, b} (8.45)

From Little’s law, we obtain an approximate bound on CT

CT >
min{WIPnb, b}

TH
(8.46)

with TH computed as above. It is only an approximate bound because the expression for
TH is an approximation.

Arrival Rate Greater than Production Rate. In the earlier example for the M/M/1/b
queue, we saw that the average WIP level was different, but not too different, when the
order of the machines was reversed. This motivates us to approximate the WIP in the
case in which the arrival rate is greater than the production rate by the WIP that results
from having the machines in reverse order. When we switch the order of the machines,
the production process becomes the arrival process and vice versa, so that utilization is
1/u (which will be less than 1 since u > 1). The average WIP level of the reversed line
is approximated by

WIPnb ≈
(

c2
a + c2

e

2

) (

1/u2

1 − 1/u

)

+ 1

u
(8.47)

We can compute a “corrected” utilization ρR for the reversed line in the same fashion as
we did for the case where u < 1, which yields

ρR = WIPnb − 1/u

WIPnb

We then define ρ = 1/ρR and compute TH as before. Once we have an approximation for
TH, we can use inequalities (8.45) and (8.46) for bounds on WIP and CT, respectively.

Arrival Rate Equal to Production Rate. Finally, the following is a good approxima-
tion of TH for the case in which u = 1 (Buzacott and Shanthikumar 1993):

TH ≈ c2
a + c2

e + 2(b − 1)

2(c2
a + c2

e + b − 1)
re (8.48)

Again, with this approximation of TH, we can use inequalities (8.45) and (8.46) for
bounds on WIP and CT.
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Example:

Let us return to the example of Section 8.7.1, in which the first machine (with 21-minute
process times) fed the second machine (with 20-minute process times) and there is an
interstation buffer with room for two jobs (so that b = 4). Previously, we assumed that the
process times were exponential and saw that limiting the buffer resulted in an 18 percent
reduction in throughput. One way to offset the throughput drop resulting from limiting
WIP is to reduce variability. So let us reconsider this example with reduced process
variability, such that the effective coefficients of variation (CVs) for both machines are
equal to 0.25.

Utilization is still u = ra/re = 1
21/ 1

20 = 0.9524, so we can compute the WIP without
blocking to be

WIPnb =
(

c2
a + c2

e

2

) (

u2

1 − u

)

+ u

=
(

0.252 + 0.252

2

) (

0.95242

1 − 0.9524

)

+ 0.9524

= 2.143

The corrected utilization is

ρ = WIPnb − u

WIPnb
= 2.143 − 0.9524

2.143
= 0.556

Finally, we compute the throughput as

TH = 1 − uρb−1

1 − u2ρb−1
ra

= 1 − 0.9524(0.5563)

1 − 0.95242(0.5563)

1

21

= 0.0473

Hence, the percentage reduction in throughput relative to the unbuffered rate ( 1
21 =

0.0476) is now less than 1 percent. Reducing process variability in the two machines made
it possible to reduce the WIP by limiting the interstation buffer without a significant loss
in throughput. This highlights why variability reduction is such an important component
of JIT implementation.

8.8 Variability Pooling

In this chapter we have identified a number of causes of variability (failures, setups,
etc.) and have observed how they cause congestion in a manufacturing system. Clearly,
as we will discuss more fully in Chapter 9, one way to reduce this congestion is to
reduce variability by addressing its causes. But another, and more subtle, way to deal
with congestion effects is by combining multiple sources of variability. This is known
as variability pooling, and it has a number of manufacturing applications.

An everyday example of the use of variability pooling is financial planning. Virtually
all financial advisers recommend investing in a diversified portfolio of financial instru-
ments. The reason, of course, is to hedge against risk. It is highly unlikely that a wide
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spectrum of investments will perform extremely poorly at the same time. At the same
time, it is also unlikely that they will perform extremely well at the same time. Hence,
we expect less variable returns from a diversified portfolio than from any single asset.

Variability pooling plays an important role in a number of manufacturing situations.
Here we discuss how it affects batch processing, safety stock aggregation, and queue
sharing.

8.8.1 Batch Processing

To illustrate the basic idea behind variability pooling, we consider the question, Which
is more variable, the process time of an individual part or the process time of a batch
of parts? To answer this question, we must define what we mean by variable. In this
chapter we have argued that the coefficient of variation is a reasonable way to characterize
variability. So we will frame our analysis in terms of the CV.

First, consider a single part whose process time is described by a random variable
with mean t0 and standard deviation σ0. Then the process time CV is

c0 = σ0

t0

Now consider a batch of n parts, each of which has a process time with mean t0 and
standard deviation σ0. Then the mean time to process the batch is simply the sum of the
individual process times

t0(batch) = nt0

and the variance of the time to process the batch is the sum of the individual variances

σ 2
0 (batch) = nσ 2

0

Hence, the CV of the time to process the batch is

c0(batch) = σ0(batch)

t0(batch)
=

√
nσ0

nt0
= σ0√

nt0
= c0√

n

Thus, the CV of the time to process decreases by one over the square root of the
batch size. We can conclude that process times of batches are less variable than process
times of individual parts (provided that all process times are independent and identically
distributed). The reason is analogous to that for the financial portfolio. Having extremely
long or short process times for all n parts is highly unlikely. So the batch tends to “average
out” the variability of individual parts.

Does this mean that we should process parts in batches to reduce variability? Not
necessarily. As we will see in Chapter 9, batching has other negative consequences that
may offset any benefits from lower variability. But there are times when the variability
reduction effect of batching is very important, for instance, in sampling for quality
control. Taking a quality measurement on a batch of parts reduces the variability in the
estimate and hence is a standard practice in the construction of statistical control charts
(see Chapter 12).
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8.8.2 Safety Stock Aggregation

Variability pooling is also of enormous importance in inventory management. To see why,
consider a computer manufacturer that sells systems with three different choices each of
processor, hard drive, CD-ROM, removable media storage device, RAM configurations,
and keyboard. This makes a total of 36 = 729 different computer configurations. To
make the example simple, we suppose that all components cost $150, so that the cost
of finished goods for any computer configuration is 6 × $150 = $900. Furthermore, we
assume that demand for each configuration is Poisson with an average rate of 100 units
per year and that replenishment lead time for any configuration is 3 months.

First, suppose that the manufacturer stocks finished goods inventory of all configu-
rations and sets the stock levels according to a base stock model. Using the techniques
of Chapter 2, we can show that to maintain a customer service level (fill rate) of 99
percent requires a base stock level of 38 units and results in an average inventory level
of $11,712.425 for each configuration. Therefore, the total investment in inventory is
729 × $11,712.425 = $8,538.358.

Now suppose that instead of stocking finished computers, the manufacturer stocks
only the components and then assembles to order. We assume that this is feasible from a
customer lead-time standpoint, because the vast majority of the 3-month replenishment
lead time is presumably due to component acquisition. Furthermore, since there are
only 18 different components, as opposed to 729 different computer configurations,
there are fewer things to stock. However, because we are assembling the components,
each must have a fill rate of 0.991/6 = 0.9983 in order to ensure a customer service
level of 99 percent.12 Assuming a 3-month replenishment lead time for each component,
achieving a fill rate of 0.9983 requires a base stock level of 6,306 and results in an average
inventory level of $34,655.447 for each component. Thus, total inventory investment is
now 18 × $34,655.447 = $623,798, a 93 percent reduction!

This effect is not limited to the base stock model. It also occurs in systems using the
(Q, r ) or other stocking rules. The key is to hold generic inventory, so that it can be used
to satisfy demand from multiple sources. This exploits the variability pooling property to
greatly reduce the safety stock required. We will examine additional assemble-to-order
types of systems in Chapter 10 in the context of push and pull production.

8.8.3 Queue Sharing

We mentioned earlier that grocery stores typically have individual queues for checkout
lanes, while banks often have a single queue for all tellers. The reason banks do this is
to reduce congestion by pooling variability in process times. If one teller gets bogged
down serving a person who insists that an account is not overdrawn, the queue keeps
moving to the other tellers. In contrast, if a cashier is held up waiting for a price check,
everyone in that line is stuck (or starts lane hopping, which makes the system behave
more like the combined-queue case, but with less efficiency and equity of waiting time).

In a factory, queue sharing can be used to reduce the chance that WIP piles up in
front of a machine that is experiencing a long process time. For instance, in Section 8.6.6
we gave an example in which cycle time was 7.67 hours if three machines had individual

12Note that if component costs were different we would want to set different fill rates. To reduce total
inventory cost, it makes sense to set the fill rate higher for cheaper components and lower for more expensive
ones. We ignore this since we are focusing on the efficiency improvement possible through pooling. Chapter
17 presents tools for optimizing stocking rules in multipart inventory systems.
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queues, but only 2.467 hours (a 67 percent reduction) if the three machines shared a
single queue.

Consider another instance. Suppose the arrival rate of jobs is 13.5 jobs per hour
(with ca = 1) to a workstation consisting of five machines. Each machine nominally
takes 0.3 hours per job with a natural CV of 0.5 (that is, c2

0 = 0.25). The mean time to
failure for any machine is 36 hours, and repair times are assumed exponential with a
mean time to repair of 4 hours. Using equation (8.6), we can compute the effective SCV
to be 2.65, so that ce = √

2.65 = 1.63.
Using the model in Section 8.6.6, we can model both the case with dedicated queues

and the case with a single combined queue. In the dedicated-queue case, average cycle
time is 5.8 hours, while in the combined-queue case it is 1.27 hours, a 78 percent
reduction (see Problem 6). Here the reason for the big difference is clear. The combined
queue protects jobs against long failures. It is unlikely that all the machines will be
down simultaneously, so if the machines are fed by a shared queue, jobs can avoid a
failed machine by going to the other machines. This can be a powerful way to mitigate
variability in processes with shared machines.

However, if the separate queues are actually different job types and combining them
entails a time-consuming setup to switch the machines from one job type to another,
then the situation is more complex. The capacity savings by avoiding setups through the
use of dedicated queues might offset the variability savings possible by combining the
queues. We will examine the trade-offs involved in setups and batching in systems with
variability in Chapter 9.

8.9 Conclusions

This chapter has traversed the complex and subtle topic of variability all the way from
the fundamental nature of randomness to the propagation and effects of variability in a
production line. Points that are fundamental from a Factory Physics perspective include
the following:

1. Variability is a fact of life. Indeed, the field of physics is increasingly indicating
that randomness may be an inescapable aspect of existence itself. From a
management point of view, it is clear that the ability to deal effectively with
variability and uncertainty will be an important skill for the foreseeable future.

2. There are many sources of variability in manufacturing systems. Process
variability is created by things as simple as work procedure variations and by
more complex effects such as setups, random outages, and quality problems.
Flow variability is created by the way work is released to the system or moved
between stations. As a result, the variability present in a system is the
consequence of a host of process selection, system design, quality control, and
management decisions.

3. The coefficient of variation is a key measure of item variability. Using this
unitless ratio of the standard deviation to the mean, we can make consistent
comparisons of the level of variability in both process times and flows. At the
workstation level, the CV of effective process time is inflated by machine
failures, setups, rework, and many other factors. Disruptions that cause long,
infrequent outages tend to inflate CV more than disruptions that cause short,
frequent outages, given constant availability.
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4. Variability propagates. Highly variable outputs from one workstation become
highly variable inputs to another. At low utilization levels, the flow variability
of the output process from a station is determined largely by the variability of
the arrival process to that station. However, as utilization increases, flow
variability becomes determined by the variability of process times at the station.

5. Waiting time is frequently the largest component of cycle time. Two factors
contribute to long waiting times: high utilization levels and high levels of
variability. The queueing models discussed in this chapter clearly illustrate that
both increasing effective capacity (i.e., to bring down utilization levels) and
decreasing variability (i.e., to decrease congestion) are useful for reducing cycle
time.

6. Limiting buffers reduces cycle time at the cost of decreasing throughput. Since
limiting interstation buffers is logically equivalent to installing kanban, this
property is the key reason that variability reduction (via production smoothing,
improved layout and flow control, total preventive maintenance, and enhanced
quality assurance) is critical in just-in-time systems. It also points up the
manner in which capacity, WIP buffering, and variability reduction can act as
substitutes for one another in achieving desired throughput and cycle time
performance. Understanding the trade-offs among these is fundamental to
designing an operating system that supports strategic business goals.

7. Variability pooling reduces the effects of variability. Pooling variability tends
to dampen the overall variability by making it less likely that a single
occurrence will dominate performance. This effect has a variety of factory
physics applications. For instance, safety stocks can be reduced by holding
stock at a generic level and assembling to order. Also, cycle times at
multiple-machine process centers can be reduced by sharing a single queue.

In the next chapter, we will use these insights, along with the concepts and formulas
developed, to examine how variability degrades the performance of a manufacturing
plant and to provide ways to protect against it.

Study Questions

1. What is the rationale for using the coefficient of variation c instead of the standard deviation
σ as a measure of variability?

2. For the following random variables, indicate whether you would expect each to be LV, MV, or
HV.
(a) Time to complete this set of study questions
(b) Time for a mechanic to replace a muffler on an automobile
(c) Number of rolls of a pair of dice between rolls of seven
(d) Time until failure of a machine recently repaired by a good maintenance technician
(e) Time until failure of a machine recently repaired by a not-so-good technician
(f) Number of words between typographical errors in the book Factory Physics
(g) Time between customer arrivals to an automatic teller machine

3. What type of manufacturing workstation does the M/G/2 queue represent?

4. Why must utilization be strictly less than 100 percent for the M/M/1 queueing system to be
stable?

5. What is meant by steady state? Why is this concept important in the analysis of queueing
models?
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6. Why is the number of customers at the station an adequate state for summarizing current
status in the M/M/1 queue but not the G/G/1 queue?

7. What happens to CT, WIP, CTq , and WIPq as the arrival rate ra approaches the process rate re?

Problems

1. Consider the following sets of interoutput times from a machine. Compute the coefficient of
variation for each sample, and suggest a situation under which such behavior might occur.
(a) 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
(b) 5.1, 4.9, 5.0, 5.0, 5.2, 5.1, 4.8, 4.9, 5.0, 5.0
(c) 5, 5, 5, 35, 5, 5, 5, 5, 5, 42
(d) 10, 0, 0, 0, 0, 10, 0, 0, 0, 0

2. Suppose jobs arrive at a single-machine workstation at a rate of 20 per hour and the average
process time is 2 1

2 minutes.
(a) What is the utilization of the machine?
(b) Suppose that interarrival and process times are exponential,

i. What is the average time a job spends at the station (i.e., waiting plus process time)?
ii. What is the average number of jobs at the station?

iii. What is the long-run probability of finding more than three jobs at the station?
(c) Now suppose process times are not exponential, but instead have a mean of 2 1

2 minutes
and a standard deviation of 5 minutes

i. What is the average time a job spends at the station?
ii. What is the average number of jobs at the station?

iii. What is the average number of jobs in the queue?

3. The mean time to expose a single panel in a circuit-board plant is 2 minutes with a standard
deviation of 1.5 minutes.
(a) What is the natural coefficient of variation?
(b) If the times remain independent, what will be the mean and variance of a job of

60 panels? What will be the coefficient of variation of the job of 60?
(c) Now suppose times to failure on the expose machine are exponentially distributed with

a mean of 60 hours and the repair time is also exponentially distributed with a mean
of 2 hours. What are the effective mean and CV of the process time for a job of
60 panels?

4. Reconsider the expose machine of Problem 3 with mean time to expose a single panel of
2 minutes with a standard deviation of 1 1

2 minutes and jobs of 60 panels. As before, failures
occur after about 60 hours of run time, but now happen only between jobs (i.e., these
failures do not preempt the job). Repair times are the same as before. Compute the effective
mean and CV of the process times for the 60-panel jobs. How do these compare with the
results in Problem 3?

5. Consider two different machines A and B that could be used at a station. Machine A has a
mean effective process time te of 1.0 hours and an SCV c2

e of 0.25. Machine B has a mean
effective process time of 0.85 hour and an SCV of 4. (Hint: You may find a simple
spreadsheet helpful in making the calculations required to answer the following questions.)
(a) For an arrival rate of 0.92 job per hour with c2

a = 1, which machine will have a shorter
average cycle time?

(b) Now put two machines of type A at the station and double the arrival rate (i.e., double
the capacity and the throughput). What happens to cycle time? Do the same for machine
B. Which type of machine produces shorter average cycle time?

(c) With only one machine at each station, let the arrival rate be 0.95 job per hour with
c2

a = 1. Recompute the average time spent at the stations for both machine A and
machine B. Compare with (a).

(d) Consider the station with one machine of type A.
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i. Let the arrival rate be 1
2 job per hour. What is the average time spent at the station?

What happens to the average time spent at the station if the arrival rate is increased
by 1 percent (i.e., to 0.505)? What percentage increase in wait time does this
represent?

ii. Let the arrival rate be 0.95 job per hour. What is the average time spent at the
station? What happens to the average time spent at the station if the arrival rate is
increased by 1 percent (i.e., to 0.9595)? What percentage increase in wait time does
this represent?

6. Consider the example in Section 8.8. The arrival rate of jobs is 13.5 jobs per hour (with
c2

a = 1) to a workstation consisting of five machines. Each machine nominally takes 0.3
hour per job with a natural CV of 1

2 (that is, c2
0 = 0.25). The mean time to failure for any

machine is 36 hours, and repair times are exponential with a mean time to repair of
4 hours.
(a) Show that the SCV of effective process times is 2.65.
(b) What is the utilization of a single machine when it is allocated one-fifth of the demand

(that is, 2.7 jobs per hour) assuming ca is still equal to 1?
(c) What is the utilization of the station with an arrival rate of 13.5 jobs per hour?
(d) Compute the mean cycle time at a single machine when allocated one-fifth of the

demand.
(e) Compute the mean cycle time at the station serving 13.5 jobs per hour.

7. A car company sells 50 different basic models (additional options are added at the
dealership after purchases are made). Customers are of two basic types: (1) those who are
willing to order the configuration they desire from the factory and wait several weeks for
delivery and (2) those who want the car quickly and therefore buy off the lot. The traditional
mode of handling customers of the second type is for the dealerships to hold stock of models
they think will sell. A newer strategy is to hold stock in regional distribution centers, which
can ship cars to dealerships within 24 hours. Under this strategy, dealerships hold only show
inventory and a sufficient variety of stock to facilitate test drives.

Consider a region in which total demand for each of the 50 models is Poisson with a rate
of 1,000 cars per month. Replenishment lead time from the factory (to either a dealership or
the regional distribution center) is 1 month.
(a) First consider the case in which inventory is held at the dealerships. Assume that there

are 200 dealerships in the region, each of which experiences demand of 1,000/200 = 5
cars of each of the 50 model types per month (and demand is still Poisson). The
dealerships monitor their inventory levels in continuous time and order replenishments
in lots of one (i.e., they make use of a base stock model). How many vehicles must each
dealership stock to guarantee a fill rate of 99 percent?

(b) Now suppose that all inventory is held at the regional distribution center, which also
uses a base stock model to set inventory levels. How much inventory is required to
guarantee a 99 percent fill rate?

8. Frequently, natural process times are made up of several distinct stages. For instance, a
manual task can be thought of as being comprised of individual motions (or “therbligs” as
Gilbreth termed them).

Suppose a manual task takes a single operator an average of 1 hour to perform.
Alternatively, the task could be separated into 10 distinct 6-minute subtasks performed by
separate operators. Suppose that the subtask times are independent (i.e., uncorrelated), and
assume that the coefficient of variation is 0.75 for both the single large task and the small
subtasks. Such an assumption will be valid if the relative shapes of the process time
distributions for both large and small tasks are the same. (Recall that the variances of
independent random variables are additive.)
(a) What is the coefficient of variation for the 10 subtasks taken together?
(b) Write an expression relating the SCV of the original tasks to the SCV of the combined

task.



Chapter 8 Variability Basics 305

Station 1

Unlimited
raw materials

Station 2

Finite
buffer

Figure 8.8

Two-station line with a
finite buffer.

(c) What are the issues that must be considered before dividing a task into smaller
subtasks? Why not divide it into as many as possible? Give several pros and cons.

(d) One of the principles of JIT is to standardize production. How does this explain some of
the success of JIT in terms of variability reduction?

9. Consider a workstation with 11 machines (in parallel), each requiring one hour of process
time per job with c2

e = 5. Each machine costs $10,000. Orders for jobs arrive at a rate of 10
per hour with c2

a = 1 and must be filled. Management has specified a maximum allowable
average response time (i.e., time a job spends at the station) of 2 hours. Currently it is just
over 3 hours (check it).

Analyze the following options for reducing average response time.
(a) Perform more preventive maintenance so that mr and m f are reduced, but mr/m f

remains the same. This costs $8,000 and does not improve the average process time
but does reduce c2

e to one.
(b) Add another machine to the workstation at a cost of $10,000. The new machine is

identical to existing machines, so te = 1 and c2
e = 5.

(c) Modify the existing machines to make them faster without changing the SCV, at a cost
of $8,500. The modified machines would have te = 0.96 and c2

e = 5.
What is the best option?

10. (This problem is fairly involved and could be considered a small project.) Consider a simple
two-station line as shown in Figure 8.8. Both machines take 20 minutes per job and have
SCV = 1. The first machine can always pull in material, and the second machine can always
push material to finished goods. Between the two machines is a buffer that can hold only 10
jobs (see Sections 8.7.1 and 8.7.2).
(a) Model the system using an M/M/1/b queue. (Note that b = 12 considering the two

machines.)
i. What is the throughput?

ii. What is the partial WIP (i.e., WIP waiting at the first machine or at the second
machine, but not in process at the first machine)?

iii. What is the total cycle time for the line (not including time in raw material)?
(Hint: Use Little’s law with the partial WIP and the throughput and then add the
process time at the first machine.)

iv. What is the total WIP in the line? (Hint: Use Little’s law with the total cycle time
and the throughput.)

(b) Reduce the buffer to one (so that b = 3) and recompute the above measures. What
happens to throughput, cycle time, and WIP? Comment on this as a strategy.

(c) Set the buffer to one and make the process time at the second machine equal to 10
minutes. Recompute the above measures. What happens to throughput, cycle time,
and WIP? Comment on this as a strategy.

(d) Keep the buffer at one, make the process times for both stations equal to 20 minutes
(as in the original case), but set the process CVs to 0.25 (SCV = 0.0625).

i. What is the throughput?
ii. Compute an upper bound on the WIP in the system.

iii. Compute an (approximate) upper bound on the total cycle time. Is this upper bound
an acceptable cycle time?

iv. Comment on reducing variability as a strategy.
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9 The Corrupting

Influence of

Variability

When luck is on your side, you can do without brains.
Giordano Bruno, burned at the stake in 1600

The more you know the luckier you get.
J. R. Ewing of Dallas

9.1 Introduction

In Chapter 6 we developed a formal model of a manufacturing supply chain whose

“fundamental objective” is

Make money now and in the future in ways that are consistent with our core values.

We also noted that the supply chain is composed of two essential elements—demand and

transformation. We stated that whenever demand and transformation are not perfectly

aligned there will be a buffer in the form of inventory, time, and/or capacity. We also

noted that the most common cause of this lack of alignment is variability.

Chapters 7 and 8 were devoted to building tools for characterizing and evaluating

variability in process times and flows. In this chapter, we use these tools to expand on

our formal model of Chapter 6 and describe fundamental behavior of manufacturing

systems involving variability.

As we did in Chapter 7, we state our main conclusions as laws of Factory Physics.

Some of these “laws” are always true (e.g., the conservation of material law), while others

hold most of the time. On the surface this may appear unscientific. However, we point out

that physics laws, such as Newton’s second law F = ma and the law of the conservation

of energy, hold only approximately. But even though they have been replaced by deeper

results of quantum mechanics and relativity, these laws are still very useful. So are the

laws of Factory Physics.

9.1.1 Can Variability Be Good?

The discussions of Chapters 7 and 8 (and the title of this chapter) may give the impression

that variability is evil. In the jargon of lean manufacturing (Womack and Jones 1996),

variability is typically equated with muda, the Japanese word for waste, which suggests

306
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that it should always be eliminated. But, while this is often the case, we must be careful

not to lose sight of the fundamental objective of the firm through oversimplification.

Recall from our historical overview in Chapter 1 that Henry Ford was something of a

fanatic about reducing variability. A customer could have any color desired as long as it

was black. Car models were changed infrequently with little variety within models. By

stabilizing products and keeping operations simple and efficient, Ford created a major

revolution by making automobiles affordable to the masses. However, when General

Motors under Alfred P. Sloan offered greater product variety in the 1930s and 1940s,

Ford Motor Company lost much of its market share and nearly went under. Of course,

greater product variety meant greater variability in GM’s production system, which

meant that its system could not run as efficiently as Ford’s. Nonetheless, GM did better

than Ford. Why?

The answer is simple. GM and Ford were not in business to reduce variability or

even to reduce muda. They were in business to make money now and in the long term.

If adding product variety increases variability but increases revenues by an amount that

more than offsets the additional cost, then it can be a sound business strategy.

9.1.2 Examples of Good and Bad Variability

To highlight the manner in which variability can be good (a necessary implication of

a business strategy) or bad (an undesired side effect of a poor operating policy), we

consider a few examples.

Table 9.1 lists several causes of undesirable variability. For instance, as we saw in

Chapter 8, unplanned outages, such as machine breakdowns, can introduce an enormous

amount of variability into a system. While such variability may be unavoidable, it is not

something we would deliberately introduce into the system.

In contrast, Table 9.2 gives some cases in which effective corporate strategies con-

sciously introduced variability into the system. As we noted above, at GM in the 1930s

and 1940s the variability was a consequence of greater product variety. At Intel in the

1980s and 1990s, the variability was a consequence of rapid product introduction in an

environment of changing technology. By aggressively pushing out the next generation of

microprocessor before processes for the last generation had stabilized, Intel stimulated

demand for new computers and provided a powerful barrier to entry by competitors. At

Jiffy Lube, where offering while-you-wait oil changes is the core of the firm’s business

strategy, demand variability is an unavoidable result. Jiffy Lube could reduce this vari-

ability by scheduling oil changes as in traditional auto shops, but doing so would forfeit

the company’s competitive edge.

Regardless of whether variability is good or bad in business strategy terms, it causes

operating problems and therefore must be managed. The specific strategy for dealing

Table 9.1 Examples of Bad Variability

Cause Example

Planned outages Setups

Unplanned outages Machine failures

Quality problems Yield loss and rework

Operator variation Skill differences

Inadequate design Engineering changes

Table 9.2 Examples of (Potentially) Good Variability

Cause Example

Product variety GM in the1930s and 1940s

Technological change Intel in the 1980s and 1990s

Demand variability Jiffy Lube
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with variability will depend on the structure of the system and the firm’s strategic goals.

In this chapter, we present laws governing the manner in which variability affects the

behavior of manufacturing systems. These define key trade-offs that must be faced in

developing effective operations.

9.2 Variability Laws

Now that we have defined performance in reasonably concrete terms, we can characterize

the effect of variability on performance.

Variability increases whenever there is a decrease in uniformity. For instance, uni-

formity decreases when interarrival times or process times become more disparate. This

may be a consequence of randomness (e.g., customers placing orders make independent

decisions and hence generate an unpredictable arrival stream of orders), which can be

thought of as a decrease in information. But variability need not be the result of ran-

domness. If a firm increases the number of products produced on a line, differences in

process times may increase variability even if the individual process times are completely

predictable. Another example of high variability without randomness is the worst-case

performance described in Chapter 7.

Control is also related to variability. A system is said to be “in control” if its current

variability level is consistent with the variation expected or inherent to that system. The

tool for monitoring variation and determining when it has departed from the range of

natural fluctuations is the control chart (see Chapter 12). Control charts depict the target

level for a measurable process (e.g., average number of defects in a sample of fixed size)

and control limits that separate natural fluctuation from shifts due to significant changes

in the process. Processes that have larger natural variation will have control limits that

are farther away from the target level. An “out of control” signal is generated when the

variation from a prescribed level increases beyond acceptable limits.

However, one can get into trouble when trying to “control” (i.e., respond to) random

fluctuations. Doing so only increases the variability in the system.1 Unfortunately, there

appears to be an increasing tendency to fall into this trap as information technology and

integration provides more opportunities for “control.” So-called advanced planning and

optimization systems are particularly susceptible to this problem. Attempting to update a

schedule in response to changes in demand or machine status that are within the expected

variation limits is both time-consuming and ultimately futile.

If we examine any source of variability carefully, we see that increasing it will

increase at least one of the above buffers.2 For instance, if we increase the variability

of process times while holding throughput constant, we know from the VUT equa-

tion of Chapter 8 that cycle time will increase, thereby increasing the time buffer.

1Deming 1982, 327, describes a thought experiment using a funnel that illustrates this point. In it, a

funnel is used to direct drops toward a target. Because there is variability in the accuracy of the funnel,

sometimes the drops miss the target. So, one might think that if we miss 1 inch to the left, we should correct

our aim by moving the funnel 1 inch to the right. Deming shows that this policy of correcting after each

observation merely serves to widen the scatter of the drops around the target. In essence, the policy reacts to

noise in the system, rather than waiting until enough drops have fallen to statistically gauge accuracy before

making a correction.
2Considering the scope of this book, we are being deliberately loose in defining variability and buffer

measures. There are pathological cases in which an increase in a variability measure can lead to a decrease in

a buffer measure. But the “law” that says buffers increase in variability is true for most important cases and

can be made rigorous by carefully defining what is meant by “increasing variability” and by defining specific

measures for the buffers.
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If we place a restriction on WIP (via kanban or CONWIP), then from our discus-

sion of queueing systems with blocking we know that throughput will decline (be-

cause the bottleneck will starve), thereby increasing the capacity buffer. Finally, if we

smooth demand by requiring advance orders, we will subject customers to a time buffer.

These observations are specific instances of the following fundamental law of Factory

Physics.

Law (Variability): Increasing variability always degrades the performance of a pro-
duction system.

This is an extremely powerful concept, since it implies that higher variability of any

sort must harm some measure of performance. Consequently, variability reduction is

central to improving performance, Indeed, recognizing the power of variability reduction

and developing methods for achieving it (e.g., production smoothing, setup reduction,

total quality management, and total preventive maintenance) was fundamental to the

success of the JIT systems we discussed in Chapter 4.

But we can be more specific about how variability degrades performance in the

following Factory Physics law.

Law (Variability Buffering): Variability in a production system will be buffered by
some combination of

1. Inventory

2. Capacity

3. Time

This law is an enormously important extension of the variability law because it

enumerates the buffers that arise as a consequence of variability. This implies that, while

we cannot change the fact that variability will degrade performance, we have a choice of

how it will do so. Different strategies for coping with variability make sense in different

business environments.

9.2.1 Buffering Examples

The following examples illustrate (1) that variability must be buffered and (2) how

the appropriate buffering strategy depends on the production environment and business

strategy. We deliberately include some nonmanufacturing examples to emphasize that

the variability laws apply to production systems for services as well as for goods.

Ballpoint pens. Suppose a retailer sells inexpensive ballpoint pens. Demand is

unpredictable (variable). But since customers will go elsewhere if they do not find

the item in stock (who is going to backorder a cheap ballpoint pen?), the retailer

cannot buffer this variability with time. Likewise, because the instant-delivery

requirement of the customer rules out a make-to-order environment, capacity

cannot be used as a buffer. This leaves only inventory. And indeed, this is precisely

what the retailer creates by holding a stock of pens.

Emergency service. Demand for fire or ambulance service is necessarily variable,

since we obviously cannot get people to schedule their emergencies. We cannot

buffer this variability with inventory (an inventory of trips to the hospital?). We

cannot buffer with time, since response time is the key performance measure for

this system. Hence, the only available buffer is capacity. And indeed, utilization of
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fire engines and ambulances is very low. The “excess” capacity is necessary to

cover peaks in demand.

Organ transplants. Demand for organ transplants is variable, as is supply, since

we cannot schedule either. Since the supply rate is fixed by donor deaths, we

cannot (ethically) increase capacity. Since organs have a very short usable life after

the donor dies, we cannot use inventory as a buffer. This leaves only time. And

indeed, the waiting time for most organ transplants is very long. Even medical

production systems must obey the laws of Factory Physics.

The Toyota Production System. The Toyota production system was the

birthplace of JIT and remains the paragon of lean manufacturing. On the basis of

its success, Toyota rose from relative obscurity to become one of the world’s

leading auto manufacturers. How did they do it?

First, Toyota reduced variability at every opportunity. In particular:

1. Demand variability. Toyota’s product design and marketing were so

successful that demand for its cars consistently exceeded supply (the Big

Three in America also did their part by building particularly shoddy cars in

the late 1970s). This helped in several ways. First, Toyota was able to limit

the number of options of cars produced. A maroon Toyota would always

have maroon interior. Many options, such as chrome packages and radios,

were dealer-installed. Second, Toyota could establish a production schedule

months in advance. This virtually eliminated all demand variability seen by

the manufacturing facility.

Toyota also isolated any remaining demand variability by using a “takt

time” that represents a fixed time between individual outputs. This is

equivalent to maintaining a daily production quota. By producing exactly the

same number of cars each day, it prevented any demand variability from

affecting the plant.

2. Manufacturing variability. By focusing on setup reduction, standardizing

work practices, total quality management, error proofing, total preventive

maintenance, and other flow-smoothing techniques, Toyota did much to

eliminate variability inside its factories.

3. Supplier variability. The Toyota-supplier relationship in the early 1980s

hinted of feudalism. Because Toyota was such a large portion of its suppliers’

demand, it had enormous leverage. Indeed, Toyota executives often sat as

directors on the boards of its suppliers. This ensured that (1) Toyota got the

supplies it needed when it needed them, (2) suppliers adopted variability

reduction techniques “suggested” to them by Toyota, and (3) the suppliers

carried any necessary buffer inventory.

Second, Toyota made use of capacity buffers against remaining manufacturing

variability. It did this by scheduling plants for less than three shifts per day and

making use of preventive maintenance periods at the end of shifts to make up any

shortfalls relative to production quotas. The result was a very predictable daily

production rate.

Third, despite the propensity of American JIT writers to speak in terms of “zero

inventories” and “evil inventory,” Toyota did carry WIP and finished goods

inventories in its system. But because of its vigorous variability reduction efforts

and willingness to buffer with capacity, the amount of inventory required was far

smaller than was typical of auto manufacturers in the 1980s.
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Station 1

Unlimited
raw materials

Station 2

Finite
buffer

Figure 9.1

“Pay me now or pay me

later” scenario.

9.2.2 Pay Me Now or Pay Me Later

The buffering law could also be called the “law of pay me now or pay me later”

because if you do not pay to reduce variability, you will pay in one or more of the

following ways:

� Lost throughput
� Wasted capacity
� Inflated cycle times
� Larger inventory levels
� Long lead times and/or poor customer service

To examine the implications of the buffering law in more concrete manufacturing

terms, we consider the simple two-station line shown in Figure 9.1. Station 1 pulls in

jobs, which contain 50 pieces, from an unlimited supply of raw materials, processes

them, and sends them to a buffer in front of station 2. Station 2 pulls jobs from the buffer,

processes them, and sends them downstream. Throughout this example, we assume

station 1 requires 20 minutes to process a job and is the bottleneck. This means that the

theoretical capacity is 3,600 pieces per day (24 hours/day × 60 minutes/hour × 1 job/

20 minutes × 50 pieces/job).3

To start with, we assume that station 2 also has average processing times of 20

minutes, so that the line is balanced. Thus, the theoretical minimum cycle time is

40 minutes, and the minimum WIP level is 100 pieces (one job per station). How-

ever, because of variability, the system cannot achieve this ideal performance. Below we

discuss the results of a computer simulation model of this system under various condi-

tions, to illustrate the effects of changes in capacity, variability, and buffer space. These

results are summarized in Table 9.3.

Balanced, Moderate Variability, Large Buffer. As our starting point, we consider

the balanced line where both machines have mean process times of 20 minutes per job

and are moderately variable (i.e., have process CVs equal to one, so ce(1) = ce(2) = 1)

and the interstation buffer holds 10 jobs (500 pieces).4 A simulation of this system

for 1,000,000 minutes (694 days running 24 hours/day) estimates throughput of 3,321

pieces/day, an average cycle time of 150 minutes, and an average WIP of 347 pieces. We

can check Little’s law (WIP = TH × CT) by noting that throughput can be expressed as

3,321 pieces/day ÷ 1,440 minutes/day = 2.3 pieces/minute, so

347 pieces ≈ 2.3 pieces/minute × 150 minutes = 345 pieces

3This is the same system that was considered in Problem 10 of Chapter 8.
4Note that because the line is balanced and has an unlimited supply of work at the front, utilization at

both machines would be 100 percent if the interstation buffer were infinitely large. But this would result in an

unstable system in which the WIP would grow to infinity. A finite buffer will occasionally become full and

block station 1, choking off releases and preventing WIP from growing indefinitely. This serves to stabilize

the system and makes it more representative of a real production system, in which WIP levels would never be

allowed to become infinite.
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Table 9.3 Summary of Pay-Me-Now-or-Pay-Me-Later Simulation Results

Buffer te(2) TH (per day); CT (min); WIP (pieces);

Case (jobs) (min) CV utilization CT/T∗
0 WIP/W∗

0

1 10 20 1 3,321; 150; 347;

0.923 3.75 3.47

2 1 20 1 2,712; 60; 113;

0.753 1.50 1.13

3 1 10 1 3,367; 36; 83;

0.935 1.20 1.11

4 1 20 0.25 3,443; 51; 123;

0.956 1.28 1.23

Because we are simulating a system involving variability, the estimates of TH, CT, and

WIP are necessarily subject to error. However, because we used a long simulation run,

the system was allowed to stabilize and therefore very nearly complies with Little’s law.

Notice that while this configuration achieves reasonable throughput (i.e., only 7.7

percent below the theoretical maximum of 3,600 pieces per day), it does so at the cost

of high WIP and long cycle times (both having almost 4 times the critical WIP and raw

process time). The reason is that fluctuations in the speeds of the two stations causes the

interstation buffer to fill up regularly, which inflates both WIP and cycle time. Hence,

the system is using WIP as the primary buffer against variability.

Balanced, Moderate Variability, Small Buffer. One way to reduce the high WIP and

cycle time of the above case is by fiat. That is, simply reduce the size of the buffer. This

is effectively what implementing a low-WIP kanban system without any other structural

changes would do. To give a stark illustration of the impacts of this approach, we reduce

buffer size from 10 jobs to 1 job. If the first machine finishes when the second has one job

in queue, it will wait in a nonproductive blocked state until the second machine is finished.

Our simulation model confirms that the small buffer reduces cycle time and WIP as

expected, with cycle time dropping to around 60 minutes and WIP dropping to around

113 pieces. However, throughput also drops to around 2,712 pieces per day (at 75 percent

utilization, an 18 percent decrease relative to the first case). Without the high WIP level

in the buffer to protect station 2 against fluctuations in the speed of station 1, station 2

frequently becomes starved for jobs to work on. Hence, throughput and revenue seriously

decline. Because utilization of station 2 has fallen, the system is now using capacity as

the primary buffer against variability. However, in most environments, this would not be

an acceptable price to pay for reducing cycle time and WIP.

Unbalanced, Moderate Variability, Small Buffer. Part of the reason that stations 1

and 2 are prone to blocking and starving each other in the above case is that their capacities

are identical. If a job is in the buffer and station 1 completes its job before station 2 is

finished, station 1 becomes blocked; if the buffer is empty and station 2 completes its

job before station 1 is finished, station 2 becomes starved. Since both situations occur

often, neither station is able to run at anything close to its capacity.

One way to resolve this is to unbalance the line. If either machine were significantly

faster than the other, it would almost always finish its job first, thereby allowing the other

station to operate at close to its capacity. To illustrate this, we suppose that the machine
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at station 2 is replaced with one that runs twice as fast (i.e., has mean process times of

te(2) = 10 minutes per job), but still has the same CV (that is, ce(2) = 1). We keep the

buffer size at one job.

Our simulation model predicts a dramatic increase in throughput to 3,367 pieces per

day, while cycle time and WIP level remain low at 36 minutes and 83 pieces, respectively.

Of course, the price for this improved performance is wasted capacity—the utilization of

station 2 is less than 50 percent—so the system is again using capacity as a buffer against

variability. If the faster machine is inexpensive, this might be attractive. However, if it

is costly, this option is almost certainly unacceptable.

Balanced, Low Variability, Small Buffer. Finally, to achieve high throughput with

low cycle time and WIP without resorting to wasted capacity, we consider the option

of reducing variability. In this case, we return to a balanced line, with both stations

having mean process times of 20 minutes per job. However, we assume the process CVs

have been reduced from 1.0 to 0.25 (i.e., from the moderate-variability category to the

low-variability category).

Under these conditions, our simulation model shows that throughput is high, at

3,443 pieces per day; cycle time is low, at 51 minutes; and WIP level is low, at 123

pieces. Hence, if this variability reduction is feasible and affordable, it offers the best of

all possible worlds. As we noted in Chapter 8, there are many options for reducing pro-

cess variability, including improving machine reliability, speeding up equipment repairs,

shortening setups, and minimizing operator outages, among others.

Comparison. As we can see from the summary in Table 9.3, the above four cases are

a direct illustration of the pay-me-now-or-pay-me-later interpretation of the variability

buffering law. In the first case, we “pay” for throughput by means of long cycle times

and high WIP levels. In the second case, we pay for short cycle times and low WIP

levels with lost throughput. In the third case we pay for them with wasted capacity. In

the fourth case, we pay for high throughput, short cycle time, and low WIP through

variability reduction. While the variability buffering law cannot specify which form of

payment is best, it does serve warning that some kind of payment will be made.

9.2.3 Flexibility

Although variability always requires some kind of buffer, the effects can be mitigated

somewhat with flexibility. A flexible buffer is one that can be used in more than one

way. Since a flexible buffer is more likely to be available when and where it is needed

than a fixed buffer is, we can state the following corollary to the buffering law.

Corollary (Buffer Flexibility): Flexibility reduces the amount of variability buffering
required in a production system.

An example of flexible capacity is a cross-trained workforce. By floating to opera-

tions that need the capacity, flexible workers can cover the same workload with less total

capacity than would be required if workers were fixed to specific tasks.

An example of flexible inventory is generic WIP held in a system with late product

customization. For instance, Hewlett-Packard produced generic printers for the European

market by leaving off the country-specific power connections. These generic printers

could be assembled to order to fill demand from any country in Europe. The result was

that significantly less generic (flexible) inventory was required to ensure customer service

than would have been required if fixed (country-specific) inventory had been used.
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An example of flexible time is the practice of quoting variable lead times to customers

depending on the current work backlog (i.e., the larger the backlog, the longer the quote).

A given level of customer service can be achieved with shorter average lead time if

variable lead times are quoted individually to customers than if a uniform fixed lead time

is quoted in advance. We present a model for lead time quoting in Chapter 15.

There are many ways that flexibility can be built into production systems, through

product design, facility design, process equipment, labor policies, vendor management,

and so forth. Finding creative new ways to make resources more flexible is the central

challenge of the mass customization approach to making a diverse set of products at

mass-production costs.

9.2.4 Organizational Learning

The pay-me-now-or-pay-me-later example suggests that adding capacity and reducing

variability are, in some sense, interchangeable options. Both can be used to reduce cycle

times for a given throughput level or to increase throughput for a given cycle time.

However, there are certain intangibles to consider. First is the ease of implementation.

Increasing capacity is often an easy solution—just buy some more machines—while

decreasing variability is generally more difficult (and risky), requiring identification of

the source of excess variability and execution of a custom-designed policy to eliminate

it. From this standpoint, it would seem that if the costs and impacts to the line of

capacity expansion and variability reduction are the same, capacity increases are the

more attractive option.

But there is a second important intangible to consider—learning. A successful vari-

ability reduction program can generate capabilities that are transferable to other parts of

the business. The experience of using the general methodology for improvement (dis-

cussed in Chapter 6), the resulting enhancements in specific processes (e.g., reduced

setup times or rework), and the heightened awareness of the consequences of variability

by the workforce are examples of benefits from a variability reduction program whose

impact can spread well beyond that of the original program. The mind-set of variability

reduction promotes an environment of continual process capability improvement. This

can be a source of significant competitive advantage—anyone can buy more machinery—

but not everyone can constantly upgrade the ability to use it. For this reason, we believe

that variability reduction is frequently the preferred improvement option, which should

be considered seriously before resorting to capacity increases.

9.3 Flow Laws

Variability affects the way material flows through the system and how much capacity can

be actually utilized. In this section we describe laws concerning material flow, capacity,

utilization, and variability propagation.

9.3.1 Product Flows

We start with an important law that comes directly from (natural) physics, namely con-
servation of material. In manufacturing terms, we can state it as follows:

Law (Conservation of Material): In a stable system, over the long run, the rate out
of a system will equal the rate in, less any yield loss, plus any parts production within
the system.
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The phrase in a stable system requires that the input to the system not exceed (or

even be equal to) its capacity. The next phrase, over the long run, implies that the system

is observed over a significantly long time. The law can obviously be violated over shorter

intervals. For instance, more material may come out of a plant than went into it—for

a while. Of course, when this happens, WIP in the plant will fall and eventually will

become zero, causing output to stop. Thus, the law cannot be violated indefinitely. The

last phrases, less any yield loss and plus any parts production are important caveats to

the simpler statement, input must equal output. Yield losses occur when the number of

parts in a system is reduced by some means other than output (e.g., scrap or damage).

Parts production occurs whenever one part becomes multiple parts. For instance, one

piece of sheet metal may be cut into several smaller pieces by a shearing operation.

This law links the utilization of the individual stations in a line with the throughput.

For instance, in a serial line with no yield loss operating under an MRP (push) protocol,

throughput at any station i , TH(i), plus the line throughput itself, TH, equals the release

rate ra into the line. The reason, of course, is that what goes in must come out (provided

that the release rate is less than the capacity of the line, so that it is stable). Then the

utilization at each station is given by the ratio of the throughput to the station capacity

(for example, u(i) = TH(i)/re(i) = ra/re(i) at station i).

Finally, this law is behind our choice to define the bottleneck as the busiest station,

not necessarily the slowest station. For example, if a line has yield loss, then a slower

station later in the line may have a lower utilization than a faster station earlier in the

line (i.e., because the earlier station processes parts that are later scrapped). Since the

earlier station will serve to constrain the performance of the line, it is rightly deemed the

bottleneck.

9.3.2 Capacity

The conservation of material law implies that the capacity of a line must be at least as

large as the arrival rate to the system. Otherwise, WIP levels would continue to grow

and never stabilize. However, when one considers variability, this condition is not strong

enough. To see why, recall that the queueing models presented in Chapter 8 indicated

that both WIP and cycle time go to infinity as utilization approaches one if there is no

limit on how much WIP can be in the system. Therefore, to be stable, all workstations

in the system must have a processing rate that is strictly greater than the arrival rate to

that station. It turns out that this behavior is not some sort of mathematical oddity, but

is, in fact, a fundamental principle of Factory Physics.

To see this, note that if a production system contains variability (and all real systems

do), then regardless of the WIP level, we can always find a possible sequence of events

that causes the system bottleneck to starve (run out of WIP). The only way to ensure

that the bottleneck station does not starve is to always have WIP in the queue. However,

no matter how much WIP we begin with, there exists a set of process and interarrival

times that will eventually exhaust it. The only way to always have WIP is to start with

an infinite amount of it. Thus, for ra (arrival rate) to be equal to re (process rate), there

must be an infinite amount of WIP in the queue. But by Little’s law this implies that

cycle time will be infinite as well.

There is one exception to this behavior. When both c2
a and c2

e are equal to zero, then

the system is completely deterministic. For this case, we have absolutely no randomness

in either interarrival or process time, and the arrival rate is exactly equal to the service

rate. However, since modern physics (“natural,” not “factory”) tells us that there is always

some randomness present, this case will never arise in practice.
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At this point, the reader with a practical bent may be skeptical, thinking something

like, “Wait a minute. I’ve been in a lot of plants, many of which do their best to set work

releases equal to capacity, and I’ve yet to see a single one with an infinite amount of

WIP.” This is a valid point, which brings up the important concept of steady state.

Steady state is related to the notion of a “stable system” and “long-run” performance,

discussed in the conservation of material law. For a system to be in steady state, the

parameters of the system must never change and the system must have been operating

long enough that initial conditions no longer matter.5 Since our formulas were derived

under the assumption of steady state, the discrepancy between our analysis (which is

correct) and what we see in real life (which is also correct) must lie in our view of the

steady state of a manufacturing system.

The Overtime Vicious Cycle. What really happens in steady state is that a plant runs

through a series of “cycles,” in which system parameters are changed over time. A

common type of behavior is the “overtime vicious cycle,” which goes as follows:

1. Plant capacity is computed by taking into consideration detractors such as

random outages, rework, setups, operator unavailability, breaks, and lunches.

2. The master production schedule is filled according to this effective capacity.

Release rates are now essentially the same as capacity.6

3. Sooner or later, because of randomness in job arrivals, in process times, or in

both, the bottleneck process starves.

4. More work has gone in than has gone out, so WIP increases.

5. Since the system is at capacity, throughput remains relatively constant. From

Little’s law, the increase in WIP is reflected by a nearly proportional increase

in cycle times.

6. Jobs become late.

7. Customers begin to complain.

8. After WIP and cycle times have increased enough and customer complaints

grow loud enough, management decides to take action.

9. A “one-time” authorization of overtime, adding a shift, subcontracting,

rejection of new orders, and so on, is allowed.

10. As a consequence of step 9, effective capacity is now significantly greater than

the release rate. For instance, if a third shift was added, utilization would drop

from 100 percent to around 67 percent.

11. WIP level decreases, cycle times go down, and customer service improves.

Everyone breaths a sigh of relief, wonders aloud how things got so out of

hand, and promises to never let it happen again.

12. Go to step 1!

The moral of the overtime vicious cycle is that although management may intend to

release work at the rate of the bottleneck, in steady state, it cannot. Whenever overtime, or

adding a shift, or working on a weekend, or subcontracting, and so on, is authorized, plant

5Recall in the penny fab examples of Chapter 7 that the line had to run for awhile to work out of a

transient condition caused by starting up with all pennies at the first station. There, steady state was reached

when the line began to cycle through the same behavior over and over. In lines with variability, the actual

behavior will not repeat, but the probability of finding the system in a given state will stabilize.
6Notice that if there has been some wishful thinking in computing capacity, release rates may well be

greater than capacity.
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capacity suddenly jumps to a level significantly greater than the release rate. (Likewise,

order rejection causes release rate to suddenly fall below capacity.) Thus, over the long

run, average release rate is always less than average capacity. We can sum up this fact

of manufacturing life with the following law of Factory Physics.

Law (Capacity): In steady state, all plants will release work at an average rate that
is strictly less than the average capacity.

This law has profound implications. Since it is impossible to achieve true 100 percent

utilization of plant resources, the real management decision concerns whether measures

such as excess capacity, overtime, or subcontracting will be part of a planned strategy

or will be used in response to conditions that are spinning out of control. Unfortunately,

because many manufacturing managers fail to appreciate this law of Factory Physics,

they unconsciously choose to run their factories in constant “fire-fighting” mode.

9.3.3 Utilization

The buffering law and the VUT equation suggest that there are two drivers of queue time:

utilization and variability. Of these, utilization has the most dramatic effect. The reason

is that the VUT equation (for single- or multiple-machine stations) has a 1 − u term in

the denominator. Hence as utilization u approaches one, cycle time approaches infinity.

We can state this as the following law.

Law (Utilization): If a station increases utilization without making any other changes,
average WIP and cycle time will increase in a highly nonlinear fashion.

In practice, it is the phrase in a highly nonlinear fashion that generally presents

the real problem. To illustrate why, suppose utilization is u = 97 percent, cycle time

is 2 days, and the CVs of both process times ce and interarrival times ca are equal to

one. If we increase utilization by 1 percent to u = 0.9797, cycle time becomes 2.96

days, a 48 percent increase. Clearly, cycle time is very sensitive to utilization. Moreover,

this effect becomes even more pronounced as u gets closer to one, as we can see in

Figure 9.2. This graph shows the relationship between cycle time and utilization for

V = 1.0 and V = 0.25, where V = (c2
a + c2

e )/2. Notice that both curves “blow up” as
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u gets close to 1.0, but the curve corresponding to the system with higher variability

(V = 1.0) blows up faster. From Little’s law, we can conclude that WIP similarly blows

up as u approaches one.

A couple of technical caveats are in order. First, if V = 0, then cycle time remains

constant for all utilization levels up to 100 percent and then becomes infinite (infeasible)

when utilization becomes greater than 100 percent. In analogous fashion to the best-case

line we studied in Chapter 7, a station with absolutely no variability can operate at 100

percent utilization without building a queue. But since all real stations contain some

variability, this never occurs in practice.

Second, no real-world station has space to build an infinite queue. Space, time, or

policy will serve to cap WIP at some finite level. As we saw in the blocking models of

Chapter 8, putting a limit on WIP without any other changes causes throughput (and

hence utilization) to decrease. Thus, the qualitative relationship in Figure 9.2 still holds,

but the limit on queue size will make it impossible to reach the high utilization/high

cycle time parts of the curve.

The extreme sensitivity of system performance to utilization makes it very difficult

to choose a release rate that achieves both high station efficiency and short cycle times.

Any errors, particularly those on the high side (which are likely to occur as a result of

optimism about the system’s capacity, coupled with the desire to maximize output), can

result in large increases in average cycle time. We will discuss structural changes for

addressing this issue in Chapter 10 in the context of push and pull production systems.

9.3.4 Variability and Flow

The variability law states that variability degrades performance of all production systems.

But how much it degrades performance can depend on where in the line the variability is

created. In lines without WIP control, increasing process variability at any station will (1)

increase the cycle time at that station and (2) propagate more variability to downstream

stations, thereby increasing cycle time at them as well. This observation motivates the

following corollary of the variability law and the propagation property of Chapter 8.

Corollary (Variability Placement): In a line where releases are independent of com-
pletions, variability early in a routing increases cycle time more than equivalent vari-
ability later in the routing.

The implication of this corollary is that efforts to reduce variability should be directed

at the front of the line first, because that is where they are likely to have the greatest

impact (see Problem 12 for an illustration).

Note that this corollary applies only where releases are independent of completions.

In a CONWIP line, where releases are directly tied to completions, the flow at the first

station is affected by flow at the last station just as strongly as the flow at station i + 1 is

affected by the flow at station i . Hence, there is little distinction between the front and back

of the line and little incentive to reduce variability early as opposed to late in the line. The

variability placement corollary, therefore, is applicable to push rather than pull systems.

9.4 Batching Laws

A particularly dramatic cause of variability is batching. As we saw in the worst-case

performance in Chapter 7, maximum variability can occur when moving product in large

batches even when process times themselves are constant. The reason in that example was
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that the effective interarrival times were large for the first part in a batch and zero for

all others (because they arrived simultaneously). The result was that each station “saw”

highly variable arrivals, hence the average cycle time was as bad as it could possibly

be for a given bottleneck rate and raw process time. Because batching can have such a

large effect on variability, and hence performance, setting batch sizes in a manufacturing

system is a very important control. However, before we try to compute “optimal” batch

sizes (which we will save for Chapter 15 as part of our treatment of scheduling), we need

to understand the effects of batching on the system.

9.4.1 Types of Batches

An issue that sometimes clouds discussions of batching is that there are actually two

kinds of batches. Consider a dedicated assembly line that makes only one type of product.

After each unit is made, it is moved to a painting operation. What is the batch size?

On one hand, you might say it is one because after each item is complete, it can

be moved to the painting operation. On the other hand, you could argue that the batch

size is infinity since you never perform a changeover (i.e., the number of parts between

changeovers is infinite). Since one is not equal to infinity, which is correct?

The answer is that both are correct. But there are two different kinds of batches:

transfer batches and process batches. Transfer batches are many parts moved at once.

Process batches are many transfer batches processed together. We discuss each in more

detail below.

Process batch. There are two types of process batches—sequential and

simultaneous. Sequential batches represent the number of transfer batches that

are processed before the workstation is changed over to another part or family.

We call these sequential batches because the parts are produced sequentially on

the workstation. A simultaneous batch represents the number of parts produced

simultaneously in a “true batch” workstation, such as a furnace or heat treatment

operation. Although sequential and simultaneous batches are very different

physically, they have similar operational effects.

The size of a sequential process batch is related to the length of a changeover or

setup. The longer the setup, the more parts must be produced between setups to

achieve a given capacity. The size of a simultaneous process batch depends on the

number of parts that can be processed together and on the demand placed on the

station. To minimize utilization, such machines should be run with a full batch.

However, if the machine is not a bottleneck, then minimizing utilization may not

be critical, so running less than a full load may be the right thing to do to keep

cycle times low.

Transfer batch. This is the number of parts that accumulate before being

transferred to the next station. The smaller the transfer batch, the shorter the cycle

time, since there is less time waiting for the batch to form. However, smaller

transfer batches also result in more material handling, so there is a trade-off. For

instance, a forklift might be needed only once per shift to move material between

adjacent stations in a line if moves are made in batches of 3,000 units. However, an

operator using a cart instead of a forklift might be able to move 100 units (in a cart)

at a time. Doing so would reduce the time needed to accumulate the transfer batch

but would also require 30 trips per shift to move the same amount of material.

Strictly speaking, if one considers the material handling operation between

stations to be a process, a transfer batch is simply a special simultaneous process
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batch. The forklift can transfer 10 parts as quickly as one, just as a furnace can

bake 10 parts as quickly as one. Nonetheless, since it is intuitive to think of

material handling as distinct from processing, we will consider transfer and

process batching separately.

The distinction between process and transfer batches is sometimes overlooked.

Indeed, from the time Ford Harris first derived the economic order quantity (EOQ) in

1913 until recently, most production planners simply assumed that these two batches

should be equal. But this need not be so. In a system where setups are long but processes

are close together, it might make good sense to keep process batches large and transfer

batches small. This practice is called lot splitting and can significantly reduce the cycle

time (we discuss this in greater detail in Section 9.5.3).

9.4.2 Process Batching

Recall from Chapter 4 that lean advocates are fond of calling for batch sizes of one. The

reason is that if processing is done one part at a time, no time is spent waiting for the

batch to form and less time is spent waiting in a queue of large batches. However, in

most real-world systems, setting batch sizes equal to one is not so simple. The reason is

that batch size can affect capacity. It may well be the case that processing in batches of

one will cause a workstation to become overutilized (because of excessive setup time or

excessive simultaneous batch process time). The challenge, therefore, is to balance these

capacity considerations with the delays that batching introduces (see Karmarkar 1987

for a more complete discussion). We can summarize the key dynamics of sequential and

simultaneous process batching in the following Factory Physics law.

Law (Process Batching): In stations with batch operations or significant changeover
times:

1. The minimum process batch size that yields a stable system may be greater than
one.

2. As process batch size becomes large, cycle time grows proportionally with
batch size.

3. Cycle time at the station will be minimized for some process batch size, which
may be greater than one.

We can illustrate the relationship between capacity and process batching described in

this law with the following examples.

Example: Sequential Process Batching

Consider a machining station that processes several part families. The parts arrive in

batches where all parts within batches are of like family, but the batches are of different

families. The arrival rate of batches is set so that parts arrive at a rate of 0.4 part per

hour. Each part requires 1 hour of processing regardless of family type. However, the

machine requires a 5-hour setup between batches (because it is assumed to be switching

to a different family). Hence, the choice of batch size will affect both the number of

setups required (and hence utilization) and the time spent waiting in a partial batch.

Furthermore, the cycle time will be affected by whether parts exit the station in a batch

when the whole batch is complete or one at a time if lot splitting is used.
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Notice that if we were to use a batch size of one, we could only process one part

every 6 hours (5 hours for the setup plus 1 hour for processing), which does not keep up

with arrivals. The smallest batch size we can consider is four parts, which will enable a

capacity of four parts every 9 hours (5 hours for setup plus 4 hours to process the parts),

or a rate of 0.44 part per hour.

Figure 9.3 graphs the cycle time at the station for a range of batch sizes with and

without lot splitting. Notice that minimum feasible batch size yields an average cycle

time of approximately 70 hours without lot splitting and 68 hours with lot splitting.

Without lot splitting, the minimum cycle time is about 31 hours and is achieved at a

batch size of eight parts. With lot splitting, it is about 27 hours and is achieved at a batch

size of nine parts. Above these minimal levels, cycle time grows in an almost straight-line

fashion, with the lot splitting case outperforming (achieving smaller cycle times than)

the nonsplitting case by an increasing margin.

The process batching law implies that it may be necessary, even desirable, to use

large process batches in order to keep utilization, and hence cycle time and WIP, under

control. But one should be careful about accepting this conclusion without question.

The need for large sequential batch sizes is caused by long setup times. Therefore, the

first priority should be to try to reduce setup times as much as economically practical.

For instance, Figure 9.3 shows the behavior of the machining station example, but with

average setup times of 2 1
2

hours instead of 5 hours.

Notice that with shorter setup times, minimal cycle times are roughly 50 percent

smaller (around 16 hours without lot splitting and 14 hours with lot splitting) and are

attained at smaller batch sizes (four parts for both with and without lot splitting). So the

full implication of the above law is that batching and setup time reduction must be used

in concert to achieve high throughput and efficient WIP and cycle time levels.

Example: Simultaneous Process Batching

Consider the burn-in operation of a facility that produces medical diagnostic units. The

operation involves running a batch of units through multiple power-on and diagnostic

cycles inside a temperature-controlled room, and it requires 24 hours regardless of how

many units are being burned in. The burn-in room is large enough to hold 100 units at a

time. Suppose units arrive to burn in at a rate of 1 per hour (24 per day). Clearly, if we were

to burn in one unit at a time, we would only have capacity of 1
24

per hour, which is far below

the arrival rate. Indeed, if we burn in units in batches of 24, then we will have capacity

of 1 per hour, which would make utilization equal to 100 percent. Since utilization must

be less than 100 percent to achieve stability, the smallest feasible batch size is 25.
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Of course, a simple policy would be to load whatever is in queue (or the maximum

size of machine, whichever is smaller) when the previous batch completes. However,

this may not be a good policy if the job arrivals are “bursty.” In other words, jobs do not

arrive smoothly but in bursts. In such a situation, it may be better to wait for a larger

batch to form than to start whatever is waiting. Of course, with multiple products, things

become extremely complex and are beyond the scope of this text.

Sequential Batching. We can give a deeper interpretation of the batching–cycle time

interactions underlying the process batching law by examining the model behind the

sequential batching example as depicted in Figure 9.3.

Technical Note—Sequential Batching Interactions

To model sequential batching, in which batches of parts arrive at a single machine and are

processed with a setup between each batch, we make use of the following notation:

k = sequential batch size

ra = arrival rate (parts per hour)

t = time to process a single part (hour)

s = time to perform a setup (hour)

c2
e = effective SCV for processing time of a batch, including both process time and

setup time

Furthermore, we make these simplifying assumptions: (1) The SCV c2
e of the effective process

time of a batch is equal to 0.5 regardless of batch size7 and (2) the arrival SCV (of batches)

is always one.

Since ra is the arrival rate of parts, the arrival rate of batches is ra/k. The effective process

time for a batch is given by the time to process the k parts in the batch plus the setup time

te = kt + s (9.1)

so machine utilization is

u = ra

k
(kt + s) = ra

(

t + s

k

)

(9.2)

Notice that for stability we must have u < 1, which requires

k >
sra

1 − tra

The average time in queue CTq is given by the VUT equation

CTq =
(

1 + c2
e

2

) (

u

1 − u

)

te (9.3)

where te and u are given by equations (9.1) and (9.2).

The total average cycle time at the station consists of queue time plus setup time plus

wait-in-batch time (WIBT) plus process time. WIBT depends on whether lots are split for

purposes of moving parts downstream. If they are not (i.e., the entire batch must be completed

7We could fix the CV for processing individual jobs and compute the CV for a batch as a function of

batch size. However, the model assuming a constant arrival CV for batches exhibits the same principal

behavior—a sharp increase in cycle time for small batches and the linear increase for large batches—and is

much easier to analyze.
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before any of the parts are moved downstream), then all parts wait for the other k − 1 parts

in the batch, so

WIBTnonsplit = (k − 1)t

and total cycle time is

CTnonsplit = CTq + s + WIBTnonsplit + t

= CTq + s + (k − 1)t + t

= CTq + s + kt (9.4)

If lots are split (i.e., individual parts are sent downstream as soon as they have been processed,

so that transfer batches of one are used), then wait-in-batch time depends on the position of

the part in the batch. The first part spends no time waiting, since it departs immediately after it

is processed. The second part waits behind the first part and hence spends t waiting in batch.

The third part spends 2t waiting in batch, and so on. The average time for the k jobs to wait

in batch is therefore

WIBTsplit = k − 1

2
t

so that

CTsplit = CTq + s + WIBTsplit + t

= CTq + s + k − 1

2
t + t

= CTq + s + k + 1

2
t (9.5)

Equations (9.4) and (9.5) are the basis for Figure 9.3. We can give a specific illustration

of their use by using the data from the Figure 9.3 example (ra = 0.4, c2
a = 1, t = 1, c2

e = 0.5,

s = 5) for k = 10, so that

te = s + kt = 5 + 10 × 1 = 15 hours

Machine utilization is

u = rate

k
= (0.4 part/hour)(15 hours)

10
= 0.6

The expected time in queue for a batch is

CTq =
(

1 + 0.5

2

) (

0.6

1 − 0.6

)

15 = 16.875 hours

So if we do not use lot splitting, average cycle time is

CTnonsplit = CTq + s + kt = 16.875 + 5 + 10(1) = 31.875 hours

If we do split process batches into transfer batches of size one, average cycle time is

CTsplit = CTq + s + k + 1

2
t = 16.875 + 5 + 10 + 1

2
(1) = 27.375 hours

which is smaller, as expected.
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The main conclusion of this analysis of sequential batching is that if setup times

can be made sufficiently short, then using sequential process batch sizes of one is an

effective way to reduce cycle times. However, if short setup times are not possible (at

least in the near term), then cycle time can be sensitive to the choice of process batch

size and the “best” batch size may be significantly greater than one.

9.4.3 Transfer Batches

On a tour of an assembly plant, our guide proudly displayed one of his recent

accomplishments—a manufacturing cell. Castings arrived at this cell from the foundry

and, in less than an hour, were drilled, machined, ground, and polished. From the cell,

they went to a subassembly operation. Our guide indicated that by placing the various

processes in close proximity to one another and focusing on streamlining flow within

the cell, cycle times for this portion of the routing had been reduced from several days

to 1 hour. We were impressed—until we discovered that castings were delivered to the

cell and completed parts were moved to assembly by forklift in totes containing approx-

imately 10,000 parts! The result was that the first part required only 1 hour to go through

the cell, but had to wait for 9,999 other parts before it could move on to assembly. Since

the capacity of the cell was about 100 parts per hour, the tote sat waiting to be filled for

100 hours. Thus, although the cell had been designed to reduce WIP and cycle time, the

actual performance was the closest we have ever seen to the worst case of Chapter 7.

The reason the plant had chosen to move parts in batches of 10,000 was the mistaken

(but common) assumption that transfer batches should equal process batches. However,

in most production environments, there is no compelling need for this to be the case.

As we noted above, splitting of batches or lots can reduce cycle time tremendously.

Of course, smaller lots also imply more material handling. For instance, if parts in the

above cell were moved in lots of 1,000 (instead of 10,000), then a tote would need to be

moved every 10 hours (instead of every 100 hours). Although the assembly plant was

large and interprocess moves were lengthy, this additional material handling was clearly

manageable and would have reduced WIP and cycle time in this portion of the line by a

factor of 10.

The behavior underlying this example is summarized in the following law of Factory

Physics.

Law (Move Batching): Cycle times over a segment of a routing are roughly propor-
tional to the transfer batch sizes used over that segment, provided there is no waiting for
the conveyance device.

This law suggests one of the easiest ways to reduce cycle times in some manufactur-

ing systems—reduce transfer batches. In fact, it is sometimes so easy that management

may overlook it. But because reducing transfer batches can be simple and inexpensive, it

deserves consideration before moving on to more complex cycle time reduction strate-

gies. Of course, smaller transfer batches will require more material handling, hence the

caveat provided there is no waiting for the conveyance device. If moving parts more

often causes a delay in waiting for the the material handling device, then this additional

queue time might cancel out the reduction in wait-to-batch time. Thus, the move batching

law describes the cycle time reduction that is possible through move batch reduction,

provided there is sufficient material handling capacity to carry out the moves without

delay. We illustrate these mechanics more precisely by means of a mathematical model

in the following technical note.
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Technical Note—Transfer Batches

Consider the effects of batching in the simple two-station serial line shown in Figure 9.4. The

first station receives single parts and processes them one at a time. Parts are then collected

into transfer batches of size k before they are moved to the second station, where they are

processed as a batch and sent downstream as single parts. For simplicity, we assume that the

time to move between the stations is zero.

Letting ra denote the arrival rate to the line and t(1) and ce(1) represent the mean and

CV, respectively, of processing time at the first station, we can compute the utilization as

u(1) = rat(1) and the expected waiting time in queue by using the VUT equation.

CTq (1) =
(

c2
a(1) + c2

e (1)

2

) (

u(1)

1 − u(1)

)

t (9.6)

The total time spent at the first station includes this queue time, the process time itself, and

the time spent forming a batch. The average batching time is computed by observing that

the first part must wait for k − 1 other parts, while the last part does not wait at all. Since

parts arrive to the batching process at the same rate ra as they arrive to the station itself

(remember conservation of flow), the average time spent forming a batch is the average

between (k − 1)(1/ra) and 0, which is (k − 1)/(2ra). Since u(1) = rat(1), we have

Average wait-to-batch-time = k − 1

2ra
= k − 1

2u(1)
t(1)

As we would expect, this quantity becomes zero if the batch size k is equal to one. We can

now express the total time spent by a part at the first station CT(1) as

CT(1) = CTq (1) + t(1) + k − 1

2u(1)
t(1) (9.7)

To compute average cycle time at the second station, we can view it as a queue of whole

batches, a queue of single parts (i.e., partial batch), and a server. We can compute the waiting

time in the queue of whole batches CTq (2) by using equation (9.6) with the values of u(2),

c2
a(2), c2

e (2), and t(2) adjusted to represent batches. We do this by noting that interdeparture

times for batches are equal to the sum of k interdeparture times for parts. Hence, because,

as we saw in Chapter 8, adding k independent, identically distributed random variables with

SCVs of c2 results in a random variable with an SCV of c2/k, the arrival SCV of batches to

the second station is given by c2
d (1)/k = c2

a(2)/k. Similarly, since we must process k separate

parts to process a batch, the SCV for the batch process times at the second station is c2
e (2)/k,

where c2
e (2) is the process SCV for individual parts at the second station. The effective average

time to process a batch is kt(2) and the average arrival rate of batches is ra/k. Thus, as we

would expect, utilization is

u(2) = ra

k
kt(2) = rat(2)

Station 1 Station 2

BatchSingle job

Figure 9.4

A batching and

unbatching example.
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Hence, by the VUT equation, average cycle time at the second station is

CTq (2) =
(

c2
a(2)/k) + (c2

e (2)/k

2

) (

u(2)

1 − u(2)

)

kt(2)

=
(

c2
a(2) + c2

e (2)

2

) (

u(2)

1 − u(2)

)

t(2)

Interestingly, the waiting time in the queue of whole batches is the same as the waiting time

we would have computed for single parts (because the k’s cancel, leaving us with the usual

VUT equation).

In addition to the queue of full batches, we must consider the queue of partial batches.

We can compute this by considering how long a part spends in this partial queue. The first

piece arriving in a batch to an idle machine does not have to wait at all, while the last piece in

the batch has to wait for k − 1 other pieces to finish processing. Thus, the average time that

parts in the batch have to wait is (k − 1)t(2)/2.

The total cycle time of a part at the second station is the sum of the wait time in the queue

of batches, the wait time in a partial batch, and the actual process time of the part:

CT(2) = CTq (2) + k − 1

2
t(2) + t(2) (9.8)

We can now express the total cycle time for the two-station system with batch size k as

CTbatch = CT(1) + CT(2)

= CTq (1) + t(1) + k − 1

2u(1)
t(1) + CTq (2) + k − 1

2
t(2) + t(2)

= CTsingle + k − 1

2u(1)
t(1) + k − 1

2
t(2) (9.9)

where CTsingle represents the cycle time of the system without batching (i.e., with k = 1).

Expression (9.9) quantitatively illustrates the move batching law—cycle times increase

proportionally with batch size. Notice, however, that the increase in cycle time that occurs

when batch size k is increased has nothing to do with process or arrival variability [i.e., the

terms in equation (9.9) that involve k do not include any coefficients of variability]. There is
variability—some parts wait a long time due to batching while others do not wait at all—but

it is variability caused by bad control or bad design (similar to the worst case in Chapter 7),

rather than by process or flow uncertainty.

Finally, we note that the impact of transfer batching is largest when the utilization of

the first station is low, because this causes the (k − 1)t(1)/[2u(1)] term in equation (9.9) to

become large. The reason for this is that when arrival rate is low relative to processing rate,

it takes a long time to fill up a transfer batch. Hence, parts spend a great deal of time waiting

in partial batches.

Cellular Manufacturing. The fundamental implication of the move batching law is

that large transfer batches directly inflate cycle times. Hence, reducing them can be a

useful cycle time reduction strategy. One way to keep transfer batches small is through

cellular manufacturing, which we discussed in the context of JIT in Chapter 4.

In theory, a cell positions all workstations needed to produce a family of parts in close

physical proximity. Since material handling is minimized, it is feasible to move parts

between stations in small batches, ideally in batches of one. If the cell truly processes
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only one family of parts, so there are no setups, the process batch can be one, infinity,

or any number in between (essentially controlled by demand).

If the cell handles multiple families, so that there are significant setups, we know

from our previous discussions that sequential process batching is very important to the

capacity and cycle time of the cell. Indeed, as we will see in Chapter 15, it may make sense

to set the process batch size differently for different families and even vary these over

time. Regardless of how process batching is done, however, it is an independent decision

from move batching. Even if large process batches are required because of setups, we

can use lot splitting to move material in small transfer batches and take advantage of the

physical compactness of a cell.

9.5 Cycle Time

Having considered issues of utilization, variability, and batching, we now move to the

more complicated performance measure, cycle time. First we consider the cycle time at

a single station. Later we will describe how these station cycle times combine to form

the cycle time for a line.

9.5.1 Cycle Time at a Single Station

We begin by breaking down cycle time at a single station into its components.

Definition (Station Cycle Time): The average cycle time at a station is made up of
the following components:

1. Move time

2. Queue time

3. Setup time

4. Process time

5. Wait-to-batch time

6. Wait-in-batch time

7. Wait-to-match time

Move time is the time jobs spend being moved from the previous workstation.

Queue time is the time jobs spend waiting for processing at the station or to be moved

to the next station. Setup time is the time a job spends waiting for the station to be

set up. Note that this could actually be less than the station setup time if the setup is

partially completed while the job is still being moved to the station. Process time is the

time jobs are actually being worked on at the station. As we discussed in the context of

batching, wait-to-batch time is the time jobs spend waiting to form a batch for either

(simultaneous) processing or moving, and wait-in-batch time is the average time a part

spends in a (process) batch waiting its turn on a machine. Finally, wait-to-match time

occurs at assembly stations when components wait for their mates to allow the assembly

operation to occur.

Notice that of these, only process time actually contributes to the manufacture of

products. Move time could be viewed as a necessary evil, since no matter how close

stations are to one another, some amount of move time will be necessary. But all the

other terms are sheer inefficiency. Indeed, these times are often referred to as non-value-

added time, waste, or muda. They are also commonly lumped together as delay time
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or queue time. But as we will see, these times are the consequence of very different

causes and are therefore amenable to different cures. Since they frequently constitute the

vast majority of cycle time, it is useful to distinguish between them in order to identify

specific improvement policies.

We have already discussed the batching times, so now we deal with wait-to-match

time before moving on to cycle times in a line.

9.5.2 Assembly Operations

Most manufacturing systems involve some kind of assembly. Electronic components are

inserted into circuit boards. Body parts, engines, and other components are assembled

into automobiles. Chemicals are combined in reactions to produce other chemicals. Any

process that uses two or more inputs to produce its output is an assembly operation.

Assemblies complicate flows in production systems because they involve matching.

In a matching operation, processing cannot start until all the necessary components are

present. If an assembly operation is being fed by several fabrication lines that make the

components, shortage of any one of the components can disrupt the assembly operation

and thereby all the other fabrication lines as well. Because they are so influential to

system performance, it is common to subordinate the scheduling and control of the

fabrication lines to the assembly operations. This is done by specifying a final assembly

schedule and working backward to schedule fabrication lines. We will discuss assembly

operations from a quality standpoint in Chapter 12, from a shop floor control standpoint

in Chapter 14, and from a scheduling standpoint in Chapter 15.

For now, we summarize the basic dynamics underlying the behavior of assembly

operations in the following Factory Physics law.

Law (Assembly Operations): The performance of an assembly station is degraded
by increasing any of the following:

1. Number of components being assembled.

2. Variability of component arrivals.

3. Lack of coordination between component arrivals.

Note that each of these could be considered an increase in variability. Thus, the assembly

operations law is a specific instance of the more general variability law. The reasoning

and implications of this law are fairly intuitive. To put them in concrete terms, consider

an operation that places components on a circuit board. All components are purchased

according to an MRP schedule. If any component is out of stock, then the assembly

cannot take place and the schedule is disrupted.

To appreciate the impact of the number of components on cycle time, suppose that

a change is made in the bill of materials that requires one more component in the final

product. All other things being equal, the extra component can only inflate the cycle

time, by being out of stock from time to time.

To understand the effect of variability of component arrivals, suppose the firm

changes suppliers for one of the components and finds that the new supplier is much

more variable than the old supplier. In the same fashion that arrival variability causes

queueing at regular nonassembly stations, the added arrival variability will inflate the

cycle time of the assembly station by causing the operation to wait for late deliveries.

Finally, to appreciate the impact of lack of coordination between component arrivals,

suppose the firm currently purchases two components from the same supplier, who

always delivers them at the same time. If the firm switches to a policy in which the
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two components are purchased from separate suppliers, then the components may not

be delivered at the same time any longer. Even if the two suppliers have the same

level of variability as before, the fact that deliveries are uncoordinated will lead to

more delays. Of course, this neglects all other complicating factors, such as the fact

that having two components to deliver may cause a supplier to be less reliable, or that

certain suppliers may be better at delivering specific components. But all other things

being equal, having the components arrive in synchronized fashion will reduce delays.

We will discuss methods for synchronizing fabrication lines to assembly operations in

Chapter 14.

9.5.3 Line Cycle Time

In the Penny Fab examples in Chapter 7, where all jobs were processed in batches of one

and moves were instantaneous, cycle times were simply the sum of process times and

queue times. But when batching and moving are considered, we cannot always compute

the cycle time of the line as the sum of the cycle times at the stations. Since a batch may be

processed at more than one station at a time (i.e., if lot splitting is used), we must account

for overlapping time at stations. Thus, we define the cycle time in a line as follows.

Definition (Line Cycle Time): The average cycle time in a line is equal to the sum of
the cycle times at the individual stations less any time that overlaps two or more stations.

To illustrate the effect of overlapping cycle times, we consider a three-station line

with no variability in demand or the processes (see Table 9.4). Jobs arrive deterministi-

cally in batches of k = 6 jobs every 35 hours. A setup is done for each batch, after which

jobs are processed one at a time and are sent to the next station. The utilizations of the

stations are 49 percent, 75 percent, and 100 percent, respectively.

If we consider each station independently and add the cycle times, we will overesti-

mate the total cycle time. Using equation (9.5) to compute the cycle time at each station,

yields,

CT(1) = CTq + s(1) + k + 1

2
t(1) = 0.0 + 5 + 6 + 1

2
(2) = 12

where the queue time is zero because there is no variability in the system. For stations 2

and 3, we can do the same thing to get

CT(2) = CTq + s(2) + k + 1

2
t(2) = 0.0 + 8 + 6 + 1

2
(3) = 18.5

CT(3) = CTq + s(3) + k + 1

2
t(3) = 0.0 + 11 + 6 + 1

2
(4) = 25

Table 9.4 Examples Illustrating Cycle Time Overlap

Station 1 Station 2 Station 3

Setup time (hour) 5 8 11

Unit process time (hour) 2 3 4
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Figure 9.5

Lot splitting example.

which yields a total cycle time of

CT = CT(1) + CT(2) + CT(3) = 12 + 18.5 + 25 = 55.5

But this analysis is not correct because it ignores the overlap between stations.

For this deterministic example, we can compute the cycle time by following the jobs

in a batch one at a time through the station. This is shown in Figure 9.5. The first job

finishes after 33 hours, the second after 37 hours, and so on. The average cycle time is

the average of these numbers, 43, which is significantly less than 55.5. Thus, one must

not use equation (9.5) to compute the cycle time for an entire line.

The situation would change if we were to reverse the order of the line (i.e., have

the 4-hour process time station first and the 2-hour one last). In this case, the average

cycle time becomes 38 hours. This means that cycle time for a line depends not only on

variability, utilization, and process times, but also on the order of the flow.

Things can become even more complex with added idle time appearing at some

stations. Consider the case with six jobs in the process batch but with no setup times

and process times equal to 4, 3, 2, respectively. In this case, the first job takes 9 hours

to complete the line, the second completes at 13 hours, then 17, 21, 25, and 29. But,

the second machine becomes idle 1 hour out of every 4 and the third machine is idle

2 hours out of every 4. This happens because the first machine is the bottleneck and there

are no setups downstream to accumulate the parts. The inserted idleness makes it very

difficult to compute cycle times, even in cases where there is no variability to add

queueing effects.

As a result, simple factory-physics relations are extremely useful for building our

intuition, but they are not sufficient for modeling realistic systems. To carry out a de-

tailed analysis of a production system, one generally needs to use either Monte Carlo

simulation or a queueing package capable of modeling this type of complexity. Monte

Carlo simulation models can be accurate (if modeled correctly) but they are slow and

require knowledge of statistics. Queueing network models, on the other hand, are fast

but, because they use approximations, can be less accurate. However, one should be

careful in selecting a queueing model because the effects of batching and unbatching are

often not well modeled.
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9.5.4 Cycle Time, Lead Time, and Service

In a manufacturing system with infinite capacity and absolutely no variability, the relation

between cycle time and customer lead time is simple—they are the same. The lucky

manager of such a system could simply quote a lead time to customers equal to the cycle

time required to make the product and be assured of 100 percent service. Unfortunately,

all real systems contain variability, and so perfect service is not possible and there is

frequently confusion regarding the distinction between lead time, cycle time, and their

relation to service level. Although we touched on these issues briefly in Chapters 3 and

7, we now define them more precisely and offer a law of Factory Physics that relates

variability to lead time, cycle time, and service.

Definitions. Throughout this book we have used the terms cycle time and average
cycle time interchangeably to denote the average time it takes a job to go through a line.

To talk about lead times, however, we need to be a bit more precise in our terminology.

Therefore, for the purposes of this section, we will define cycle time as a random variable
that gives the time an individual job takes to traverse a routing. Specifically, we define

T to be a random variable representing cycle time, with a mean of CT and a standard

deviation of σCT.

Unlike cycle time, lead time is a management constant used to indicate the antic-

ipated or maximum allowable cycle time for a job. There are two types of lead time:

customer lead time and manufacturing lead time. Customer lead time is the amount of

time allowed to fill a customer order from start to finish (i.e., multiple routings), while

the manufacturing lead time is the time allowed on a particular routing.

In a make-to-stock environment, the customer lead time is zero. When the customer

arrives, the product either is available or is not. If it is not, the service level (usually called

fill rate in such cases) suffers. In a make-to-order environment, the customer lead time

is the time the customer allows the firm to produce and deliver an item. For this case,

when variability is present, the lead time must generally be greater than the average cycle

time in order to have acceptable service (defined as the percentage of on-time deliveries).

One way to reduce customer lead times is to build lower-level components to stock.

Since customers see only the cycle time of the remaining operations, lead times can be

significantly shorter. We discuss this type of assemble-to-order system in the context

of push and pull production in Chapter 10.

Relations. With complex bills of material, computing suitable customer lead times

can be difficult. One way to approach this problem is to use the manufacturing lead time

that specifies the anticipated or maximum allowable cycle time for a job on a specific

routing. We denote the manufacturing lead time for a specific routing with cycle time

T as �. Manufacturing lead time is often used to plan releases (e.g., in an MRP system)

and to track service.

Service s can now be defined for routings operating in make-to-order mode as the

probability that the cycle time is less than or equal to the specified lead time, so that

s = Pr{T ≤ �} (9.10)

If T has distribution function F , then equation (9.10) can be used to set � as

s = F(�) (9.11)
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If cycle times are normally distributed, then for a service level of s

� = CT + zsσCT (9.12)

where zs is the value in the standard normal table for which �(zs) = s. For instance, if

cycle time on a given routing has a mean of 8 days and a standard deviation of 3 days,

the value for zs for 95 percent is 1.645, so the required lead time is

� = 8 + 1.645(3) = 12.94 ≈ 13 days

Figure 9.6 shows both the distribution function F and its associated density function f
for cycle time. The additional 5 days above the mean is called the safety lead time.

By specifying a sufficiently high service level (to guarantee that jobs generally

finish on time), we can compute customer lead times by simply adding the longest

manufacturing lead times for each level in the bill of material. For example, Figure 9.7

illustrates a system with two fabrication lines feeding an assembly operation followed by

several more operations. The manufacturing lead time for assembly and the subsequent

operations is 4 days for a service level of 95 percent. Since assembly represents level 0

in the bill of materials (recall low-level codes from Chapter 3), we have that the level

0 lead time is 4 days. Similarly, the 95 percent manufacturing lead time is 4 days for

the top fabrication line and 6 days for the bottom one, so that the lead time for level 1

is 6 days. Thus, total customer lead time is 10 days.

Assembly

� = 4 days

� = 4 days

� = 6 days

Figure 9.7

An assembly system.
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Unfortunately, the overall service level for a customer lead time of 10 days will be

something less than 95 percent. This is because we did not consider the possibility of

wait-to-match time in front of assembly. As we noted in the assembly operation law,

wait-to-match time results when variability causes the fabrication lines to deliver product

to assembly in an unsynchronized fashion. Because of this, whenever we have assembly

operations, we must add some safety lead time.

We can now summarize the fundamental principle relating variability in cycle time

to required lead times in the following law of Factory Physics.

Law (Lead Time): The manufacturing lead time for a routing that yields a given
service level is an increasing function of both the mean and standard deviation of the
cycle time of the routing.

Intuitively, this law suggests that we view manufacturing lead times as given by the

cycle time plus a “fudge factor” that depends on the cycle time standard deviation. The

larger the cycle time standard deviation, the larger the fudge factor must be to achieve a

given service level. In a make-to-order environment, where we want manufacturing lead

times short in order to keep customer lead times short, we need to keep both the mean

and the standard deviation of cycle time low.

The factors that inflate mean cycle time are generally the same as those that inflate

the standard deviation of process time, as we noted in Chapter 8. These include operator

variability, random outages, setups, rework, and the like. However, from a cycle time

perspective, rework is particularly disruptive. Whenever there is a chance that a job will

be required to go back through a portion of the line, the variability of cycle time increases

dramatically. We will return to this and other issues related to cycle time variability when

we discuss the effect of quality on logistics in Chapter 12.

9.6 Performance and Variability

In the formal terminology of Chapter 6, management of any system begins with the

fundamental objective (classically, the final cause). The decision maker sets policies

in an attempt to achieve this objective and evaluates performance in terms of measures.

Understanding the relationships between the controls and measures available to a man-

ufacturing manager is the primary goal of Factory Physics.

A concept at the core of how controls affect measures in production systems is

variability. As stated as a law of Factory Physics, whenever there is any lack of synchro-

nization between external demand and internal transformation, buffers arise.

As we demonstrated in Chapter 7, best-case behavior occurs in a line with no

variability, while worst-case behavior occurs in a line with maximum variability. In

Chapter 8 we observed that several important measures of station performance, such

as cycle time and work in process (WIP), are increasing functions of variability. Thus,

variability is an important measure.

The previous sections of this chapter have dealt with laws concerning variability. In

this section, we offer performance measures that are consistent with these laws.

9.6.1 Measures of Manufacturing Performance

Performance is closely related to the amount of buffers present in the system. A perfect

system will have no buffer at all, while a poorly performing system will contain large
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buffers. This implies that we can then provide an alternative to the usual definition

of “lean.” Instead of defining a lean system as one with little or no muda we define

it as follows.

Definition (Lean Manufacturing): A manufacturing supply chain is lean if it accom-
plishes its fundamental objective with minimal buffering cost.

As discussed in Chapter 6, ”making money now and in the future . . . ” requires (1) that

we make a profit and (2) have a good return on our investment. This requires meeting

demand with quality products in a timely manner at the lowest cost with the fewest

possible assets.

With these goals in mind, the above definition of lean implies that a perfect manu-

facturing supply chain will have:

1. Throughput exactly equal to demand

2. Full utilization of all equipment

3. Zero lead time to the customer

4. No late orders

5. Perfect quality (no scrap or rework)

6. Zero raw material and zero finished goods inventory

7. Minimum WIP (i.e., the critical WIP)

This is an extremely tall order. The best-case performance of Penny Fab One in Chapter 7

comes close. Here we saw 100 percent utilization of all equipment, WIP equal to the

critical WIP, cycle time equal to the raw process time, and throughput equal to the

bottleneck rate. But how could we have zero inventory with zero lead time and no

late jobs? Again, the answer is by having zero variability. This includes variability in

demand. In other words, for Penny Fab One to have perfect performance we must have

perfect customers as well. In this case, demand from a customer would arrive at a

rate of exactly one every 2 hours—the bottleneck rate. In other words, as soon as the

job finishes, a customer arrives and says, “That is exactly what I want,” and takes the

product. The next customer does not arrive before 2 hours have elapsed or else would

have to wait (a time buffer). The customer also does not arrive more than 2 hours later

or else we would finish early and have inventory. The customer arrives just when the

job comes off the line—no sooner and no later. Only then can we have perfect perfor-

mance.

But, because there is always variability of some kind, perfect performance is impos-

sible. Nonetheless, even though we cannot have perfect performance, we can measure

performance against the standard of perfection.

Before doing this, however, we need to define our notation. We use quantities

defined in previous chapters along with some new ones. We also define some “ideal”

values that do not have the usual “detractors.” For instance, while rb was defined as the

bottleneck rate considering detractors such as downtime and setups, we define r∗
b to be

the “ideal” bottleneck rate with no such detractors. The reason for using ideal values

like this is that a line running at the bottleneck rate and raw process time may actually

not be exhibiting the best possible performance because rb and T0 can include many

inefficiencies. Perfect performance, therefore, involves two levels. First, the line must

attain the best possible performance given its parameters; this is what the best case of
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Chapter 7 represents. Second, its parameters must be as good as they can be. Thus,

perfect performance represents the best of the best.

rb = bottleneck rate of line including detractors (parts/day)

r∗
b = bottleneck rate of line not including detractors (parts/day)

T0 = raw process time including detractors (days)

T ∗
0 = raw process time not including detractors (days)

W0 = rbT0 = critical WIP including detractors (parts)

W ∗
0 = r∗

b T ∗
0 = critical WIP not including detractors (parts)

Qt = transfer batch size (parts)

NWP = Number of (active) WIP positions

D = average demand rate (parts/day) (demand is assumed to be

met by parts meeting customer requirements)

Ī = average on hand inventory level (parts)

B̄ = average backorder level

TH = average throughput given by output rate from line (parts/day)

The parameter NWP is the number of jobs (i.e., transfer batches) that can be simulta-

neously processed in the line (see Problem 9 in Chapter 7). For sequential machines, a

WIP position and a machine are equivalent (we work on one job at a time). For simul-

taneous machines, a WIP position represents a transfer batch (e.g., a heat treat oven can

process multiple transfer batches at once). For a conveyor machine, the number of WIP

positions is the number of transfer batches that can be on the conveyor at once. Thus,

the number of WIP positions on a given machine is the number of transfer batches that

can be processed simultaneously.

We now define several effectiveness measures that operationalize the objective

of attaining lean production. Since there are three buffers we need three effectiveness

measures. The above subobjectives fall under one or more of these measures.

Capacity Effectiveness

The effectiveness of capacity is related to overall utilization. Since unused capacity

implies excess cost, an ideal line will have all workstations 100 percent utilized.8 Further-

more, since a perfect line will not be plagued by detractors, utilization will be 100 percent

relative to the best possible (no detractors) rate. We use the relations derived in Chapter 7

(see Problem 9) to define overall capacity effectiveness EC as

EC = 1 − D

r∗
b

· W ∗
0 /Qt

NWP

The first term in the product, D/r∗
b , is the bottleneck efficiency while the second term,

W ∗
0 /(Qt NWP), represents the maximum utilization of the entire line with throughput

equal to the bottleneck rate. In this term, W ∗
0 /Qt represents the average number of transfer

batches (jobs) that can be busy when TH = r∗
b (i.e., maximum throughput). This is then

divided by the number of WIP positions (i.e., the number of capacity positions for transfer

batches). The product will be the average number of “WIP positions” that are busy. Thus,

8Note that 100 percent utilization is possible only in perfect lines with no variability. In realistic lines

containing variability, pushing utilization close to one will seriously degrade other measures. It is critical to

remember that system performance is measured by all the measures and not by focusing on any single one.
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EC represents the fraction of available productive capacity that is not being used and
so will take on values between zero (ideal) and one (worst). Note that this measure is
dimensionless and hence can be used to compare different manufacturing supply chains.

For a measure of the cost of unused capacity, let C(k) be the cost per year (amortized
investment plus annual expenses including labor) for process center k with NWP(k) WIP
positions and t∗

0 (k) as its ideal average process time. Then the fraction of the process
center that is being used is

Dt∗
0 /Qt

NWP(k)

Thus the cost of the capacity buffer, CC , will be

CC =
∑

k

C(k)

[

1 − Dt∗
0

NWP(k)

]

While this measure more accurately represents the cost of wasted capacity, it is an abso-
lute measure and therefore is not well suited to making comparisons between different
systems.

Inventory Effectiveness

For inventory effectiveness, one might consider the traditional measure, of “turns,”

Turns = demand

average inventory

But turns is usually an aggregate measure for an entire operation. If we consider individual
stocks we can make our turns as large as we want by dividing the inventory into smaller
and smaller buckets.

The trouble with an inventory effectiveness is that the absolute minimum necessary
stock is zero. However, there is a minimum necessary amount “on order” (WIP) which is

DT ∗
0

and one would expect inventory to scale accordingly. Thus a dimensionless measure of
inventory is

Ī

DT ∗
0

This measure can take on values from zero to infinity since there is no limit as to how
much inventory can be in the supply chain.

For multiple products with varying costs, a dimensionless relative measure for in-
ventory, EI , is

EI =
∑

i c(i) Ī (i)
∑

i c(i)D(i)T ∗
0 (i)

where c(i) denotes the cost, Ī (i) represents average inventory, D(i) represents demand,
and T ∗

0 (i) is the ideal raw process time of item i . Note the sum includes all inventory
points, including raw materials, finished goods, crib inventories, assembly points, kanban
squares, and so on.

Dt∗
0 /Qt

NWP(k)
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Time Effectiveness

The time buffer is the duration between the time demand occurs and the time the demand

is satisfied. Measures could include the mean, mode, 95th percentile, and so forth of the

time buffer experienced by customers. For the purpose of creating an efficiency measure,

we will use the mean.9

In a make-to-stock system, the time buffer is the time until demand is satisfied from

inventory (i.e., backorder time). Using Little’s law we obtain the mean of this time,

B̄

D

Note that this is not a dimensionless measure but has units of hours, days, weeks, or

some other interval of time. However, we can compare this time measure against the

ideal raw process time,

B̄/D

T ∗
0

which provides a good dimensionless relative measure.

An aggregate measure of the time buffer across multiple items is the demand

weighted mean, so

ET =
∑

i D(i) · B̄(i)/D(i)

T ∗
0 (i)

∑

i D(i)
− 1

=
∑

i B̄(i)/T ∗
0 (i)

∑

i D(i)
− 1

For make-to-order systems, the obvious effectiveness measure is the average cycle

time, CT, since this represents how long customers wait for their orders. Interestingly,

this measure turns out to be equivalent to the above measure for the make-to-stock case.

To see this, note that in a make-to-order system all of the reorder quantities are one (i.e.,

they are the demands) and the reorder points are −1 (i.e., production is triggered by

each demand). In other words, we “replenish stock” one demand at a time each time

we receive an order and we wait until we are backordered before we “replenish.” Recall

from Chapter 2 that when Q = 1 and r = −1, the average on-hand inventory is zero

and the average backorder becomes the average inventory on order, θ . But since the

“replenishment time” is the cycle time,

B̄ = θ = D · CT

and thus,

ET =
∑

i D(i) · CT(i)/T ∗
0 (i)

∑

i D(i)

=
∑

i W (i)/T ∗
0 (i)

∑

i D(i)

9The main reason we choose the mean to measure the time buffer is that the mean of the sum of several

time buffers is simply the sum of the means of the individual time buffers and this is not the case with

measures such as mode or percentiles.
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Hence, the measure ET can be used to measure time effectiveness in make-to-stock,

make-to-order, and hybrid systems.

Examples

A perfect single-product line will have all three buffers equal to zero. For example,

Penny Fab One of Chapter 7 has no detractors, so rb = r∗
b = 0.5 pennies per hour and

T0 = T ∗
0 = 8 hours. Also, W0 = W ∗

0 = 4 and there are four WIP positions. If demand

is equal to 0.5 pennies per hour then the capacity effectiveness will be

EC = total capacity

[

1 − TH

r∗
b

· w∗
0

NWP

]

= total capacity

[

1 − 0.5

0.5
· 4

4

]

= 0

If raw materials are delivered just in time (one penny blank every 2 hours) and customer

orders are promised (and shipped) every 2 hours, then EI = 0 and ET = 0.

In less-than-perfect lines, the buffers will not be zero. The effectiveness of the line is

determined by the combination of the three buffers. In theory, we could construct a single-

number measure of effectiveness as a weighted average of these measures. As we noted,

however, the individual weights would be highly dependent on the nature of the line

and its business. For instance, a commodity producer with expensive capital equipment

would stress capacity and time effectiveness much more than inventory effectiveness,

while a specialty job shop would stress time effectiveness and the expense of capacity.

Consider Penny Fab One under practical worst-case conditions subject to Poisson

demand. Assume the system maintains a stock, which is controlled by a base-stock policy

in which an order is placed each time a demand occurs. There is variability in both process

times and in demand, which must be buffered with inventory, time, and/or capacity. We

consider three demand levels, 0.45, 0.425, 0.333 pennies per hour, corresponding to

capacity effectiveness levels of 10, 15 and 33.3 percent. For the case with 0.45 pennies

per hour and zero base stock, the effectiveness measures are:

EC = 1 − D

r∗
b

· W ∗
0 /Qt

NWP

= 1 − 0.45

0.5
· 4/1

4

= 0.1

EI =
∑

i c(i) Ī (i)
∑

i c(i)D(i)T ∗
0 (i)

= 0

(0.01)(0.45)(4)

= 0

ET =
∑

i W (i)/T ∗
0 (i)

∑

i D(i)

= 36/8

0.45

= 10
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Effectiveness measures for

Penny Fab One with stock.

Figure 9.8 contrasts inventory and time effectiveness for the three capacity cases. We see

that if we have a small capacity buffer then we will need either a large inventory buffer

or a large time buffer. The calculations above show that to have no inventory requires

customers to wait, on average, an amount of time equal to 10 times raw process time. On

the other hand, to have almost no waiting requires inventory around 14 times the critical

WIP. If we increase the capacity buffer, these values are reduced accordingly as we see

in the figure.

Figure 9.9 shows what happens when we reduce variability. The highest line (solid

squares) is the same as the 10 percent capacity buffer on the previous graph and has a

CV = SCV = 1.0. The second highest line also has a 10 percent capacity buffer but

has a CV = 0.707 (SCV = 0.5). The lowest line has a 15 percent capacity buffer with

SCV = 1.0. This demonstrates that a 30 percent reduction in variability is almost as good

as a 5 percent increase in capacity. This implies that increasing capacity has a larger

impact than reducing variability by the same percentage. Nonetheless, it is sometimes

more economical to reduce variability by 30 percent than to add 5 percent more capacity.

Fortunately, many changes that reduce variability (e.g., reducing setup times, improving

availability) also increase capacity.
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9.7 Diagnostics and Improvements

The Factory Physics laws discussed in this book describe fundamental aspects of the

behavior of manufacturing systems and highlight key trade-offs. However, by them-

selves they cannot yield specific design and management policies. The reason is that the

“optimal” operational structure depends on environmental constraints and strategic goals.

A firm that competes on customer service needs to focus on swift and responsive deliv-

eries, while a firm that competes on price needs to focus on equipment utilization and

cost. Fortunately, the laws of Factory Physics can help identify areas of leverage and

opportunities for improvement, regardless of system specifics.

The following examples illustrate the use of the principles of this chapter to improve

an existing system with regard to three key performance measures: throughput, cycle

time, and customer service.

9.7.1 Increasing Throughput

Throughput of a line is given by

TH = bottleneck utilization × bottleneck rate

Therefore, the two ways to increase throughput are to increase utilization of the bottleneck

or increase its rate. It may sound blasphemous to talk of increasing utilization, since

we know that increasing utilization increases cycle time. But different objectives call

for different policies. In a system without restrictions on WIP, high utilization causes

queueing and hence increases cycle time. But, as we saw in the pay-me-now-or-pay-me-

later examples, in systems with constraints on WIP (finite buffers or logical limitations

such as those imposed by kanban), blocking and starving will limit utilization of the

bottleneck and hence degrade throughput.

A basic checklist of policies for increasing throughput is as follows.

1. Increase bottleneck rate by increasing the effective rate of the bottleneck. This

can be done through equipment additions, staff additions or training, covering

stations through breaks or lunches, use of flexible labor, quality improvements,

product design changes to reduce time at the bottleneck, and so forth.

2. Increase bottleneck utilization by reducing blocking and starving of the

bottleneck. There are two basic ways to do this:

� Buffer bottleneck with WIP. This can be done by increasing the size of the

buffers (or equivalently, the number of kanban cards) in the system. Most

effective are buffer spaces immediately in front of the bottleneck (where

allowing a queue to grow helps prevent starvation) and immediately after

the bottleneck (where building a queue helps prevent blocking). Buffer

space farther away from the bottleneck can still help, but will have a

smaller effect than space close to it.
� Buffer bottleneck with capacity. This can be done by increasing the

effective rates of nonbottleneck stations. Faster stations upstream from the

bottleneck make starving less frequent, while faster stations downstream

make blocking less frequent. Adding capacity to the highest-utilization

nonbottleneck stations will generally have the largest impact, since these

are the stations most likely to cause blocking/starving. These can be made

through the usual capacity enhancement policies, such as those listed above

for increasing capacity of the bottleneck station.
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Example: Throughput Enhancement

HAL Computer has a printed-circuit board plant that contains a line with two stations.

The first station (resist apply) applies a photoresist material to circuit boards. The second

station (expose) exposes the boards to ultraviolet light to produce a circuit pattern that

is later etched onto the boards. Because the expose operation must take place in a

clean room, space for WIP between the two processes is limited to 10 jobs. Capacity

calculations show the bottleneck to be expose, which requires an average of 22 minutes

to process a job, with an SCV of one. Resist apply requires 19 minutes per job, with

an SCV of 0.25. In addition (and not included in the above process times), expose has

a mean time to failure (MTTF) of 3 1
3

hours and a mean time to repair (MTTR) of 10

minutes, while resist apply has an MTTF of 48 hours and an MTTR of 8 hours. Jobs

arrive to resist apply with a fair amount of variability, so we assume an arrival SCV c2
a

of one. The desired throughput rate is 2.4 jobs per hour.

From past experience, HAL knows the line to be incapable of achieving the target

throughput. To remedy this situation, the responsible engineers are in favor of installing

a second expose machine. However, in addition to being expensive, a second machine

would require expanding the clean room, which would add significantly to the cost and

would result in substantial lost production during construction. The challenge, therefore,

is to use Factory Physics to find a better solution.

The two principal tools at our disposal are the VUT equation for computing queue

time

CTq =
(

c2
a + c2

e

2

) (

u

1 − u

)

t (9.13)

and the linking equation

c2
d = u2c2

e + (1 − u2)c2
a (9.14)

Using these in conjunction with the formulas presented in Chapter 8 for the effective

squared coefficient of variation, we can analyze the reasons why the line is failing to

meet its throughput target.

Formulas (9.13) and (9.14) (along with additional calculations to compute the aver-

age process times te(1) and te(2), and the process SCVs c2
e (1) and c2

e (2), which we will

come back to later), we estimate the waiting time in queue station to be 645 minutes at

resist apply and 887 minutes at expose, when the arrival rate is set at 2.4 jobs per hour.

The average WIP levels are 25.8 and 35.5 jobs at stations 1 and 2, respectively.

This reveals why the system cannot make 2.4 jobs per hour, even though the utiliza-

tion of the bottleneck (expose) is only 92.4 percent. Namely, the clean room can hold

only 20 jobs, while the model predicts an average number in queue of 35.5 jobs. Since

the real system cannot allow WIP in front of expose to reach this level, resist apply will

occasionally become blocked (i.e., idled by a lack of space in the downstream buffer

to which to send completed parts). The resulting lost production at resist apply even-

tually causes expose to become starved (i.e., idled by a lack of parts to work on). The

result is that neither station can maintain the utilization necessary to produce 2.4 parts

per hour.10

10Note that we could also have analyzed this situation by using the blocking model of Section 8.7.2. The

reader is invited to try Problem 13 to see how this more sophisticated tool can be used to obtain the same

qualitative result, albeit with greater quantitative precision.
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Thus, we conclude that the problem is rooted in the long queue at expose. By Little’s

law, reducing average queue length is equivalent to reducing average queue time. So we

now consider the queue time at expose more closely:

CTq (2) =
(

c2
a(2) + c2

e (2)

2

) (

u(2)

1 − u(2)

)

te(2)

= (3.16)(12.15)(23.1 minutes)

= 887 minutes

The third term te(2) is the effective process time at expose, which is simply raw process

time divided by availability

te(2) = t(2)

A(2)
= t(2)

m f (2)/(m f (2) + mr (2))

= 22

(

31/3 + 1/6

31/3

)

= 23.1 minutes

Since this is only slightly larger than the raw process time of 22 minutes, there is little

room for improvement by increasing availability.

The second term in the expression for CTq (2) is the utilization term u(2)/(1 − u(2)).

Although at first glance a value of 12.15 may appear large, it corresponds to a utilization

of 92.4 percent, which is large but not excessive. Although increasing the capacity of this

station would certainly reduce the queue time (and queue size), we have already noted

that this is an expensive option.

So we look to the first term, the variability inflation factor (c2
a(2) + c2

e (2))/2. Recall

that moderate variability in arrivals (that is, c2
a(2) = 1) and moderate variability in process

times (that is, c2
e (2) = 1) result in a value of one for this term. Therefore, a value of 3.16

is unambiguously large in any system. To investigate why this occurs, we break it down

into its constituent parts, which reveals

c2
e (2) = 1.04

c2
a(2) = 5.27

Obviously, the arrival process is the dominant source of variability. This points to the

problem lying upstream in the resist apply process. So we now investigate the cause of

the large c2
a(2). Recall that c2

a(2) = c2
d (1), which from equation (9.14) is given by

c2
d (1) = u2(1)c2

e (1) + [1 − u2(1)]c2
a(1)

= (0.8872)(6.437) + (1 − 0.8872)(1.0)

= 5.05 + 0.22

= 5.27

The component that makes c2
d (1) large is c2

e (1), the effective SCV of the resist apply

machine. This coefficient is in turn made up of two components: a natural SCV, c2
0(1)
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and an inflation term due to machine failures. Using formulas from Chapter 8, we can

break down c2
e (1) as follows:

A(1) = m f (1)

m f (1) + mr (1)
= 48

48 + 8
= 0.8571

te(1) = t(1)

A(1)
= 19

0.8571
= 22.17 minutes

c2
e (1) = c2

0(1) + 2mr (1)A(1)[1 − A(1)]

t(1)

= 0.25 + 2(480)(0.8571)(0.1429)

19
= 6.44

The lion’s share of c2
e (1) is a result of the random outages. This suggests that an alternative

to increasing capacity at expose is to improve the breakdown situation at resist apply. It

is important to note that resist apply is the problem even though expose is the bottleneck.

Because variability propagates through a line, a congestion problem at one station may

actually be the result of a variability problem at an upstream station.

Various practical options might be available for mitigating the outage problem at

resist apply. For instance, HAL could attempt to reduce the mean time to repair by

holding “field-ready” spares for parts subject to failures. If such a policy could halve

the MTTR, the resulting increase in effective capacity and reduction in departure SCV

from resist apply would cause queue time to fall to 146 minutes at resist apply (less than

one-fourth of the original) and 385 minutes at expose (less than one-half of the original).

Alternatively, HAL could perform more frequent preventive maintenance. Suppose

we could avoid the long (8-hour) failures by shutting down the machine every 30 minutes

to perform a 5-minute adjustment. The capacity will be the same as in the original case

(i.e., because availability is unchanged), but because outages are more regular, queue

time is reduced to 114 minutes at resist apply and 211 minutes at expose. From Little’s

law, this translates to an average of 8.4 jobs at expose, which is well within the space

limit.

With either of the above improvements in place, it turns out to be feasible to run

at (actually slightly above) the desired rate of 2.4 jobs per hour. Any other policy that

would serve to reduce the variability of interoutput times from resist apply would have

a similar effect. Because improving the repair profile of resist apply is likely to be less

expensive and disruptive than adding an expose machine, these alternatives deserve

serious consideration.

9.7.2 Reducing Cycle Time

Combining the definitions of station and line cycle time, we can break down cycle times

in a production system into the following:

1. Move time

2. Queue time

3. Setup time

4. Process time

5. Process batch time (wait-to-batch and wait-in-batch time)

6. Move batch time (wait-to-batch and wait-in-batch time)
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7. Wait-to-match time

8. Minus station overlap time

In most production systems, we have seen actual process and move times are a small

fraction (5 to 10 percent) of total cycle time. Indeed, lines for which these terms dominate

are probably already very efficient with little opportunity for improvement. For inefficient

lines, the major leverage lies in the other terms. The following is a brief checklist of

generic policies for reducing each of these terms.

Queue time is caused by utilization and variability. Hence, the two categories of

improvement policies are as follows:

1. Reduce utilization by increasing the effective rate at the bottleneck. This can be

done by either increasing the bottleneck rate (by adding equipment, reducing

setup times, decreasing time to repair, making process improvements, spelling

operators through breaks and lunches, cross-training workers to take advantage

of flexible capacity, etc.) or reducing flow into the bottleneck (by scheduling

changes to route flow to nonbottlenecks, improving yield, or reducing

rework).

2. Reduce variability in either process times or arrivals at any station, but

particularly at high-utilization stations. Process variability can be reduced by

reducing repair times, reducing setup times, improving quality to reduce rework

or yield loss, reducing operator variability through better training, and so on.

Arrival variability can be reduced by decreasing process variability at upstream

stations, by using better scheduling and shop floor control to smooth material

flow, eliminating batch releases (i.e., releases of more than one job at a time),

and installing a pull system (see Chapter 10).

Process batch time is driven by process batch size. The two basic means for reducing

(sequential or simultaneous) process batch size are as follows:

1. Batching optimization to better balance batch time with queue time due to high

utilization. We gave some insight into this trade-off earlier in this chapter. We

pursue more detailed optimization in Chapter 15.

2. Setup reduction to allow smaller batch sizes without increasing utilization.

Well-developed techniques exist for analyzing and reducing setups (Shingo

1985).

Wait-to-match time is caused by lack of synchronization of component arrivals

to an assembly station. The main alternatives for improving synchronization are as

follows:

1. Fabrication variability reduction to reduce the volatility of arrivals to the

assembly. This can be accomplished by the same variability reduction

techniques used to reduce queue time.

2. Release synchronization by using the shop floor control and/or scheduling

systems to coordinate releases in the line to completions at assembly. We

discuss shop floor mechanisms in Chapter 14 and scheduling procedures in

Chapter 15.

Station overlap time. Unlike the other “times,” we would like to increase station

overlap time because it is subtracted from the total cycle time. It can be increased by

the use of lot splitting where feasible. Streamlined material handling (e.g., through the

use of cells) makes the use of smaller transfer batches possible and hence enhances the

cycle time benefits of lot splitting.
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Example: Cycle Time Reduction

SteadyEye, a maker of commercial camera mounts, sells its products in make-to-order

fashion to the motion picture industry. Lately the company has become concerned that

customer lead times are no longer competitive. SteadyEye offers 10-week lead times,

quoted from the end of 2-week order buckets. (For instance, if an order is received any-

where in the 2-week interval between September 5, 2000, and September 18, 2000, it

is quoted a delivery date 10 weeks from September 18, 2000.) However, its major com-

petitor is offering 5-week lead times from the date of the order. Worse yet, SteadyEye’s

inventory levels are at record levels, average cycle time (currently 9 weeks) is as long as

it has ever been, and customer service (fraction of orders delivered on time) is poor (less

than 70 percent) and declining.

SteadyEye’s process begins with the entry of customer orders, which is done by a

clerk daily. Much to the clerk’s frustration, it seems that most of the orders seem to come

at the end of the 2-week interval, which forces her to fall behind even though she puts

in significant overtime every other weekend. Using the most recent customer orders, an

ERP system generates a daily set of purchase orders and dispatch lists. These lists are

sent to each process center but are especially important at the assembly area because

that is where parts are matched to fill orders. Unfortunately, it is common for lists to be

ignored because the requisite parts are not available.

SteadyEye manufactures legs, booms, and other structural components of its camera

mounts, as well as gears and gearboxes that go into the control assembly. It purchases

all motors and electronics from outside suppliers. Raw materials and subassemblies are

received at the receiving dock. Bar stock is sawed to the correct lengths for the various

gears and is then sent to the milling operation on a pallet carried by a forklift. Because

of long changeover times at the mills, process batches are very large. Other operations

include drilling, grinding, and polishing. The polisher is very fast, and so there is only one.

Unfortunately, it is also difficult to adjust, and so downtimes are very long and generate

a lot of parts that need to be scrapped. The heat-treatment operation takes 3 hours and

involves a very large oven that can hold nearly 1,000 parts. Since most process batches

are larger than those required by a single order, parts are returned to a crib inventory

location after each operation.

The root of SteadyEye’s problem is excessive cycle time, which from Factory Physics

is a consequence of variability (arrival and process) and utilization. Thus, improvement

policies must focus on these.

To begin, the arrival variability is being unnecessarily magnified by the order pro-

cessing system. By establishing a 2-week window within which all orders are quoted

the same due date, the system encourages procrastination on the part of the customers

and sales engineers. (Why get an order in before the end of the time window if it won’t

be shipped any earlier?) The resulting last-minute behavior creates a burst of arrivals to

the system, thereby greatly increasing the effective c2
a . Fortunately, this problem can be

remedied by simply eliminating the order window. A better policy would have orders

received on day t promised delivery on day t + � (where � is a lead time, which we hope

to get down to 5 weeks or less). Orders can still be batched within the system by pulling in

orders later on the master production schedule, but this can be transparent to customers.

Next, variability analysis of the effective process times shows that the polisher has

an enormous c2
e of around 7. This is further aggravated by the fact that utilization of the

polisher, after considering the various detractors, is greater than 90 percent. An attractive

improvement policy, therefore, is to analyze the parameters affecting the polisher to find

ways to reduce the time needed for adjustment. This will also reduce scrap and the need to

expedite small jobs of parts to replace those that were scrapped. The net effect will be to

reduce c2
e and u at a bottleneck operation, which will significantly reduce queueing, and
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hence average cycle time. Since these measures will also reduce cycle time variability,

they will enable reduction of customer lead time by even more than the reduction in

average cycle time.

Another large source of variability and cycle time in this system is batching, so we

turn to it next. Batching is driven by both material handling and processing considera-

tions. Move batches are large (typically a full pallet) because processes are far apart so

that forklift capacity does not permit frequent transfers. An appealing policy therefore

would be to organize processes into cells near the assembly lines. With this and some

investment in material handling devices (e.g., conveyors) it may be practical to reduce

move sizes to one. Process batches are large because of long setups. Hence, the logical

improvement step is to implement a rigorous setup reduction program [e.g., using single-

minute exchange of die (SMED) techniques, see Shingo 1985]. Since cutting setup times

by a factor of 4 or more is not uncommon, such steps could enable SteadyEye to reduce

process batch sizes by 75 percent or more.

In addition to these improvements in the processes themselves, there are some system

changes that could further reduce cycle times. One would be to restrict use of the ERP

system to providing purchase orders for outside parts and to generating “planned orders”

but not for converting these to actual jobs. A separate module is needed to combine orders

into jobs such that like orders of like families will be processed together (to share a setup

at milling where setups are still significant) while still meeting due dates. The mechanics

for such a module are given in Chapter 15.

Additionally, it may make sense to convert some commonly used components from

make-to-order to make-to-stock parts. The crib that is now storing remnants of large

batches of many parts would be converted to storage of stocks of these parts. Because

batch sizes will be much smaller, all other parts will never enter the crib, but instead will

be used as produced. Thus, even though stock levels of selected parts (common parts

for which elimination of cycle time would appreciably reduce customer lead time) will

increase, the overall stock level in the crib should be significantly less.

The net result of this battery of changes will be to substantially reduce cycle times.

To go from an average cycle time of 10 weeks to less than 2 weeks is not an unreasonable

expectation. If the company can pull it off, SteadyEye will transform its manufacturing

operation from a competitive millstone to a strategic advantage.

For a more detailed example of cycle time reduction, the reader is referred to

Chapter 19.

9.7.3 Improving Customer Service

In operational terms, satisfying customer needs is primarily about lead time (quick

response) and service (on-time delivery). As we noted earlier, one way to radically

reduce lead time is to move from a make-to-order system to a make-to-stock system, or

to do this partially by making generic components to stock and assembling to order. We

discuss this approach more fully in Chapter 10.

For the segment of the system that is make to order, the lead time law implies

Lead time = average cycle time + safety lead time

= average cycle time + zs × standard deviation of cycle time

where zs is a safety factor that increases in the desired level of service. Therefore,

reducing lead time for a fixed service level (or improving service for a fixed lead time)

requires reducing average cycle time and/or reducing standard deviation of cycle time.

Policies for reducing average cycle time were noted above. Fortunately, these same

policies are effective for reducing cycle time standard deviation. However, as we noted,
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some policies, such as reducing long rework loops, are particularly effective at reducing

cycle time variability.

Example: Customer Service Enhancement

The focus of the SteadyEye example was on reducing mean cycle time. The underlying

reason for this, of course, was the firm’s concern about responsiveness to customers.

But it makes no sense to address lead time without simultaneously considering service.

Promising short lead times and then failing to meet them is hardly the way to improve

customer service. Fortunately, the improvements we suggested can enable the system to

both reduce lead time and improve service.

For example, recall that one proposed policy was to reduce scrap at the polisher,

which in turn will reduce the need to expedite small jobs of parts to catch up with the rest

of the batch at final assembly. Doing this will significantly reduce the standard deviation
of cycle time, as well as mean cycle time. Therefore, even if we increase service (i.e., raise

the safety factor zs), total customer lead time can still be reduced. The other variability

reduction measures will have similar effects.

To illustrate this, suppose that the original mean cycle time was 9 weeks with a

standard deviation of 3 weeks. A lead time of 10 weeks allows for only about one-third

of a standard deviation for safety lead time. Since z = 0.33, this results in service of

only around 63 percent, which is consistent with what is being observed.

Suppose that after all the cycle time reduction steps have been implemented, average

cycle time is reduced to 7 shop days (1.4 weeks) and the standard deviation is reduced

to 1
2

week. In this case, a 2-week lead time represents a safety lead time of 0.6 week,

or 1.2 standard deviations, which would result in 88 percent service. A (probably more

reasonable) 3-week lead time represents a safety lead time of 3.2 standard deviations,

which would result in more than 99.9 percent service. The combination of significantly

shorter lead times than the competition and reliable delivery would be a very strong

competitive weapon for SteadyEye.

Finally, we point out that the benefits of variability and cycle time reduction are

not limited to make-to-order systems. Recall that one of the improvement suggestions

for cycle time reduction was to shift some parts to make-to-stock control. For instance,

suppose SteadyEye stocks a common gear for which there is average demand of 500 per

week with a standard deviation of 100. The cycle time to make the part is 9 weeks with

a standard deviation of 3 weeks. Thus, the mean demand during the replenishment time

is 4,500, and the standard deviation is 1,530. If we produce Q = 500 at a time, then we

can use the (Q, r ) model of Chapter 2 to compute that a reorder point of r = 7,800 will

be needed to ensure a 99 percent fill rate. This policy will result in an average on-hand

inventory of 3,555 units. However, if the variability reduction measures suggested above

reduced the cycle time to 1.4 weeks with a standard deviation of 0.4 week, the reorder

point would fall to r = 1,080 and the average on-hand inventory would decrease to 631

units, a 92 percent reduction. This makes moving to the more responsive make-to-stock

control for common parts an economically viable option.

9.8 Conclusions

The primary focus of this chapter is the effect of variability on the performance of

production lines. The main points can be summarized as follows:

1. Variability degrades performance. If variability of any kind—process, flow, or

batching—is increased, something has to give. Inventory will build up,

throughput will decline, lead times will grow, or some other performance
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measure will get worse. As a result, almost all effective improvement

campaigns involve at least some amount of variability reduction.

2. Variability buffering is a fact of manufacturing life. All systems buffer

variability with inventory, capacity, and time. Hence, if you cannot reduce

variability, you will have to live with one or more of the following:

(a) Long cycle times and high inventory levels

(b) Wasted capacity

(c) Lost throughput

(d) Long lead times and/or poor customer service

3. Flexible buffers are more effective than fixed buffers. Having capacity,

inventory, or time that can be used in more than one way reduces the total

amount of buffering required in a given system. This principle is behind much

of the flexibility or agility emphasis in modern manufacturing practice.

4. Material is conserved. What flows into a workstation will flow out as either

good product or scrap.

5. Releases are always less than capacity in the long run. The intent may be to

run a process at 100 percent of capacity, but when true capacity, including

overtime, outsourcing, and so on, is considered, this can never occur. It is

better to plan to reduce release rates before the system “blows up” and rates

have to be reduced anyway.

6. Variability early in a line is more disruptive than variability late in a line.
High process variability toward the front of a push line propagates

downstream and causes queueing at later stations, while high process

variability toward the end of the line affects only those stations. Therefore,

there tends to be greater leverage from variability reduction applied to the

front end of a line than to the back end.

7. Cycle time increases nonlinearly in utilization. As utilization approaches one,

long-term WIP and cycle time approach infinity. This means that system

performance is very sensitive to release rates at high utilization levels.

8. Process batch sizes affect capacity. The interaction between process batch size

and setup time is subtle. Increasing batch sizes increases capacity and thereby

reduces queueing. However, increasing batch sizes also increases

wait-to-batch and wait-in-batch times. Therefore, the first focus in sequential

batching situations should be on setup time reduction, which will enable use of

small, efficient batch sizes. If setup times cannot be reduced, cycle time may

well be minimized at a batch size greater than one. Likewise, depending on the

capacity and demand, the most efficient batch size in a simultaneous process

may be in between one and the maximum number that will fit into the process.

9. Cycle times increase proportionally with transfer batch size. Waiting to batch

and unbatch can be a large source of cycle time. Hence, reducing transfer

batches is one of the simplest cycle time reduction measures available in many

production environments.

10. Matching can be an important source of delay in assembly systems. Lack of

synchronization, caused by variability, poor scheduling, or poor shop floor

control, can cause significant buildup of WIP, and hence delay, wherever

components are assembled.

11. Diagnosis is an important role for Factory Physics. The laws and concepts of

Factory Physics are useful to trace the sources of performance problems in a
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manufacturing system. While the analytical formulas are certainly valuable in

this regard, it is the intuition behind the formulas that is most critical in the

diagnostic process.

Because variability is not well understood in manufacturing, the ideas in this chapter

are among the most useful Factory Physics concepts presented in this book. We will rely

heavily on them in Part III to address specific manufacturing management problems.

Study Questions

1. Under what conditions is it possible for a workstation to operate at 100 percent capacity over

the long term and not be unstable (i.e., not have WIP grow to infinity)? Can this occur in

practice?

2. In a line with large transfer batches, why is wait-for-batch time larger when utilization is low

than when it is high? What assumption about releases is behind this, and why might it not be

the case in practice?

3. In what way are variability reduction and capacity expansion analogous improvement

options? What important differences are there between them?

4. Consider two adjacent stations in a line, labeled A and B. A worker at station A performs a set

of tasks on a job and passes the job to station B, where a second worker performs another set

of tasks. There is a finite amount of space for inventory between the two stations. Currently, A

and B simply do their own tasks. When the buffer is full, A is blocked. When the buffer is

empty, B is starved. However, a new policy has been proposed. The new policy designates a

set of tasks, some from A’s original set and others from B’s set, as “shared tasks.” When the

buffer is more than half full, A does the shared tasks before putting jobs into the buffer. When

the buffer is less than half full, A leaves the shared tasks for B to do. Assuming that the shared

tasks can be done equally quickly by either A or B, comment on the effect that this policy will

have on overall variability in the line. Do you think this policy might have merit?

5. The lean literature is fond of the maxim “Variability is the root of all evil.” The variability law

of Factory Physics states that “variability degrades performance.” However, in Chapter 7, we

showed that the worst possible behavior for a line with a given rb (bottleneck rate) and T0

(raw process time) occurs when the system is completely deterministic (i.e., there is no

random variation). How can these be consistent?

6. Consider a one-station plant that consists of four machines in parallel. The machines have

moderately variable random process times. Note that if the WIP level is fixed at four jobs, the

plant will be able to maintain 100 percent utilization, minimum cycle time, and maximum

throughput whether or not the process times are random. How do you explain this apparent

“perfect” performance in light of the variability that is present? [Hint: Consider all the

performance measures, including those for finished goods inventory (FGI) and demand, when

there is no variability at all. What happens to these measures when process times are made

variable and demand is still constant?]

Intuition-Building Exercises

The purpose of these exercises is to build your intuition. They are in no way intended to

be realistic problems.

1. You need to make 35 units of a product in 1 day. If you make more than 35 units, you must

pay a carrying cost of $1 per unit extra. If you make less than 35 units, you must pay a penalty

cost of $10 per unit.
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You can make the product in one of two workstations (you cannot use both). The first

workstation (W1) contains a single machine capable of making 35 units per day, on average.

The second workstation (W2) contains 10 machines, each capable of making 3.5 units per

day, on average. Which workstation should you use?

Exercise: Simulate the output of W1 by rolling a single die and multiplying the number of

spots by 10. Simulate the output of W2 by rolling the die 10 times and adding the total

number of spots.

Perform five replications of the experiment. Compute the amount of penalty and carrying

cost you would incur for each time. Which is the better workstation to use? What implications

might this have for replacing of a group of old machines with a single “flexible manufacturing

system”?

2. You market 20 different products and have a choice of two different processes. In process one

(P1) you stock each of the 20, maintaining a stock of five for each of the products for a total

of 100 units. In process two (P2) you stock only the basic component and then give each

order “personality” when the order is received. The time to do this is, essentially, no greater

than that for processing the order. For this process you stock 80 of the basic components.

Every day you receive demand for each of the products. The demand is between one and six

items with each level equally likely. Stock is refilled at the end of each day.

Exercise: Which process do you think would have the better fill rate (i.e., probability of

having stock for an order), P1 with 100 parts in inventory or P2 with only 80? Simulate each,

using a roll of a die to represent the demand for each of the 20 products, and keep track of

total demand and the total number of stockouts. Repeat the simulation at least five times, and

compute the average fill rate.

3. Consider a line composed of five workstations in series. Each workstation has the potential to

produce anywhere between one and six parts on any given day, with each outcome equally

likely (note that this implies the average potential production of each station is 3.5 units per

day). However, a workstation in the middle of the line cannot produce more on a day than the

amount of WIP it starts the day with.

Exercise 1: Perform an experiment using a separate roll of a die for the daily potential

production at each station. Use matchsticks, toothpicks, poker chips, whatever, to represent

WIP. Each time you roll the die, actual production at the station will be the lesser of the die

roll and the available WIP.

Since you start out empty, it will take 5 days to fill up the line. So begin recording the

output at the sixth period. Plot the cumulative output and total WIP in the line versus time up

to day 25.

Exercise 2: Now reduce the WIP by employing a kanban mechanism. To do this, do not

allow WIP to exceed four units at any buffer (after all, the production rate is 3.5 so we should

be able to live with four). Do this by reducing the actual production at a station if it will ever

cause WIP at the next station to exceed four. Repeat the above exercise under these

conditions. What happens to throughput? What about WIP?

Exercise 3: Now reduce variability. To do this, change the interpretation of roll. If a roll is

three or less, potential production is three units. If it is four or more, potential production is

four units. Note that the average is the same as before. Now repeat both the first exercise

(without the kanban mechanism) and the second exercise (with kanban). Compare your

results with those of the previous cases.

Exercise 4: Finally, consider the situation where there are two types of machine in the line,

one that is highly variable and another that is less variable. Should we have the more variable

ones feed the less variable ones, or the other way round? Repeat the first exercise for a line

where the first two machines are extremely variable (i.e., potential production is given by the

number of spots on the die) and the last three are less variable (i.e., potential production is

three if the roll is three or less and four if it is four or more). Repeat with a line where the last

two machines are extremely variable and the first three are less variable. Compare the

throughput and WIP for the two lines, and explain your results.



2. Describe the types of buffer(s) (i.e., inventory, time, or capacity) you would expect to find in
the following situations.
(a) A maker of custom cabinets
(b) A producer of automotive spare parts
(c) An emergency room
(d) Wal-Mart
(e) Amazon.com
(f) A government contractor that builds submarines
(g) A bulk producer of chemical intermediates such as acetic acid
(h) A maker of lawn mowers for K-Mart, Sam’s Club, and Target
(i) A freeway
(j) The space shuttle (i.e., as a delivery system for advanced experiments)
(k) A business school

3. Compute the capacity (jobs per day) for the following situations.
(a) A single machine with a mean process time of 2 1

2 hours and an SCV of 1.0. There are
8 work hours per day.

(b) A single machine with a mean process time of 2 1
2 hours and an SCV of 0.5. There are

8 work hours per day.
(c) A workstation consisting of 10 machines in parallel, each having a mean process

time of 2 1
2 hours. There are two 8-hour shifts. Lunch and breaks take 1 1

4 hours per
shift.

(d) A workstation with 10 machines in parallel, each having a mean process time of
2 1

2 hours. There are two 8-hour shifts. Lunch and breaks take 1 1
4 hours per shift.

The machines have a mean time to failure of 100 hours with a mean time to repair of
4 hours.

(e) A workstation with 10 machines in parallel, each having a mean process time of
2 1

2 hours. There are two 8-hour shifts. Lunch and breaks take 1 1
4 hours per shift.

The machines have a mean time to failure of 100 hours with a mean time to repair of
4 hours. The machines are set up every 10 jobs, and the mean setup time is
3 hours.
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Problems

1. Consider a line that makes two different astronomical digital cameras. The TS-7 costs
$2,000 while the TS-8, which uses a much larger chip, costs $7,000. Most of the cost of the
cameras is due to the cost of the chip.

Consider a line that makes two different astronomical digital cameras. The TS-7 costs 
$2,000 while the TS-8, which uses a much larger chip, costs $7,000. Most of the cost of the 
cameras is due to the cost of the chip. In manufacturing, both go through the same three 
steps but take different amounts of time. The capacities for the TS-7 are seven, five, and six 
per day at workstations 1, 2, and 3, respectively (that is, if we run exclusively TS-7 
product). Similarly, capacity for the TS-8 is six per day at all stations (again, assuming we 
run only TS-8). Five percent of TS-8 units must be reworked, which requires them to go 
back through all three stations a second time (process times are the same as those for the 
first pass). Reworked jobs never make a third pass through the line. There is no rework for 
the TS-7. Demand is three per day for the TS-7 and one per day for the TS-8. The average 
inventory level of chips is 20 for the TS-7 and five for the TS-8. Cycle time for both 
cameras is four days, while the raw process time with no detractors is one-half a day. 
Cameras are made to stock and sold from finished goods inventory. Average finished goods 
inventory is four units of the TS-7 and one unit of the TS-8, while the average backorder 
level is 0.29 for TS-7 and 0.12 for TS-8.
(a) Compute throughput TH(i) for each station for each product.
(b) Compute utilization u(i) at each station.
(c) Using dollars as the aggregate measure, compute RMI, WIP, and FGI.
(d) Compute the efficiencies Ec , EI , and ET .
(e) Suppose the machine at workstation 1 costs $1 million and the machines at the second and 

third workstations cost $10,000 each. Compute Cc and contrast with Ec computed above.



7. Consider a balanced line, having five identical stations in series, each consisting of a single
machine with low-variability process times and an infinite buffer. Suppose the arrival rate is
ra , utilization of all machines is 85 percent, and the arrival SCV is c2

a = 1. What happens to
WIP, CT, and TH if we do the following?
(a) Decrease the arrival rate.
(b) Increase the variability of one station.
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(f) A workstation with 10 machines in parallel, each having a mean process time of
2 1

2 hours. There are two 8-hour shifts. Lunch and breaks take 1 1
4 hours per shift. The

machines have a mean time to failure of 100 hours with a mean time to repair of 4 hours.
The machines are set up every 10 jobs, and the mean setup time is 3 hours. Because
the operators have to attend training meetings and the like, we cannot plan more than
85 percent utilization of the workers operating the machines.

4. Jobs arrive to a two-station serial line at a rate of 2 jobs per hour with deterministic
interarrival times. Station 1 has one machine which requires exactly 29 minutes to process a
job. Station 2 has one machine which requires exactly 26 minutes to process a job, provided
it is up, but is subject to failures where the mean time to failure is 10 hours and the mean
time to repair is 1 hour.
(a) What is the SCV c2

a of arrivals to station 1?
(b) What is the effective SCV c2

e (1) of process times at station 1?
(c) What is the utilization of station 1?
(d) What is the cycle time in queue at station 1?
(e) What is the total cycle time at station 1?
(f) What is the SCV of arrivals to station 2?
(g) What is the utilization of station 2?
(h) What is the effective SCV c2

e (2) of process times at station 2?
(i) What is the cycle time in queue at station 2?
( j) What is the total cycle time at station 2?

5. A punch press takes in coils of sheet metal and can make five different electrical breaker
boxes, denoted by B1, B2, B3, B4, and B5. Each box takes exactly 1 minute to produce. To
switch the process from one type of box to another takes 4 hours. There is demand of 1,800,
1,000, 600, 350, and 200 units per month for boxes B1, B2, B3, B4, and B5, respectively.
The plant works one shift, 5 days per week. After lunch, breaks, and so on, there is 7 hours
available per shift. Assume 52 weeks per year.
(a) What is ra in boxes per hour?
(b) What would utilization be if there were no setups? (Note that utilization will approach

this as batch sizes approach infinity.)
(c) Suppose the SCV of the press is 0.2 no matter what the batch sizes are. What is the

average cycle time when the batch sizes are all equal to 1,000 (assume c2
a = 1)?

(d) Use trial and error to find a set of batch sizes that minimizes cycle time.
(e) On average, how many times per month do we make each type of box if we use the

batch sizes computed in part (d)?

6. A heat-treatment operation takes 6 hours to process a batch of parts with a standard
deviation of 3 hours. The maximum that the oven can hold is 125 parts. Currently there is
demand for 160 parts per day (16-hour day). These arrive to the heat-treatment operation
one at a time according to a Poisson stream (i.e., with ca = 1).
(a) What is the maximum capacity (parts per day) of the heat-treatment operation?
(b) If we were to use the maximum batch size, what would be the average cycle time

through the operation?
(c) What is the minimum batch size that will meet demand?
(d) If we were to use the minimum feasible batch size, what would be the average cycle

time through the operation?
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(c) Increase the capacity at one station.

(d) Decrease the capacity of all stations.

8. Consider a two-station line. The first station pulls from an infinite supply of raw materials.

Between the two stations there is a buffer with room for five jobs. The second station can

always push to finished goods inventory. However, if the buffer is full when the first station

finishes, it must wait until there is room in the buffer before it can start another job. Both

stations take 10 minutes per job and have exponential process times (ce = 1).

(a) What are TH, CT, and WIP for the line?

(b) What are TH, CT, and WIP if we increase the buffer to seven jobs?

(c) What are TH, CT, and WIP if we slow down the second machine to take 12 minutes per

job?

(d) What are TH, CT, and WIP if we slow down the first machine to take 12 minutes per

job?

(e) What happens to TH if we decrease the variability of the second machine so that the

effective SCV is a 1

4
?

9. Consider a single station that processes two items, A and B. Item A arrives at a rate of 10

per hour. Setup times are 5 hours, and the time it takes to process one part is 1 minute. Item

B arrives at a rate of 20 per hour. The setup time is 4 hours, and the unit process time is 2

minutes. Arrival and process variability is moderate (that is, ca = ce = 1) regardless of the

batch size (just assume they are).

(a) What is the minimum lot size for A for which the system is stable (assume B has an

infinite lot size)?

(b) Make a spreadsheet and find the lot sizes for A and B that minimize average cycle

time.

10. Consider a balanced and stable line with moderate variability and large buffers between

stations. The line uses a push protocol, so that releases to the line are independent of line

status. The capacity of the line is rb, and the utilization is fairly high. What happens to

throughput and cycle time when we do the following?

(a) Reduce the buffer sizes and allow blocking at all stations except the first where jobs balk

if the buffer is full (i.e., they go away if there is no room).

(b) Reduce the variability in all process times.

(c) Unbalance the line, but do not change rb.

(d) Increase the variability in the process times.

(e) Decrease the arrival rate.

(f) Decrease the variability in the process times and reduce the buffer sizes as in (a).

Compare to the situation in (a).

11. A particular workstation has a capacity of 1,000 units per day and variability is moderate,

such that V = (c2
a + c2

e )/2 = 1. Demand is currently 900 units per day. Suppose

management has decided that cycle times should be no longer than 1 1

2
times raw process

time.

(a) What is the current cycle time in multiples of the raw process time?

(b) If variability is not changed, what would the capacity have to be in order to meet

the cycle time and demand requirements? What percentage increase does this

represent?

(c) If capacity is not changed, what value would be needed for V in order to meet the cycle

time and demand requirements? What percentage decrease does this represent (compare

CVs, not SCVs)?

(d) Discuss a realistic strategy for achieving management’s goal.

12. Consider two stations in series. Each is composed of a single machine that requires a rather

lengthy setup. Large batches are used to maintain capacity. The result is an effective process

time of 1 hour per job and an effective CV of 3 (that is, te = 1.0 and c2
e = 9.0). Jobs arrive in

a steady stream at a rate of 0.9 job per hour, and they come from all over the plant, so

ca = 1.0 is a reasonable assumption (see the discussion in Chapter 8).
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Table 9.4 Possible Machines to Purchase for Each Work Center

Possible Machines [speed (parts/hour), CV, cost ($000)]

Station Type 1 Type 2 Type 3 Type 4

MMOD 42, 2.0, 50 42, 1.0, 85 50, 2.0, 65 10, 2.0, 110.5
SIP 42, 2.0, 50 42, 1.0, 85 50, 2.0, 65 10, 2.0, 110.5
ROBOT 25, 1.0, 100 25, 0.7, 120 — —
HDBLD 5, 0.75, 20 5.5, 0.75, 22 6, 0.75, 24 —

Now, suppose a flexible machine is available with the same capacity but less effective
variability (that is, te = 1.0 and c2

e = 0.25) and can be used to replace the machine at either
station. At which station should we replace the existing machine with the new one to get the
largest reduction in cycle time? [Hint: Use the equation c2

d = u2c2
e + (1 − u2)c2

a along with
the cycle time equations.]

13. Recall the throughput enhancement example in Section 9.7.1. Assuming there is an
unlimited amount of raw material for the coater, answer the following.
(a) Compute te and c2

e , using the data given in Section 9.7.1 for both the coater and the
expose operation.

(b) Use the general blocking model of Section 8.7.2 to compute the throughput for the line,
assuming there is room for 10 jobs in between the two stations (that is, b = 12). Will the
resulting throughput meet demand?

(c) Reduce the MTTR from 8 to 4 hours, and recompute throughput. Now does the
throughput meet demand?

14. Table 9.4 gives the speed (in parts per hour), the CV, and the cost for a set of tools for a
circuit-board line. Jobs go through the line in totes that hold 50 parts each (this cannot be
changed). The CVs represent the effective process times and thus include the effects of
downtime, setups, and so forth.

The desired average cycle time through this line is 1.0 day. The maximum demand is
1,000 parts per day.
(a) What is the least-cost configuration that meets demand requirements?
(b) How many possible configurations are there?
(c) Find a good configuration.

15. Consider line 1 in Table 9.4. Assume batches of six jobs arrive every 35 hours with no
variability in the arrivals, the setup times, or the process times. Construct a Gantt chart
(i.e., time line) like that in Figure 9.5 for the system when the stations are permuted from
the original order (1, 2, 3) as follows:
(a) 1, 3, 2
(b) 2, 1, 3
(c) 2, 3, 1
(d) 3, 1, 2
Check to see if the cycle times fall within the bounds given in Section 9.5.3.

16. Suppose parts arrive in batches of 12 every 396 minutes to a three-station line having no
variability. The first station has a setup time of 15 minutes and a unit process time of
7 minutes, the second sets up in 8 minutes and processes 1 part every 3 minutes, the third
requires 12 and 4 minutes for setup and unit processing, respectively.
(a) What is the utilization of each station? Which is the bottleneck?
(b) What is the cycle time if parts are moved 12 at a time?
(c) What is the cycle time for the first part if parts are moved one at a time?
(d) What is the range of cycle time for the 12th part if parts are moved one at a time?
(e) What is the range of average cycle times if parts are moved one at a time?

Compute the average cycle time for each.

What is the average of the cycle time for the 12th part if parts are moved one at a time?
What is the average of the cycle time if parts are moved one at a time?
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(f) Perform a Penny Fab–like experiment to determine the average cycle time. Let 12 parts

arrive each 396 minutes, and then move them one at a time.

(g) Double the arrival rate (i.e., batches of 12 arrive every 198 minutes). What happens to

cycle time if parts are moved 12 at a time? What happens to cycle time if parts are

moved one at a time?

(h) Now let the arrivals be Poisson with the same average time between arrivals

(396 minutes). What is the added queue time at each station?

(i) Now double the Poisson arrival rate. What happens to cycle time?



C H A P T E R

10 Push and Pull

Production Systems

You say yes.
I say no.
You say stop,
And I say go, go, go!

John Lennon, Paul McCartney

10.1 Introduction

Virtually all descriptions of just-in-time make use of the terms push and pull production
systems. However, these terms are not always precisely defined and, as a result, may
have contributed to some confusion surrounding JIT in America.

In this chapter, we offer a formal definition of push and pull at the conceptual level.
By separating the concepts of push and pull from their specific implementations, we
observe that most real-world systems are actually hybrids or mixtures of push and pull.
Furthermore, by contrasting the extremes of “pure push” and “pure pull” production
systems, we gain insight into the factors that make pull systems effective. This insight
suggests that there are many different ways to achieve the benefits of pull. Which is best
depends on a variety of environmental considerations, as we discuss in this chapter and
pursue further in Part III.

10.2 Perceptions of Pull

The father of JIT, Taiichi Ohno, used the term pull only in a very general sense (Ohno
1988, xiv):

Manufacturers and workplaces can no longer base production on desktop planning alone and
then distribute, or push, them onto the market. It has become a matter of course for customers,
or users, each with a different value system, to stand in the frontline of the marketplace and,
so to speak, pull the goods they need, in the amount and at the time they need them.

Because this and other descriptions by the Japanese originators of JIT did little to
describe what was actually going on at Toyota, it fell to American writers to define pull.

356
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For example, Hall (1983, 39), in one of the earliest texts on JIT, characterized a pull system
by the fact that “material is drawn or sent for by the users of the material as needed.”
Although he acknowledged that different types of pull systems are possible, the only one
he described in detail was the Toyota kanban system, which we discussed in Chapter 4.
Schonberger (1982), in the other major American JIT book, also referred to pull systems
strictly in the context of the Toyota-style kanban system. Hence, it is hardly surprising
that in the 1980s the term pull was frequently viewed as synonymous with kanban.

However, such a narrow interpretation reflected neither Ohno’s intent nor Toyota’s
practice. Limiting pull to mean kanban obscures the essence of pull by assigning it too
much specificity and suggesting that it applies more narrowly than it does. For instance,
a classical kanban system cannot be used in a system with 50,000 active part numbers
because it would require at least one standard container of every part to be available in
the system at all times. But this does not mean that such a system cannot benefit from
pull if implemented in a different way.

In the 1990s, the increasing variety of pull implementations diminished the equa-
tion of pull with kanban. Instead, it became increasingly common to equate the term
“pull” with “make-to-order.” That is, a customer order serves to “pull” a product from
the system. In this interpretation, make-to-stock products are “pushed” to customers be-
cause they are made before an order existed. However, while converting a make-to-stock
or make-to-forecast system to a make-to-order system can sometimes be an effective
strategy, this definition misses the how and why pull improves efficiency.

Indeed, an MRP system in which the master production schedule consists completely
of customer orders (as opposed to forecasts) would qualify as a pull system under this
definition. But MRP is the quintessential push system! The “desktop planning” Ohno
denigrates in the above quote is precisely MRP. So the make-to-order definition of pull
is even less accurate than the kanban definition.

To examine the concept of pull from a Factory Physics perspective, we need a
definition that is simple enough to capture only the essential nature of pull, but general
enough to encompass the broad range of implementations of it.

10.2.1 The Key Distinction between Push and Pull

To uncover the essential difference between push and pull we first observe that the funda-
mental feature of any flow control system is the mechanism that triggers the movement
of work. For example, an MRP system schedules the release of work based on (actual or
forecasted) demand, while a kanban system authorizes the release of work based on sys-
tem status (i.e., inventory voids signaled by cards). This distinction, which is illustrated
schematically in Figure 10.1, is a reasonable definition of push and pull. That is, push
systems schedule work releases on the basis of information from outside the system,
while pull systems authorize releases based on information from inside the system.

Exogenous
(schedule)

PUSH PULL

Job

Unlimited WIP

Production process

Exogenous
(stock void)

Production process

Job
Limited WIP

Figure 10.1

Push and pull mechanics.
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But, while this definition is consistent with our intuitive sense of pushing (from the
outside) and pulling (from the inside), focusing on the trigger mechanism tends to conceal
why pull works. The reason is that the effectiveness of pull depends critically on the type
of endogenous information used to draw work into the system. Lacking specification of
this information, trigger mechanism definitions of pull can be misleading. For instance,
Hall (1983, 39) cited a General Motors foreman who described the essence of pull as
“You don’t never make nothin’ and send it no place. Somebody has to come get it.” This
statement entirely misses the point of pull. If people “come get” work because it’s there
or because they are material handlers with available capacity, the system will behave
exactly as if people “send” the work from station to station. The mere act of pulling work
between stations does not of itself affect performance in any significant way.

The key to the success of pull is that the information used to govern work releases is
related to the status of work in process within the system. As a result, a uniform feature of
pull systems is that they control the amount of WIP that can be in the system. As we will
discuss later, it is precisely this behavior that leads to the efficiency benefits of pull. There-
fore, we use it to define the critical distinction between push and pull systems as follows.

Definition: A pull system establishes an a priori limit on the work in process, while
a push system does not.

Figure 10.1 diagrams this distinction. Because push systems release work into the
system without a feedback loop that communicates the WIP status, the amount of WIP
in the system can fluctuate essentially without bound. But a pull system, which triggers
releases in response to stock voids, will prohibit releases when all of the voids have been
filled and hence will not let system WIP grow beyond a pre-specified point.

For example, in the kanban system illustrated in Figure 4.4, an upstream workstation
can send work to a downstream station only when authorized to do so by a production
card, which indicates a void in the inventory of the downstream buffer. When no cards
are available, this means the downstream buffer is full. The maximum inventory in the
downstream buffer is therefore limited by the number of kanban cards between the two
workstations. Hence, the total WIP in the line is capped by the total number of kanban
cards in the line. It is this limit on WIP established by the kanban cards, rather than the
cards themselves, that make kanban systems work.

The situations depicted in Figure 10.1 are extremes. In the push system, releases
are controlled exclusively by external information (i.e., the schedule). But in practice,
very few MRP users blindly follow planned order releases. Instead, they take into con-
sideration system status (e.g., an equipment problem that has caused production to fall
behind schedule) to adjust the MRP schedule. Since both exogenous and endogenous
signals are used to trigger the release of work, the system is a hybrid between push and
pull. Conversely, a pull system that generates a card authorizing production but delays
the actual work release because of anticipated lack of demand for the part (i.e., it is not
called for in the master production schedule), is also a hybrid system. There have been
various attempts to formally combine push and pull into hybrid systems (e.g., see Wight
1970, Deleersnyder et al. 1992, and Suri 1998). We will discuss the virtues of hybrid
systems and present an approach in Part III.

Our purpose in setting up a sharp distinction between the pure push and pure pull
concepts illustrated in Figure 10.1 is to isolate the benefits of pull systems and trace their
root causes. In a sense, we are taking a similar approach to that of (nonfactory) physics in
which mechanical systems are frequently considered in frictionless environments. It is
not that frictionless environments are common, but rather that concepts like gravitation,
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acceleration, and velocity are clearer in this pristine framework. Just as the frictionless
insights of classical mechanics underlie analysis of realistic physical systems, our ob-
servations about pure push and pull systems provide a foundation for designing and
improving realistic production systems.

10.3 The Magic of Pull

Armed with a formal definition of pull, we now turn to the main question of this chapter:
What makes Japanese manufacturing, and the Toyota production system in particular, so
good? From the discussion of Chapter 4 it is clear that there is no simple answer to this
question. The success of several high-profile Japanese companies, including Toyota, in
the 1980s was the result of a variety of practices, ranging from setup reduction to quality
control to rapid product introduction. Moreover, these companies operated in a cultural,
geographic, and economic environment very different from that in America. However,
if we view JIT/lean in purely operational terms, we can understand some of the main
reasons for its success. Moreover, since operational policies are transferable, while
culture and geography are not, the insights we obtain through this view are eminently
practical.

At a macro level, the Japanese success story was premised on an ability to bring
quality products to market in a timely fashion at a competitive cost and in a responsive
mix. At a micro level, this was achieved via an effective production control system,
which facilitated low-cost manufacture by promoting high throughput, low inventory,
and little rework. It fostered high external quality by engendering high internal quality.
It enabled good customer service by maintaining a steady, predictable output stream.
And it allowed responsiveness to a changing demand profile by being flexible enough to
accommodate product mix changes (as long as they were not too rapid or pronounced).

What is the key to all these desirable features that made the Toyota Production
System such an attractive basis for a business strategy? The answer is contained in our
definition of a pull system; there is a limit on the maximum amount of inventory in the
system. Whether this is achieved through kanban cards, electronic signals or manual
monitoring of WIP levels, all pull systems ensure that, no matter what happens on the
plant floor, the WIP level cannot exceed a prespecified limit. By establishing a WIP cap,
pull systems place a very strong emphasis on material flows; if production stops, inputs
stop. This emphasis on flow leads to a host of operational benefits, which, as we discuss
below, are the real magic of pull.

10.3.1 Reducing Manufacturing Costs

If WIP is capped, then disruptions in the line (e.g., machine failures, shutdowns due to
quality problems, slowdowns due to product mix changes) do not cause WIP to grow
beyond a predetermined level. Note that in a pure push system, no such limit exists.
If an MRP-generated schedule is followed literally (i.e., without adjustment for plant
conditions), then the schedule could get arbitrarily far ahead of production and thereby
bury the plant in WIP, causing a WIP explosion.

Of course, we never observe real-world plants with infinite amounts of WIP. Eventu-
ally, when things get bad enough, management does something. It schedules overtime. It
hires temporary workers to increase capacity. It pushes out due dates and limits releases to
the plant—in other words, management stops using a pure push system. And eventually
things return to normal—until the next WIP explosion (see Chapter 9 for a discussion of
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the overtime vicious cycle). The key point here is that in a push environment, corrective
action is not taken until after there is a problem and WIP has already spiraled out of
control.

In a pull system that establishes a WIP cap, releases are choked off before the system
has become overloaded. Output will fall off, to be sure, but this would happen regardless
of whether or not the WIP level were allowed to soar. For example, if a key machine is
down, then all the WIP in the world in front of it cannot make it produce more. But by
holding WIP out of the system, the WIP cap retains a degree of flexibility that would be
lost if it were released to the floor. As long as jobs exist only as orders on paper, they can
accommodate engineering or scheduling priority changes relatively easily. But once the
jobs are on the floor, and given “personality” (e.g., a printed-circuit board receives its
circuitry), changes in scheduling priority require costly and disruptive expediting, and
engineering changes may be almost impossible. Thus, a WIP cap reduces manufacturing
costs by reducing costs due to expediting and engineering changes.

In addition to improving flexibility, a pull system promotes better timing of work
releases. To see this, observe that a pure push system periodically allows too much work
into the system (e.g., at times when congestion will prevent new jobs from being worked
on any time soon). This merely serves to inflate the average WIP level without improving
throughput. A WIP cap, regardless of the type of pull mechanism used to achieve it, will
reduce the average WIP level required to achieve a given level of throughput. This will
directly reduce the manufacturing costs associated with holding inventory.

10.3.2 Reducing Variability

The key to keeping customer service high is a predictable flow through the line. In
particular, we need low cycle time variability. If cycle time variability is low, then we
know with a high degree of precision how long it will take a job to get through the plant.
This allows us to quote accurate due dates to customers, and meet them. Low cycle time
variability also helps us quote shorter lead times to customers. If cycle time is 10 days
plus or minus 6 days, then we will have to quote a 16-day lead time to ensure a high
service level. On the other hand, if cycle time is 10 days plus or minus 1 day, then a
quote of 11 days will suffice.

Kanban achieves less variable cycle times than does a pure push system. Since cycle
time increases with WIP level (by Little’s law), and kanban prevents WIP explosions, it
also prevents cycle time explosions. However, note that the reason for this, again, is the
WIP cap—not the pulling at each station. Hence, any system that caps WIP will prevent
the wild gyrations in WIP, and hence cycle time, that can occur in a pure push system.

Kanban is also often credited with reducing variability directly at workstations. This
is the JIT “reduce the water level to expose the rocks” analogy. Essentially, kanban limits
the WIP in the system, making it much more vulnerable to variability and thereby putting
pressure on management to continually improve.

We illustrate the intuition behind this analogy by means of the simple example shown
in Figure 10.2. The system consists of two machines, and machine 1 feeds machine 2.
Machine 1 is extremely fast, producing parts at a rate of 1 per second, while machine 2
is slow, producing at a rate of 1 per hour. Suppose a (one-card) kanban system is in use,
which limits the WIP between machines to five jobs. Because machine 1 is so fast, this
buffer will virtually always be full whenever machine 1 is running.

However, suppose that machine 1 is subject to periodic failures. If a failure lasts
longer than 5 hours, then machine 2, the bottleneck, will starve. Thus, depending on the
frequency and duration of failures of machine 1, machine 2 could be starved a significant
fraction of time, despite the tremendous speed of machine 1.
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Clearly, if the buffer size (number of kanban cards) were increased, the level of
starvation of machine 2 would decrease. For instance, if the buffer were increased to 10
jobs, only failures in excess of 10 hours would cause starvation. In effect, the extra WIP
insulates the system from the disruptive effects of failures. But as we noted previously, a
pure push system requires higher average WIP levels to attain a given throughput level. A
push system will tend to mask the effects of machine 1 failures in precisely this way. The
push system will have higher WIP levels throughout the system, and therefore failures
will be less disruptive. As long as management is willing to live with high WIP levels,
there is little pressure to improve the reliability of machine 1.

As the JIT literature correctly points out, if one wants to maintain high levels of
throughput with low WIP levels (and short cycle times), one must reduce these disruptive
sources of variability (failures, setups, recycle, etc.). We note that, again, the source of
this pressure is the limited WIP level, not the mechanism of pulling at each station. To be
sure, pulling at each station controls the WIP level at every point in the process, which
would not necessarily be the case with a general WIP cap. However, reducing overall
WIP level via a WIP cap will reduce the WIP between various workstations on average
and thereby will apply the pressure that promotes continual improvement. Whether or
not a general WIP cap will distribute WIP properly in the line is a question we will take up
later.

10.3.3 Improving Quality

Quality is generally considered to be both a precondition for JIT and a benefit of JIT. As
a result, JIT promotes higher levels of quality out of sheer necessity and also establishes
conditions under which high quality is easier to achieve.

As we observed in Chapter 4, quality is a basic component of the JIT philosophy.
The reason is that if WIP levels are low, then a workstation will effectively be starved for
parts whenever the parts in its inbound buffer (stockpoint) do not meet quality standards.
From a logistics standpoint, the effect of this is very similar to that of machine failures;
once WIP levels become sufficiently low, the percentage of good parts in the system
must be high in order to maintain reasonable throughput levels. To ensure this, kanban
systems are usually accompanied by statistical process control (SPC), quality-oriented
worker training, quality-at-the-source procedures, and other techniques for monitoring
and improving quality levels throughout the system. Since the higher the quality, the
lower the WIP levels can be, continual efforts at WIP reduction practiced in a JIT system
will demand continual quality improvement.



362 Part II Factory Physics

Beyond this simple pressure for better quality, JIT can also directly facilitate im-
proved quality because inspection is more effective in a low-WIP environment. If WIP
levels are high and queues are long, a quality assurance (QA) inspection may not identify
a process problem until a large batch of defective parts has already been produced. If
WIP levels are low, so that the queue in front of QA is short, then defects can be detected
in time to correct a process before it produces many bad parts. This, of course, is the goal
of SPC, which monitors the quality of a process in real time. However, where immediate
inspection is not possible, say, in a circuit-board plant where boards must be optically or
electronically tested to determine quality, then low WIP levels can significantly amplify
the power of a quality control program.

Notice that, once again, the benefits we are ascribing to kanban or JIT are really
the consequence of WIP reduction. Hence, a simple WIP cap will serve to provide the
same pressure for quality improvement and the same queue reduction for facilitating QA
provided by kanban.

However, there is one further quality-related benefit that is often attributed directly
to the pulling activity of kanban. The basic argument is that if workers from downstream
workstations must go to an upstream workstation to get parts, then they will be able
to inspect them. If the parts are not of acceptable quality, the worker can reject them
immediately. The result will be quicker detection of problems and less likelihood of
moving and working on bad parts.

This argument is not very convincing when the material handling is carried out by
a separate worker, say, a forklift driver. Whether forklift drivers are “pushing” parts to
the next station because they are finished or “pulling” them from the previous station
because they are authorized to do so by a kanban makes little difference to their ability
to conduct a quality inspection.

The argument is more persuasive when parts are small and workstations close, so
that operators can move their own parts. Then, presumably, if the downstream operators
go and get the parts, they will be more likely to check them for quality than if the upstream
operator simply drops them off. But this reasoning unnecessarily combines two separate
issues.

The first issue is whether the downstream operators inspect all parts that they re-
ceive (pushed or pulled). We have seen implementations in industry, not necessarily pull
systems, in which operators had to approve material transfers by signing a routing form.
Implicit in this approval was an inspection for quality.

It is a second and wholly separate issue whether to limit the WIP between two
adjacent workstations. We will take up this issue later in this chapter. For now, we
simply point out that the quality assurance benefits of pulling at each station can be
attained via inspection transactions independently of the mechanism used for achieving
the needed limit on WIP.

10.3.4 Maintaining Flexibility

A pure push system can release work to a very congested line, only to have the work get
stuck somewhere in the middle. The result will be a loss of flexibility in several ways.
First, parts that have been partially completed cannot easily incorporate engineering
(e.g., design) changes. Second, high WIP levels impede priority or scheduling changes,
as parts may have to be moved out of the line to make way for a high-priority part. And
finally, if WIP levels are high, parts must be released to the plant floor well in advance
of their due dates. Because customer orders become less certain as the planning horizon
is increased, the system may have to rely on forecasts of future demand to determine
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releases. And since forecasts are never as accurate as one would like, this reliance serves
to further degrade performance of the system.

A pull system that establishes a WIP cap can prevent these negative effects and
thereby enhance the overall flexibility of the system. By preventing release of parts
when the factory is overly congested, the pull system will keep orders on paper as
long as possible. This will facilitate engineering and priority/scheduling changes. Also,
releasing work as late as possible will ensure that releases are based on firm customer
orders to the greatest extent possible. The net effect will be an increased ability to provide
responsive customer service.

The analogy we like to use to illustrate the flexibility benefits of pull systems is that
of air traffic control. When we fly from Austin, Texas, to Chicago, Illinois, we frequently
wind up waiting on the ground in Austin past our scheduled departure due to what the
airlines call flow control. What they mean is that O’Hare Airport in Chicago is overloaded
(or will be by the time we get there). Even if we left Austin on time, we would only wind
up circling over Lake Michigan, waiting for an opportunity to land. Therefore, air traffic
control wisely (albeit maddeningly) keeps the plane on the ground in Austin until the
congestion at O’Hare has cleared (or will clear by the time we get there). The net result is
that we land at exactly the same time (late, that is!) as if we had left on schedule, but we
use less fuel and reduce the risk of an accident. Important, too, is that we also keep other
options open, such as that of canceling the flight if the weather becomes too dangerous.

10.3.5 Facilitating Work Ahead

The preceding discussion implies that pull systems maintain flexibility by coordinating
releases with the current situation in the line (i.e., by not releasing when the line is too
congested). The benefits of coordination can also extend to the situation in which plant
status is favorable. If we strictly follow a pull mechanism and release work into the
system whenever WIP falls below the WIP cap, then we may “work ahead” of schedule
when things go well. For instance, if we experience an interval of no machine failures,
staffing problems, materials shortages, and so on, we may be able to produce more than
we had anticipated. A pure push system cannot exploit this stretch of good luck because
releases are made according to a schedule without regard to plant status.

Of course, in practice there is generally a limit to how far we should work ahead in
a pull system. If we begin working on jobs whose due dates are so far into the future that
they represent speculative forecasts, then completing them now may be risky. Changes in
demand or engineering changes could well negate the value of early completion. There-
fore, once we have given ourselves a comfortable cushion relative to demand, it makes
sense to reduce the work pace. We will discuss mechanisms for doing this in Part III.

10.4 CONWIP

Although the most famous implementation of pull is the kanban system, in which WIP
levels are controlled at each station via cards, kanban is not necessarily the simplest pull
system. The most straightforward way to establish a WIP cap is to just do it! That is, for
a given production line, establish a limit on the WIP in the line and simply do not allow
releases into the line whenever the WIP is at or above the limit. We call the protocol under
which a new job is introduced to the line each time a job departs CONWIP (constant
work in process) because it results in a WIP level that is very nearly constant.
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Recall that in Chapter 7 we made use of the CONWIP protocol to control WIP so that
we could determine the relationships among WIP, cycle time, and throughput. We now
offer it as the basis of a practical WIP cap mechanism. First we describe it qualitatively,
and then we give a quantitative model for analyzing the performance of a CONWIP
line.

10.4.1 Basic Mechanics

We can envision a CONWIP line operating as depicted in Figure 10.3, in which departing
jobs send production cards back to the beginning of the line to authorize release of new
jobs. Note that this way of describing CONWIP implicitly assumes two things:

1. The production line consists of a single routing, along which all parts flow.

2. Jobs are identical, so that WIP can be reasonably measured in units (i.e.,
number of jobs or parts in the line).

If the facility contains multiple routings that share workstations, or if different jobs
require substantially different amounts of processing on the machines, then things are
not so simple. There are, however, ways to address these complicating factors. For
instance, we could establish CONWIP levels along different routings. We could also
state the CONWIP levels in units of “standardized jobs,” which are adjusted according
to the amount of processing they require on critical resources. We address these types of
implementation issues in Part III. For now, we focus on the single-product, single-routing
production line in order to examine the essential differences between CONWIP, kanban,
and MRP systems.

From a modeling perspective, a CONWIP system looks like a closed queueing

network, in which customers (jobs) never leave the system, but instead circulate around
the network indefinitely, as shown in Figure 10.4. Of course, in reality, the entering
jobs are different from the departing jobs. But for modeling purposes, this makes no
difference, because of the assumption that all jobs are identical.

In contrast, a pure push, or MRP, system behaves as an open queueing network, in
which jobs enter the line and depart after one pass (also shown in Figure 10.4). Releases
into the line are triggered by the material requirements plan without regard to the number
of jobs in the line. Therefore, unlike in a closed queueing network, the number of jobs
can vary over time.

Finally, Figure 10.4 depicts a (one-card) kanban system as a closed queueing net-

work with blocking. As in the closed queueing network model of a CONWIP system,
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jobs circulate around the network indefinitely. However, unlike the CONWIP system,
the kanban system limits the number of jobs that can be at each station, since the number
of production cards at a station establishes a maximum WIP level for that station. Each
production card acts exactly like a space in a finite buffer in front of the workstation. If
this buffer gets full, the upstream workstation becomes blocked.

10.4.2 Mean-Value Analysis Model

To analyze CONWIP lines and make comparisons with push systems, it is useful to have
a quantitative model of closed (CONWIP) systems, similar to Kingman’s equation model
we developed for open (push) systems in Chapter 8. For the case in which all stations
consist of single machines, we can do this by using a technique known as mean-value

analysis (MVA).1 This approach, which we used without specifically identifying it in
Chapter 7 to develop the throughput and cycle time curves for the practical worst case,
is an iterative procedure that develops the measures of the line with WIP level w in
terms of those for WIP level w − 1. The basic idea is that a job arriving to a station in a
system with w jobs in it sees the other w − 1 jobs distributed according to the average
behavior of a system with w − 1 jobs in it. This is exactly true for the case in which
process times are exponential (ce = 1). For general process times, it is only approximately
true. As such, it gives us an approximate model, much like Kingman’s model of open
systems.

1Unfortunately, MVA is not valid for the multimachine case. We can approximate a station with parallel
machines with a single fast machine (i.e., so the capacity is the same). But as we know from Chapter 7,
parallel machines tend to outperform single machines, given the same capacity. Therefore, we would expect
this approximation to underestimate the performance of a CONWIP line with parallel machine stations.
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Using the following notation to describe an n-station CONWIP line

u j (w) = utilization of station j in CONWIP line with WIP level w

CT j (w) = cycle time at station j in CONWIP line with WIP level w

CT(w) = ∑n
j=1 CT j (w) = cycle time of CONWIP line with WIP level w

TH(w) = throughput of CONWIP line with WIP level w

WIP j (w) = average WIP level at station j in CONWIP line with WIP level w

we develop an MVA model for computing each of the above quantities as functions of
the WIP level w . We give the details in the following technical note.

Technical Note

As was the case with Kingman’s model of open systems, the basic modeling challenge in
developing the MVA model of a closed system is to compute the average cycle time at a
single station. We do this by treating stations as if they behave as M/G/1 queues—that is,
are single-machine stations with Poisson arrivals and general (random) processing times.
Three key results for the M/G/1 queue are as follows:

1. The long-run average probability that the server is busy is

P(busy) = u

where u is the utilization of the station.

2. The average number of jobs in service (i.e., being processed, not waiting in the
queue) as seen by a randomly arriving job is

E[no. jobs in service] = P(busy) × 1 + [1 − P(busy)](0) = u

3. The average remaining process time of a job in service (which is zero if there is no
job in service) as seen by a randomly arriving job (see Kleinrock 1975 for details) is

E[remaining process time] = P(busy)E[remaining process time|busy]

≈ u
te(c2

e + 1)

2

Note that if ce = 1 (i.e., process times are exponential), then the expected remaining
process time, given the station is busy, is simply te (the average processing time of a
job that has just begun processing), which is an illustration of the memoryless
property of the exponential distribution. When ce > 1, the expected remaining
process time is greater than te, because randomly arriving jobs are more likely to
encounter long jobs in high-variability systems. Conversely, if ce < 1, then the
average remaining process time is less than te.

With these three properties, we can estimate the average time a job spends at station j in a
system with w jobs as the remaining process time of the job currently in service plus the time
to process the jobs in queue ahead of the arriving job plus the process time of the job itself.
Since the number of jobs in queue is the number of jobs at the station minus the one (if any)
in service, we can write this as

CT j (w) = E[remaining process time] + (E[no. jobs at station]

−E[no. jobs in service])te( j) + te( j)

Now, supposing that an arriving job in a line with w jobs sees the other jobs distributed
according to the average behavior of a line with w − 1 jobs and using the above expression



Chapter 10 Push and Pull Production Systems 367

for remaining process time, we can write this as

CT j (w) = u j (w − 1)
te( j)[c2

e ( j) + 1]

2
+ [WIP j (w − 1) − u j (w − 1)]te( j) + te( j)

= TH(w − 1)te( j)
te( j)[c2

e ( j) + 1]

2
+ [WIP j (w − 1) − TH(w − 1)te( j) + 1]te( j)

= t2
e ( j)

2
[c2

e ( j) − 1]TH(w − 1) + [WIP j (w − 1) + 1]te( j)

Note that we have substituted the expression for utilization u j (w) = TH(w)te( j). With this
formula for the cycle time at station j , we can easily compute the cycle time for the line (i.e.,
it is just the sum of the station cycle times). Knowing the cycle time allows us to compute
the throughput by using Little’s law (since the WIP level in a CONWIP line is fixed at w).
And finally, by using this throughput and the cycle time for each station in Little’s law, we
can compute the WIP level at each station.

Letting WIP j (0) = 0 and TH(0) = 0, the MVA algorithm computes the cycle time,
throughput, and station-by-station WIP levels as a function of the number of jobs in the
CONWIP line in iterative fashion by using the following:

CT j (w) = t2
e ( j)

2
[c2

e ( j) − 1]TH(w − 1) + [WIP j (w − 1) + 1]te( j) (10.1)

CT(w) =
n

∑

j=1

CT j (w) (10.2)

TH(w) = w

CT(w)
(10.3)

WIP j (w) = TH(w)CT j (w) (10.4)

These formulas are easily implemented in a spreadsheet and can be used to generate
curves of TH(w) and CT(w) for CONWIP lines other than the best, worst, and practical
worst cases. Buzacott and Shanthikumar (1993) have tested them against simulation
for various sets of system parameters and found that the approximation is reasonably
accurate for systems with c2

e ( j) values between 0.5 and 2.
To illustrate the use of equations (10.1) through (10.4), let us return to the Penny

Fab example of Chapter 7. Recall that the Penny Fab had four stations, each with average
process time te = 2 hours. Using the formulas of Chapter 7, we were able to plot TH(w)
and CT(w) for the particular situations represented by the best, worst, and practical worst
cases. Suppose, however, we are interested in considering the effect of speeding up one
of the stations (i.e., to create an unbalanced line) or reducing variability relative to the
practical worst case (PWC). Since the practical-worst-case formulas consider only the
balanced case with ce = 1 at all stations, we cannot do this with the Chapter 7 formulas.
However, we can do it with the MVA algorithm above.

Consider the Penny Fab with reduced variability (relative to the PWC) so that ce( j) =
0.5 for j = 1, . . . , 4. Starting with WIP j (0) = 0 and TH(0) = 0, we can compute

CT j (1) = t2
e ( j)

2
[c2

e ( j) − 1]TH(0) + [WIP j (0) + 1]te( j) = te( j) = 2
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for j = 1, . . . , 4. Since all stations are identical, CT(w) = 4CT j (w), and therefore
CT(1) = 8 hours. Throughput is

TH(1) = 1

CT(1)
= 1

8

and average WIP at each station is

WIP j (1) = TH(1)CT j (1) = ( 1
8 )(2) = 1

4

Having computed these for w = 1, we next move to w = 2 and compute the cycle time
at each station as

CT j (2) = t2
e ( j)

2
[c2

e ( j) − 1]TH(1) + [WIP j (1) + 1]te( j)

= 22

2
(0.52 − 1)

(

1

8

)

+
(

1

4
+ 1

)

2 = 2.313

So CT(2) = 4CT j (2) = 9.250 and TH(2) = 2/CT(2) = 0.216. Continuing in this fash-
ion, we can generate the numbers shown in Table 10.1.

Using the same procedure, we could also generate TH(w) and CT(w) for the case
in which we increase capacity, for instance, by reducing the average process time at
stations 1 and 2 from two hours to one hour. We have done this and plotted the results
for both the reduced variability case from Table 10.1 and the increased capacity case,
along with the best, worst, and practical worst cases, in Figure 10.5. Notice that both
cases represent improvements over the practical worst case, since they enable the line
to generate greater throughput for a given WIP level. In this example, speeding up two
of the stations produced a greater improvement than reducing variability on all stations.
Of course, in practice the outcome will depend on the specifics of the system. The MVA
model presented here is a simple, rough-cut analysis tool for examining the effects of
capacity and variability changes on a CONWIP line.

Now that we have models of both push and pull systems, we can make some com-
parisons to deepen our understanding of the potential benefits of pull systems. We begin
by comparing CONWIP with MRP and then contrast CONWIP with kanban.

Table 10.1 MVA Calculations for Penny Fab with ce( j) = 0.5

w TH(w) CT(w) CT j (w) WIP j (w)

1 0.125 8.000 2.000 0.250
2 0.216 9.250 2.313 0.500
3 0.280 10.703 2.676 0.750
4 0.325 12.318 3.080 1.000
5 0.356 14.052 3.513 1.250
6 0.378 15.865 3.966 1.500
7 0.395 17.731 4.433 1.750
8 0.408 19.631 4.908 2.000
9 0.418 21.555 5.389 2.250

10 0.426 23.495 5.874 2.500
11 0.432 25.446 6.362 2.750
12 0.438 27.406 6.852 3.000
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10.5 Comparisons of CONWIP with MRP

A fundamental distinction between push and pull systems is the following:

Push systems control throughput and observe WIP. Pull systems control WIP and observe
throughput.

For example, in MRP, we establish a master production schedule, which determines
planned order releases. These, in turn, determine what is released into the system. De-
pending on what happens in the line, however, the WIP level may float up and down over
time. In a pull system, the WIP level is directly controlled by setting the card counts. How-
ever, depending on what happens in the line, the output rate may vary over time. Which
approach is better? While this is not a simple question, we can make some observations.

10.5.1 Observability

First, and fundamentally, we note that WIP is directly observable, while throughput is
not. Hence, setting WIP as the control in a pull system is comparatively simple. We can
physically count jobs on the shop floor and maintain compliance with a WIP cap. In
contrast, setting the release rate in a push system must be done with respect to capacity.
If the rate chosen is too high, the system will be choked with WIP; too low, and revenue
will be lost because of insufficient throughput. But estimating capacity is not simple. A
host of detractors, ranging from machine outages to operator unavailability, are difficult
to estimate with precision. This fact makes a push system intrinsically more difficult to
optimize than a pull system.

What we are talking about here is a general principle from the field of control
theory. In general, it is preferable to control the robust parameter (so that errors are less
damaging) and observe the sensitive parameter (so that feedback is responsive), rather
than the other way around. Since WIP is robust and observable, while throughput is
sensitive and can be controlled only relative to the unobservable parameter of capacity,
this is a very powerful argument in favor of pull production systems.

10.5.2 Efficiency

A second argument in favor of pull systems is that they are more efficient than push
systems. By more efficient we mean that the WIP level required to achieve a given
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throughput is lower in a pull system than in a push system. To illustrate why this is
the case, we consider a CONWIP system like that shown in Figure 10.3 with a fixed
WIP level w , and we observe the throughput ˜TH(w). Then we consider the (pure push)
MRP system, like that shown in Figure 10.4, made up of the same machines as the
CONWIP line but with releases fed into the line at rate ˜TH(w). By conservation of
material, the output rate of the MRP system will be the same as the input rate, namely,
˜TH(w). So the CONWIP and MRP systems are equivalent in terms of throughput, and
the question of efficiency hinges on which achieves this throughput with less WIP.

Let us consider a specific example in which there are five single-machine stations
in tandem, each station processes jobs at a rate of 1 per hour, and processing times are
exponentially distributed. For this simple system, the throughput of the CONWIP system
as a function of the WIP level is given by the formula for the practical worst case from
Chapter 7, which reduces to

˜TH(w) = w

w + W0 − 1
rb = w

w + 4
(10.5)

If we fix the release rate into the push system to be TH, where times between releases are
exponential, then each station behaves as an independent M/M/1 queue, so the overall
WIP level is given by five times the average WIP level of an M/M/1 queue, which we
know from Chapter 8 is u/(1 − u), where u is the utilization level. Since, in this case,
the process time is equal to one and the arrival rate is equal to TH, u = TH. Therefore,
the average WIP for the system is

w̃(TH) = 5

(

u

1 − u

)

= 5

(

TH

1 − TH

)

(10.6)

Now suppose we choose w = 6 in the CONWIP system. By equation (10.5), the
throughput is ˜TH(6) = 0.6 job per hour. If we then fix TH = 0.6 in equation (10.6), we
see that WIP in the MRP system is w̃(0.6) = 7.5. Hence, the push system has more WIP
for the same throughput level.

Notice that the WIP level in the push system will be greater than w regardless of
the choice of w . To see this, we set TH = w/(w + 4) in equation (10.6):

w̃

(

w

w + 4

)

= 5[w/(w + 4)]

1 − w/(w + 4)
= 5w

4

So, in this example, for any throughput level the average WIP level in the push system
will be 25 percent higher than that in the CONWIP system.

Although the magnitude of the increase in WIP of the push system over the CONWIP
system obviously depends on the specific parameters of the line, this qualitative effect
is general, as we state in the following law.

Law (CONWIP Efficiency): For a given level of throughput, a push system will have
more WIP on average than an equivalent CONWIP system.

This law has an immediate corollary. When throughput is the same in the CONWIP
and MRP systems, then Little’s law and the fact that average WIP is greater in the MRP
system imply the following.

Corollary: For a given level of throughput, a push system will have longer average
cycle times than an equivalent CONWIP system.
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10.5.3 Variability

We can show that MRP systems also have more variable cycle times than equivalent
CONWIP systems. The reason for this is as follows. By definition, the WIP level in
a CONWIP system is fixed at some level w . This fact introduces negative correlation
between the WIP levels at different stations. For instance, if we know that there are w
jobs at station 1, then we are absolutely certain that there are no jobs at any other station.
In this case, knowledge of the WIP level at station 1 gives us perfect information about
the WIP levels at the other stations. However, even if we knew only that there were w/2
jobs at station 1 (in a 10-station line, say), then we would still gain some information
about the other stations. For instance, it is quite unlikely that any other station has all
w/2 of the other jobs. This negative correlation between WIP levels tends to dampen
fluctuations in cycle time.

In contrast, WIP levels at the individual stations are independent of one another in
a push system2; a large WIP level at station 1 tells us nothing about the WIP levels at
the other stations. Hence, it is possible for the WIP levels to be high (or low) at several
stations simultaneously. Since cycle times are directly related to WIP, this means that
extreme (high or low) cycle times are possible. The result is that cycle times are more
variable in a push system than in an equivalent pull system.

Increased cycle time variability means that we must quote longer lead times in order
to achieve the same level of customer service. This is because, to achieve a given level of
service, we must quote the mean cycle time plus some multiple of the standard deviation
of cycle time (where the multiple depends on the desired service level). For example,
Figure 10.6 illustrates two systems with a mean cycle time of 10 days. However, system
2 has a substantially higher standard deviation of cycle time than does system 1. To
achieve 90 percent service, system 1 must quote a lead time of 14 days, while system 2
must quote 23 days. The increased variability of the push system gives rise to a larger
standard deviation of cycle time. Notice that this is on top of the fact that, for a given
throughput, the average cycle time of the push system is longer than that in an equivalent
pull system. Thus, for the same throughput and customer service level, lead times will

2This observation is strictly true only if processing times are exponential, but is still much closer to being
true in the push system than in the pull system, even when processing times are not exponential.
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be longer in the push system for two reasons: longer mean cycle time and larger standard
deviation of cycle time.

10.5.4 Robustness

The most important advantage of a CONWIP system over a pure push system is neither
the reduction in WIP (and average cycle time) nor the reduction in cycle time variance,
important as these are. Instead, the key advantage of pull systems is their robustness,
which we can state as follows.

Law (CONWIP Robustness): A CONWIP system is more robust to errors in WIP
level than a pure push system is to errors in release rate.

To make the meaning of this law clear, we suppose the existence of a very simple
profit function of the form

Profit = pTH − hw (10.7)

where p is the marginal profit per job, TH is the throughput rate, h is a cost for each
unit of WIP (this includes costs for increased cycle time, decreased quality, etc.), and
w is the average WIP level. In the CONWIP system, throughput will be a function of
WIP, that is, ˜TH(w), and we will choose the value of w to maximize profit. In the push
system, average WIP is a function of release rate w̃(TH), and we will choose the value
of TH that maximizes profit.

It should be clear from our earlier law that the optimal profit will be higher in
the CONWIP system than in the push system (since the CONWIP system will have a
lower WIP for any chosen throughput level). However, the CONWIP robustness law is
concerned with what happens if w is chosen at a suboptimal level in the CONWIP system
or TH is chosen at a suboptimal level in the push system. Since WIP and throughput are
measured in different units, we measure suboptimality in terms of percentage error. We
do this for our previous example of five machines with exponential processing times of
1 hour and cost coefficients p = 100 and h = 1 in Figure 10.7.

We find that the best WIP level for the CONWIP system is 16 jobs, resulting in a
profit of $64.00 per hour. In the push system, the best TH turns out to be 0.776 job per
hour, yielding a profit of $60.30 per hour. Thus, as expected, the optimal profit level
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for the CONWIP system is slightly greater (around 6 percent) than the optimal level in
the push system. More important, however, is the fact that the profit function for the
CONWIP system is very flat between WIP levels as low as 40 percent and as high as 160
percent of the optimal level. In contrast, the profit function for the push system declines
steadily when the release rate is chosen at a level below the optimum and falls off sharply
when the release rate is set even slightly above the optimum level. In fact, profit becomes
negative when the release rate reaches 120 percent of the optimum level, while profit
in the CONWIP system remains positive until the WIP level reaches 600 percent of the
optimum level.3

These observations are particularly important in light of the observability issue we
raised earlier. As we noted, the optimal release rate in a push system must be set relative
to the real capacity of the system, which is not directly observable. Natural human
optimism, combined with an understandable desire to maximize revenue by getting as
much throughput out of the system as possible, provides strong incentive to set the
release rate too high. As Figure 10.7 shows, this is precisely the kind of error that is most
costly.

The CONWIP system, on the other hand, is controlled by setting the easily ob-
servable parameter of WIP level. This, combined with the flatness of the profit curve
in the vicinity of the optimum, means that achieving a profit close to the optimum
level will be much easier than in the push system. The practical consequence of all this
is that the difference in performance between a CONWIP and a pure push system is
likely to be substantially larger than indicated by a “fair comparison” of the type we
made by using equations (10.5) and (10.6). Hence, increased robustness is probably
the most compelling reason to use a pull system, such as CONWIP, instead of a push
system.

10.6 Comparisons of CONWIP with Kanban

As shown in Figure 10.4, CONWIP and kanban are both pull systems in the sense that
releases into the line are triggered by external demands. Because both systems establish
a WIP cap, they exhibit similar performance advantages relative to MRP. Specifically,
both CONWIP and kanban will achieve a target throughput level with less WIP than a
pure push system and will exhibit less cycle time variability. Moreover, since both are
controlled by setting WIP, and we know that WIP is a more robust control than release
rate, they will be easier to manage than a pure push system. However, there are important
differences between CONWIP and kanban.

10.6.1 Card Count Issues

The most obvious difference is that kanban requires setting more parameters than does
CONWIP. In a one-card kanban system, the user must establish a card count for every
station. (In a two-card system, there are twice as many card counts to set.) In contrast, in a
CONWIP system there is only a single card count to set. Since coming up with appropriate
card counts requires a combination of analysis and continual adjustment, this fact means
that CONWIP is intrinsically easier to control. For this reason, we view CONWIP as the
standard by which other systems should be evaluated. If one is to use a more complex pull
system than CONWIP, such as kanban, then that system’s performance should justify the

3Although we have offered only one example, this robustness result is quite general and does not depend
on the assumptions made here. See Spearman and Zazanis (1992) for details.
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added complexity. In Part III we will examine situations in which more complex systems
do indeed seem worthwhile. However, for this chapter we will continue to restrict our
scope to simple production lines with a series of workstations in tandem, to enable us to
make basic comparisons between CONWIP and kanban.

A second important difference between CONWIP and kanban systems, not obvious
from Figure 10.4, is that cards are typically part number–specific in a kanban system, but
line-specific in a CONWIP system. That is, cards in a kanban system identify the part for
which they are authorizing production. This is necessary in a multiproduct environment,
since a workstation must know which type of stock to replenish in its outbound stock
point. In a CONWIP system, on the other hand, cards do not identify any specific part
number. Instead, they come to the front of the line and are matched against a release

list, which gives the sequence of parts to be introduced to the line. This release list,
or sequence, must be generated by a module outside the CONWIP loop, in a manner
analogous to master production scheduling in an MRP system.4 Thus, depending on the
release list, each time a particular card returns to the front of a CONWIP line, it may
authorize a different part type to be released into the line.

The significance of this difference is manifested not in the mechanics of the work
release process, but in what it implies for the two systems. In its pure form, a kanban
system must include standard containers of WIP for every active part number in the
line. If it did not, a downstream workstation could generate a demand on an upstream
workstation that it could not meet. If, as we have seen in practice, the line produces
40,000 different part numbers, a Toyota-style kanban system would be swamped with
WIP. The problem is that most of the 40,000 part numbers, while active, are produced
only occasionally, in “onesies and twosies.” Hence, the kanban system unnecessarily
maintains WIP on the floor for many parts that will not be produced for months. But if
these low-demand parts were not stocked on the floor, then a demand at the end of the
line would generate unfilled demands at each station all the way back to the beginning
of the line. The time to start a job from the beginning of the line and run it all the way
through the line would be much longer than the normal response to demands at the end
of the line, and the just-in-time protocol would break down.

A CONWIP system, because of its use of line-specific cards and a release list, does
not have this problem. If the card count in a CONWIP line is w , then at most w jobs can
be in the line, where w will virtually always be much smaller than 40,000. If a part is
not required for 6 months, then it will not show up on the release list and therefore will
not be released into the line. When a demand for a low-volume part does show up, the
release list will send it into the line with an appropriate lead time to accommodate the
production time on the line. Hence, “just-in-time” performance can be maintained, even
for onesies and twosies.

However, we should point out that there is a fundamental difference between kanban
and CONWIP in that the lead time in a pure kanban system is zero while under CONWIP
it is small. This is the price that CONWIP pays to maintain flexibility. Kanban is a pure
make-to-stock system in which the part is supposed to be in the outbound stock point
when requested. CONWIP, on the other hand, keeps cycle times short by keeping WIP
levels low. If cycle times are short enough, there will be no need to change the sequence
of parts, and so the added flexibility is worth the added cycle time.

4The primary difference between developing a release list and an MPS is that a release list is a sequence
without times associated with jobs, while an MPS is a schedule that does indicate times for requirements. We
will discuss the distinction, as well as the relative advantages, of using a sequence versus a schedule in
Chapter 15.
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10.6.2 Product Mix Issues

The experts on kanban were clearly aware that it would not work in all production envi-
ronments. Hall (1983) pointed out that kanban is applicable only in repetitive manufac-

turing environments. By repetitive manufacturing, he meant systems in which material
flows along fixed paths at steady rates. Large variations in either volume or product
mix destroy this flow, at least when parts are viewed individually, and hence seriously
undermine kanban. CONWIP, while still requiring a relatively steady volume (i.e., a
level MPS), is much more robust to swings in product mix, as a result of the planning
capability introduced by the process of generating a release list.

A changing product mix may have more subtle consequences than simply elevating
the total WIP required in a kanban system. If the complexity of the different parts varies
(i.e., the parts require different amounts of processing on the machines), the bottleneck
of the line may change depending on product mix. For instance, consider the five-station
line shown in Figure 10.8. Product A requires 1 hour of processing on all machines except
machines 2 and 3, where it requires 3 and 2 1

2 hours, respectively. Product B requires
1 hour of processing on all machines except machines 3 and 4, where it requires 2 1

2 and
3 hours, respectively. Thus, if we are running product A, machine 2 is the bottleneck. If
we are running product B, machine 4 is the bottleneck. However, for mixes containing
between 25 and 75 percent of product A, machine 3 becomes the overall bottleneck.

To see this, consider a 50–50 mix of products A and B. The average processing
times on machines 2, 3, and 4 are

Average time on machine 2 = 0.5(3) + 0.5(1) = 2 hours

Average time on machine 3 = 0.5(2.5) + 0.5(2.5) = 2.5 hours

Average time on machine 4 = 0.5(1) + 0.5(3) = 2 hours

Only when the percentage of A exceeds 75 percent does the average time on machine 2 ex-
ceed 2 1

2 hours. Likewise, only when the percentage of B exceeds 75 percent (i.e., the per-
centage of A is less than 25 percent) does the average time on machine 4 exceed 2 1

2 hours.
In an ideal kanban environment, we would set the sequence of A and B to achieve a

steady mix; for example, for a 50–50 mix we would use a sequence of A-B-A-B-A-B-. . . .
In a nonideal environment, where the mix requirements are not steady (e.g., demand is
seasonal or forecasts are volatile), a uniform sequence may not be practical. However,
if we let the mix vary to track demand, this may cause problems with our card counts in
the kanban system. We generally want to put more production cards before and after the
bottleneck station, in order to protect it against starvation and blocking. But which is the
bottleneck—machine 2, machine 3, or machine 4? The answer, of course, depends on
the mix we are running. This means that the optimal card count allocation is a function
of mix. Hence, to achieve high throughput with low WIP, we may need to dynamically
vary the card counts over time. Since we have already argued that setting card counts in
a kanban system is not trivial, this could be a difficult task indeed.

CONWIP, however, has only a single card count. Therefore, as long as the desired
rate remains relatively steady, there is no need to alter the card count as the product mix
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changes. Moreover, the WIP will naturally accumulate in front of the bottleneck, right
where we need it.5 In our example, when we are running a mix heavy in product A,
machine 2 will be the slowest and therefore will accumulate the largest queue. When
the mix becomes heavy in product B, the largest queue will shift to machine 4. Happily,
this all happens without our intervention, because of the natural forces governing the
behavior of bottlenecks. Again, we can see that the CONWIP system is fundamentally
simpler to manage than a kanban system.

10.6.3 People Issues

Finally, we complete our comparison of CONWIP and kanban with two people-oriented
observations. First, the fact that kanban systems pull at every station introduces a certain
amount of stress into the system. Operators in a kanban system who have raw materials
but no production card cannot begin work. When the production card arrives, they must
replenish the void in the system as quickly as possible, in order to prevent starvation
somewhere in the line. As Klein (1989) has pointed out, this type of pressured pacing
can serve as a significant source of operator stress.

In contrast, a CONWIP system acts as a push system at every station except the first
one. When operators of midstream machines receive raw materials, they are authorized
to work on them. Hence, the operators can work ahead to the maximum extent permitted
by material availability and therefore will be subject to less pacing stress. Of course, at
the first station of a CONWIP line, the operators are able to work only when authorized
by a production card, so they have virtually identical working conditions to the operator
of the first station in a kanban line. This is unavoidable if we are to establish a WIP cap.
Thus, the CONWIP line may still introduce a certain amount of pacing stress, but less
than a kanban line.

Our second people-oriented observation is that the act of pulling at each station in a
kanban line may foster a closer relationship between operators of adjacent workstations.
Since operators must pull needed parts in a kanban system, they will communicate
with the operators of upstream machines. This provides an opportunity to check parts
for quality problems and to identify and discuss any problems with adhering to the
production rate. We have frequently heard this benefit cited as motivation for using a
pure kanban system.

While we acknowledge that the communication and learning benefits of having
operators of adjacent workstations interact can be significant, we question whether the
kanban pull discipline is necessary to achieve this. Whether or not a kanban mechanism
is being used between two stations, a transfer of parts from the upstream station to the
downstream station must occur. To prevent transfer of bad parts, a “buy-sell” protocol,
in which the downstream operator refuses to accept the parts if they do not meet quality
specifications, can be used with or without kanban. To motivate workers to cooperate
in solving flow-related problems, one must foster a line-wide perspective among the
operators. Instead of the kanban focus on keeping outbound stock points full, a CONWIP
system needs a focus on adhering to the desired production rate. If operators need to float
among workstations to promote this, fine. There are a host of ways work assignments
might be structured to achieve the overall goal of a steady output rate. Our point is merely
that while the kanban pull mechanism may be one way to promote cooperation among
operators, it is not the only one. Given the logistics and simplicity considerations favoring

5Note that blocking is not a problem in a CONWIP system, since there are no interstation card counts to
restrict the transfer of completed jobs to the next station.
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CONWIP, it may be worthwhile to pursue these other learning motivators, rather than
implementing a rigid kanban protocol.

10.6.4 The Inventory/Order Interface

At the beginning of this chapter we noted that push systems schedule work releases ac-
cording to information from outside the production system, while pull systems authorize
work releases based on system status. However, while the initial release into the produc-
tion line can be based on either external demand or internal inventory levels, at some
point the product flow must be connected to demand. At the very least, the last step, in
which a customer purchases the product, is triggered solely by demand. This observation
has led some authors (e.g., Lee and Billington 1995 and ourselves in earlier editions of
this book) to define the point in the product flow where the reason for movement switches
from filling a stock void to filling a customer order as the “I/O interface.”

However, while linking releases to stock voids in a line guarantees a WIP cap,
linking further moves to customer orders does not necessarily imply the absence of a
WIP cap. For instance, if the system limits the number of customer orders, then the WIP
in the make-to-order portion of the line may be capped. Since this would not correspond
with the definition of a push system, we avoid use of the term I/O interface and term
the point at which flows shift from make-to-stock to make-to-order the inventory/order
(I/O) interface.

To illustrate the concept of the I/O interface in concrete terms we consider the
two systems depicted in Figure 10.9. In the front part of the QuickTaco line, tacos are
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produced to stock, to maintain specified inventory levels at the warming table, which
makes this portion of the line make-to-stock. The back of the line moves product (tacos)
only when triggered by customer orders, and hence in make-to-order fashion. In this
system, therefore, the I/O interface lies at the warming table. In contrast, the movement
of tacos in the TacoUltimo line is triggered solely by customer orders, so it is entirely a
make-to-order system. The I/O interface lies at the refrigerator, where raw materials are
stocked according to inventory targets.

By contrasting the relative advantages of the QuickTaco and TacoUltimo lines,
we can gain insight into the trade-offs involved in positioning the I/O interface. The
TacoUltimo line, because it is entirely order-driven and holds inventory almost exclu-
sively in the form of raw materials, has the advantage of being very flexible (i.e., it
can produce virtually any taco a customer wants). The QuickTaco line, because it holds
finished tacos in stock, has the advantage of being responsive (i.e., it offers shorter lead
times to the customer). Hence, the trade-off is between speed and flexibility. By moving
the I/O interface closer to the customer, we can reduce lead times, but only at the expense
of reducing flexibility.

So how does one choose the location of the I/O interface for a given system? Since it
depends on both customer preferences and the physical details of the production process,
this is not a simple question. But we can offer some observations and some real-world
examples.

First, note that the primary reason for moving the I/O interface closer to the customer
is speed. So it only makes sense to do it when the additional speed will produce a
noticeable improvement in service from the perspective of the customer. For instance, in
a production system with 2-hour cycle times within the line but which makes end-of-day
shipments, customers might not see any difference in lead times by shortening cycle time
in the line through an I/O interface shift. Even in the fast-food industry, where speed is
clearly critical, there are restaurants that make use of a TacoUltimo type of line. They do
this by making sure that the cycle time of the entire line is sufficiently short to enable the
system to meet customer expectations. However, during rush hour, when the pressure
for speed is especially great, many TacoUltimo-type fast-food restaurants shift to the
QuickTaco mode.

Second, observe that the options for positioning the I/O interface are strongly af-
fected by the process itself. For instance, in the taco line, we could propose an I/O
interface somewhere in the middle of assembly. That is, cook the tortilla shell and fill it
with meat, but leave it open, waiting for toppings. However, this would present storage
and quality problems (e.g., partially assembled tacos falling apart) and hence is probably
infeasible.

Third, notice that the economics of I/O interface placement are affected by how
the product proliferates (i.e., is customized into more and more specialized forms) as
it progresses through the system. In a system with very few end items (e.g., a plywood
mill that takes a few raw materials like logs and glue and produces a few different
thicknesses of plywood), it may be perfectly sensible to set the I/O interface at finished
goods. However in a system whose products proliferate into many end items (e.g., a
PC assembly plant, where components can be combined into a wide range of finished
computers), holding inventory at the finished goods level would be very expensive (see
the safety stock aggregation example in Section 8.8.2). For example, in the taco system,
locating the I/O interface after packaging is probably a bad idea, since it would require
stocking bags of tacos in all needed sizes and combinations. Figure 10.10 illustrates how
the appropriate position of the I/O interface for selected products is affected by the need
for speed and product proliferation.
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Finally, note that the issue of customization is closely related to the issue of vari-
ability pooling, which we introduced in Chapter 8. In a system in which the product
becomes increasingly customized as it progresses down the line, moving the I/O inter-
face upstream can reduce the amount of safety stock that needs to be carried as protection
against demand variability. For example, Benetton made use of a system in which undyed
sweaters were produced to stock and then “dyed to order.” That is, they moved the I/O
interface from behind the dying process to in front of it. In doing so, they were able to
pool the safety stock for the various colors of sweaters and thereby reduce inventory
costs of achieving a given level of customer service.

Some other real-world examples in which the I/O interface was relocated to improve
overall system performance include the following:

1. IBM had a printed-circuit board plant that produced more than 150 different
boards from fiberglass and a few thicknesses of copper. The front part of the
line produced core blanks—laminates of copper and fiberglass from which all
circuit boards are made. There were only about eight different core blanks,
which were produced in an inherently batch lamination process that was
difficult to match to customer orders. Management elected to stock core
blanks (i.e., move the I/O interface from raw materials to a stock point beyond
the lamination process). The result was the elimination of a day or two of
cycle time from the lead time perceived by customers at the cost of very little
additional inventory.

2. General Motors introduced a new vehicle delivery system, starting with
Cadillac in Florida, in which popular configurations were stocked at regional
distribution centers (Wall Street Journal, October 21, 1996, A1). The goal was
to provide 24-hour delivery to buyers of these “pop cons” from any dealership.
Lead times for other configurations would remain at the traditional level of
several weeks. So, unlike in a traditional system, in which the I/O interface is
located at the assembly plant (for build-to-order vehicles) and at the
dealerships (for build-to-stock vehicles), this new system places the I/O
interface at the regional distribution centers. The hope was that by pooling
inventory across dealerships, General Motors would be able to provide quick
delivery for a high percentage of sales with lower total inventory costs. Note
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that this example illustrates that it is possible, even desirable, to have different
locations for the I/O interface for different products in the same system.

3. Hewlett-Packard produced a variety of printers for the European market.
However, because of varying voltage and plug conventions, printers required
different power supplies for different countries. By modifying the production
process to leave off the power supplies, Hewlett-Packard was able to ship
generic printers to Europe. There, in the distribution centers, power supplies
were installed to customize the printers for particular countries (see Lee,
Billington, and Carter 1993 for a discussion of this system). By locating the
I/O interface at the Europe-based distribution center instead of at the
America-based factory, the entire shipping cycle time was eliminated from the
customer lead time. At the same time, by delaying customization of the
printers in terms of power supply, Hewlett-Packard was able to pool inventory
across countries. This is an example of postponement, in which the product
and production process are designed to allow late customization.
Postponement can be used to facilitate rapid customer response in a highly
customized manufacturing environment, a technique sometimes referred to as
mass customization (Feitzinger and Lee 1997).

10.7 Conclusions

In this chapter, we have made the following basic points:

1. Push systems schedule the release of work on the basis of demand
information, while pull systems authorize the release of work on the basis of
inventory status within the system.

2. The “magic” of pull systems is that they establish a WIP cap, which prevents
producing unnecessary WIP that does not significantly improve throughput.
Pulling is just a means to an end. The result is that pull systems reduce average
WIP and cycle times, reduce variability of cycle times, create pressure for
quality improvements and (by decreasing WIP) promote more effective defect
detection, and increase flexibility for accommodating change.

3. The simplest mechanism for establishing a WIP cap is CONWIP (constant
work in process), in which the WIP level in a line is held constant by
synchronizing releases to departures.

4. CONWIP exhibits the following advantages over a pure push system:
(a) The WIP level is directly observable, while the release rate in a push

system must be set with respect to (unobservable) capacity.
(b) It requires less WIP on average to attain the same throughput.
(c) It is more robust to errors in control parameters.
(d) It facilitates working ahead of a schedule when favorable circumstances

permit it.

5. CONWIP exhibits the following advantages over a pure kanban system:
(a) It is simpler in the sense that it requires setting only a single card count

instead of a card count for each workstation.
(b) It can accommodate a changing part mix because of its use of line-specific

cards and a release list.
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(c) It can accommodate a floating (mix-dependent) bottleneck, because of the
natural tendency of WIP to accumulate in front of the slowest machine.

(d) It introduces less operator stress because of a more flexible pacing
protocol.

6. The inventory/order (I/O) interface describes the point in all production
systems in which the trigger for material flow shifts from make-to- stock to
make-to-order. Adjusting the location of the I/O interface alters the balance
between speed and flexibility. By combining product and process changes
with a repositioning of the I/O interface, firms can often provide improved
customer service at little or no extra cost.

While these observations are based on highly simplified versions of pure push, pure
kanban, and pure CONWIP, they contain essential Factory Physics insights. We will turn
to the problem of putting these insights into practice in messy, real- world environments
in Part III.

Study Questions

1. Is MRP/ERP as practiced in industry a pure push system under the definition used here? Why
or why not?

2. Why is WIP more easily observable than throughput?

3. When controlling a system subject to randomness, why does it make sense to control the
robust parameter and observe the sensitive one, rather than the other way around?

4. Why are pull systems more robust than push systems? What practical consequences does this
have for manufacturing plants?

5. Suggest as many mechanisms as you can by which a firm could establish a WIP cap for a
production line.

6. A potential benefit of “pulling everywhere” in a kanban system is that it promotes
communication between stages of the line. How important is the pull mechanism to this
communication? Can you suggest other procedures for improving communication?

7. How can piecework incentive systems be counterproductive in a pull environment? What
other forms of compensation or incentive systems may be more suitable?

Problems

1. Consider a production system that consists of a single station with a production rate of 1 part
per minute and process variability given by ce = 1.
(a) Suppose the system is run as a push line with release rate of 0.9 parts per hour and

ca = 1. Use the VUT equation to compute the average cycle time and the average number
of parts in the system. Then calculate what happens to the average cycle time and number
of parts in the system if process variability is eliminated so that ce = 0 (but arrival
variability is unchanged).

(b) Now suppose the system is run as a CONWIP line with a WIP level of 1 job and has
original variability levels ce = ca = 1. What is the average throughput rate and cycle
time? What happens to throughput and cycle time if we eliminate process variability so
that ce = 0?

(c) Which system is more efficient in terms of generating high throughput with low WIP?
(d) How does the impact of variability differ in the push and pull systems? What about this

example made the difference so pronounced?

minute and
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2. Consider a production line with three single-machine stations in series. Each has processing
times with mean 2 hours and standard deviation of 2 hours. (Note that this makes it identical
to the line represented in the practical worst case of Chapter 7.)
(a) Suppose we run this line as a push system and release jobs into it at a rate of 0.45 per

hour with arrival variability given by ca = 1. What is the average WIP in the line?
(b) Compute the throughput of this line if it is run as a CONWIP line with a WIP level

equal to your answer in (a). Is the throughput higher or lower than 0.45? Explain this
result.

3. Consider the same production line as in Problem 2. Suppose the marginal profit is $50 per
piece and the cost of WIP is $0.25 per piece per hour.
(a) What is the profit from the push system if we set TH = 0.4?
(b) What is the profit from the pull system if we set WIP = 12? How does this compare to

the answer of (a) and what does it imply about the relative profitability of push and pull
systems?

(c) Increase TH in (a) by 20 percent to 0.48, and compute the profit for the push system.
Increase WIP in (b) by 25 percent to 15, and compute the profit for the pull system.
Compare the difference to the difference computed in (b). What does it imply about the
relative robustness of push and pull systems?

4. Consider the same production system and profit function as in Problem 3.
(a) Compute the optimal throughput level operating as a push system and the optimal WIP

level operating as a CONWIP system. What is the difference in the resulting profit
levels?

(b) Suppose the process times actually have a mean and standard deviation of 2.2 hours, but
the throughput used for the push system and the WIP level used for the pull system are
computed as if the process times had a mean and standard deviation of 2 hours [i.e., were
equal to the levels computed in (a)]. Now what is the profit level in the push and pull
systems, and how do they compare? Repeat this calculation for a system in which
processing times have a mean and standard deviation of 2.4 hours. What happens to the
gap between the profit in the push and pull systems?

5. In the practical worst case, it is assumed that the line is balanced (that is, te( j) = t for all j)
and that processing times are exponential (that is, ce( j) = 1 for all j). Show that under these
conditions, the MVA formulas for CT(w) and TH(w) reduce to the corresponding formulas
for the practical worst case

CT(w) = T0 + w − 1

rb

TH(w) = w

W0 + w − 1
rb

Hint: Note that because the line is balanced, T0 = nt and rb = 1/t , where n is the number of
stations in the line.

6. Implement MVA formulas (10.1) to (10.4) in a spreadsheet for the Penny Fab example with
te( j) = 2 hours and ce( j) = 0.5 for j = 1, . . . , 4. (You can validate your model by checking
against Table 10.1.) Now change the coefficients of variation, so that ce( j) = 1 for
j = 1, . . . , 4 and compare your results to the practical worst case. Are they the same?
(If not, you have a bug in your model.) Use the case with ce( j) = 1 as your base case for the
questions below.
(a) Make the following changes one at a time and observe the effects on TH(w):

(i) te(1) = 2.5
(ii) te(3) = 2.5
Is there a difference between having the bottleneck at station 1 or station 3? Explain why
or why not.
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(b) Leaving te(3) = 2.5 and all other te( j) = 2, make the following changes one at a time,
and observe the effects on TH(w).
(i) ce(1) = 0.25

(ii) ce(3) = 0.25
Is it more effective to reduce variability at the bottleneck (station 3) or at a
nonbottleneck? Explain.

(c) Again leaving te(3) = 2.5 and all other te( j) = 2, suppose that for the same amount of
money you can speed up station 2, so that te(2) = 0.25, or you can reduce variability at
all nonbottleneck machines, so that ce( j) = 0.5 for j = 1, 2, 4. Which would be the
better investment and why?



C H A P T E R

11 The Human Element

in Operations

Management

For as laws are necessary that good manners may be preserved, so there is a need of
good manners that laws may be maintained.

Machiavelli

We hold these truths to be self-evident.
Thomas Jefferson

11.1 Introduction

We begin by noting what this chapter is not. Clearly, on the basis of its short length

alone, this chapter cannot provide any kind of comprehensive treatment of human issues

in manufacturing management. We are not attempting to survey organizational behavior,

human factors, industrial psychology, organization theory, applied behavioral science,

or any of the other fields in which human issues are studied. Important as they are, this

is a book on operations management, and we must adhere to our focus on operations.

Even in an operations book, however, we would be remiss if we were to leave the

impression that factory management is only a matter of clever mathematical modeling

or keen logistical insight. People are a critical element of any factory. Even in modern

“lights out” plants with highly automated machinery, people play a fundamental role

in machine maintenance, material flow coordination, quality control, capacity planning,

and so on. No matter how sophisticated a physical plant, if the humans in it do not

work effectively, it will not function well. In contrast, some plants with very primitive

hardware and software are enormously effective, in a business strategy context, precisely

because of the people in them.

What we offer here is a factory-physics perspective on the role of humans in manu-

facturing systems. Recall that the fundamental premise of Factory Physics is that there are

natural laws or tendencies that govern the behavior of plants. Understanding these laws

and working with them facilitate better management policies. Analogous to these physi-

cal laws, we feel that there are natural tendencies of human behavior, or “personnel laws,”

that significantly influence the operation of a factory. In this chapter, we observe some of

the most basic aspects of human behavior as they relate to operations management. It is

our hope that this cursory treatment will inspire the reader to make deeper connections

between the subject material of this book and that of the behavioral disciplines.

384
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11.2 Basic Human Laws

Part of the reason why we feel the brief treatment we are about to give the human

element of the factory can be useful is that poor operations decisions are generally not

misguided because of a lack of appreciation of subtle psychological details; they are

frequently wrongheaded because of a wholesale inattention to fundamental aspects of

human nature. We offer examples later. For now we start with some basics.

11.2.1 The Foundation of Self-Interest

Because the study of human behavior is well-trod territory, we could offer a host of

historical perspectives on what is elemental. For instance, we could start with something

like

Self-preservation is the first of laws.
John Dryden, 1681

Indeed, a variation on this, with a little more institutional relevance, is our first personnel

law.

Law (Self-Interest): People, not organizations, are self-optimizing.

By this statement we merely mean that individuals make their choices in accordance

with their preferences or goals, while organizations do not. Of course, an individual’s

preferences may be complex and implicit, making it virtually impossible for us to trace

each action to a well-defined motive. But this is beside the point, which is that orga-

nizations made up of people will not necessarily act according to organizational goals.

The reason is that the sum of the actions that improve the well-being of the constituent

individuals is by no means guaranteed to improve the well-being of the organization.

The self-interest law may appear entirely obvious. Indeed, examples of behavior

that is self-optimizing from an individual standpoint but suboptimal from a company

perspective are prevalent throughout industry. A product designer may design a difficult-

to-manufacture product because her goals are to optimize the design of the product with

respect to performance. A salesperson may push a product that requires capacity that is

already overloaded because his goal is to maximize sales. A manufacturing manager may

make long product runs before changing over the line because her goal is to maximize

throughput. A repairman may stock excessively large amounts of inventory because his

goal is to effect repairs as rapidly as possible. Undoubtedly anyone with experience in a

plant has observed many more examples of counterproductive behavior that is perfectly

logical from an individual perspective.

In spite of such readily available examples, we frequently act as though the above

law were not true. As a result, we carry an implicit model of the factory too far. The

specific model of the factory to which we refer is that of a constrained optimization

problem. A constrained optimization problem is a mathematical model that can be

expressed as

Optimize objective

Subject to constraints

In any operations management book, including this one (see, e.g., Chapters 15,

16, and 17), one will find several examples of constrained optimization problems. For

instance, in an inventory management situation, we might want to minimize inven-

tory investment subject to achieving a minimum level of customer service. Or, in a
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Figure 11.1

An example of a

constrained optimization

model.

capacity-planning problem, we might want to maximize throughput subject to a con-

straint on budget and product demand. There are many other operations problems that

can be usefully characterized as constrained optimization models.

Perhaps precisely because constrained optimization models are so common in op-

erations, in this field one often sees the manufacturing enterprise itself expressed as a

constrained optimization problem (see, e.g., Goldratt 1986). The objective is to maximize

profit, and the constraints are on physical capacity, demand, raw material availability,

and so forth. Although it may sometimes be useful to think of a plant in this manner, the

analogy can be dangerous if one forgets about the above personnel law.

In a mathematical optimization model, eliminating or relaxing a constraint can

only improve the solution. This property follows from the fact that the constraints in

a mathematical model geometrically define a feasible region. Figure 11.1 represents a

special case of a constrained optimization model, called a linear program, in which the

objective and constraints are linear functions of the decision variables (see Appendix

16A for an overview of linear programming). The shaded area represents the set of

points that satisfy all the constraints, that is, the feasible region. The “best” point in the

feasible region (point A in Figure 11.1) is the optimal solution to the problem. If we relax

a constraint, the feasible region grows, adding the shaded area in the figure. Thus, the

original optimum is still available, as are additional points, so things cannot get worse.

In this case, the objective is improved by moving to point B.

This behavior is a powerful underpinning of an elaborate theory of sensitivity analy-

sis of constrained optimization models. Indeed, in many models it is possible to go so far

as to characterize how much the objective function will improve if a constraint is relaxed

slightly. However, it is important to note that this behavior holds only because we are

assuming that we find the best solution in the feasible region. For instance, in Figure 11.1,

we assumed that we had found the best point, point A, before we relaxed a constraint,

and therefore we could still find point A if we wanted to, after the constraint was relaxed.

Moreover, we would forsake point A only if we could find a better point, namely, point B.

If we were not guaranteed to find the optimal point in the feasible region, then removing

or relaxing a constraint might well lead us to an even more suboptimal solution.

In mathematics, of course, it is a given that we will find the optimum point subject to

the constraints. But the significance of the preceding law is that organizations, including

manufacturing systems, do not naturally seek the optimum within the feasible region.
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There is no guarantee whatsoever that the product mix of a plant is optimal in any precise

sense. Nor are many other attributes, including throughput, WIP, quality level, product

design, work schedule, marketing strategy, and capacity plan, likely to be optimized

from a profit standpoint. Therefore, there is no guarantee that relaxing a constraint will

improve the system.

Perhaps, as a complex system involving people, a factory is better likened to society

than to an optimization model. Society has many constraints, in the form of laws and

other behavioral restrictions. And while one might reasonably debate the appropriateness

of any given law, virtually no one would argue that society would be better off with no

laws at all. We clearly need some constraints to keep us from extremely bad solutions.

The same is true for manufacturing systems. There are many cases in which addi-

tional constraints actually improve the behavior of the system. In production control,

a CONWIP system places constraints on the movement of material through the plant

and, as we discussed in Chapter 10, works better than a pure push system without these

constraints. In product design, restricting engineers to use certain standardized holes,

bolts, and brackets specified by the computer-aided design (CAD) system can force them

to design parts that are easier and less costly to manufacture. In sales, forcing represen-

tatives to coordinate their offerings with plant status may reduce their individual sales

but increase the profitability of the plant. All manufacturing plants make use of a wide

range of perfectly reasonable constraints on the system.

The point of all this is that, despite the claims of some popular manufacturing

gurus, improving a manufacturing system is not simply a matter of removing constraints.

Certainly some improvements can be characterized in this way. For instance, if we

are seeking to improve throughput, relaxing the constraint imposed by the bottleneck

machine by adding capacity may be a reasonable option. However, improving throughput

may also be achieved by working on the right parts at the right time, behavior that

may require adding constraints to achieve.1 Realistically, the manufacturing system will

not be “optimized” to start with, nor will it be “optimized” after improvements are

made. The best we can do is to keep our minds open to a broad range of improvement

options and select in a coherent manner. Ultimately, good management is more a matter

of choosing appropriate incentives and restrictions than one of removing constraints.

However, narrowing our vision by using an overly restrictive view of the factory is one

constraint we can do without.

11.2.2 The Fact of Diversity

All of us, as human beings, have so much in common that it is tempting to generalize.

Countless philosophers, novelists, songwriters, and social scientists down through the

centuries have made a living doing just that. However, before we follow suit and succumb

to the urge to treat humans as just another element in our mathematical representations

of the factory, we pause to point out the obvious.

Law (Individuality): People are different.

Besides making life interesting, this personnel law has a host of ramifications in the

factory. Operators work at different rates; managers interact differently with workers;

employees are motivated by different things. While we all know this, it is important

1We suppose that one might characterize this type of improved coordination as removing an information

constraint, but this seems overly pedantic to us.
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not to forget it when drawing conclusions from simplified models or evaluating staffing

requirements in terms of standardized job descriptions.

The most apparent difference between people in the workplace lies in their level of

ability. Some people simply do a job better than others. We have observed huge differ-

ences between the work pace of different workers on the same manual task. Differences

in experience, manual dexterity, or just sheer discipline may have accounted for this. But

regardless of the cause, such differences exist and should not be ignored.

As noted in Chapter 1, Taylor acknowledged the inherent differences between work-

ers. His response was to have managers train workers in the proper way to do their tasks.

Those who responded by achieving the standard work rate set by management would be

termed “first-class men,” and everyone else would be fired. In addition to the threat of

termination, Taylor and his industrial engineering descendants made use of a variety of

incentive schemes to motivate workers to achieve the desired work pace. More recent

participative management styles have promoted less reliance on incentive systems and

more on teamwork and the use of skilled workers to train their colleagues. But regardless

of how the selection, compensation, and training of workers are done, differences persist

and sometimes they matter.

A specific example of a manufacturing system in which worker differences have a

significant impact on logistics decisions is the bucket brigade system (Bartholdi and

Eisenstein 1996). This system was motivated by the Toyota Sewn Products Manage-

ment System, which was commercialized by Seiki Co., a subsidiary of Toyota, for the

production of many types of sewn products. Variants of it have been used in a wide

range of environments including warehouse picking and sandwich assembly (at Sub-

way). The basic system, depicted in Figure 11.2, works as follows. Workers stay with a

job, carrying it from one machine to the next, until they are preempted by a downstream

Station 1

Station 2

Station 3

Station 4

Station 5 Station 6 Station 7

Raw materials

Finished

goods

Worker 1

Worker 2 Worker 3

Figure 11.2

The bucket brigade

system.



Chapter 11 The Human Element in Operations Management 389

worker. For instance, whenever the last worker in the line (worker 3) completes a job,

she walks up the line to the next worker (worker 2) and takes over his job. She then takes

this job through each stage in the line from where she got it to the end of the line. The

preempted worker (worker 2) similarly goes upstream to the next worker (worker 1) and

takes over his job. He will then continue with that job until preempted by the downstream

worker (worker 3). At the beginning of the line, worker 1 starts a new job and carries it

downstream as far as he can before being preempted by worker 2.

Because each step in the line involves similar skills (i.e., use of a sewing machine

in a Sewn Products System, picking parts in a warehouse, or assembling a sandwich at

Subway), a worker who is adept at one stage is likely to be adept at all of them. Thus,

workers can be rank-ordered according to their work speed. Bartholdi and Eisenstein

(1996) have shown that arranging workers from slowest to fastest (i.e., worker 1 is the

slowest and worker 3 is the fastest) naturally balances the production line and is guar-

anteed to be close to optimal (in the sense of maximizing throughput). Their empirical

studies of companies using the bucket brigade type of systems support the conclusion

that a slowest-to-fastest assignment of workers is an effective policy. This work is an

excellent example of how mathematical models can be used to help manage a system

involving differing skill levels.

Other differences in human ability levels beyond simple variations in work pace can

also have important consequences for operations management decisions. For instance, a

manager with a remarkable memory and a “gift” for manipulating a schedule may make

a scheduling system appear effective. But when another manager takes over, things may

deteriorate drastically. While the new manager is likely to be blamed for not matching

the performance of the genius predecessor, the real fault may well lie in the scheduling

system.

Several years ago, we observed an example along these lines of a disaster waiting

to happen in a small plant that manufactured institutional cabinetry from sheet metal.

The plant used a computerized production control system that generated “cutting orders”

for the presses, detailing the shape of each sheet-metal component required to build the

end products. These components were cut and sent in unordered stacks on carts to the

assembly area. At assembly, the computer system provided only a list of the finished

product requirements, with no guidance regarding which components were needed for

each product. The only bill-of-materials information available was contained in the head

of a man named John. John looked at the list of products and then put together “kits”

of components for each. Having worked in the plant for decades, he knew “by heart”

the requirements for the entire list of products made by the plant. No one else in the

entire organization had John’s expertise. When John was sick, productivity dropped

dramatically as others floundered around to find components. Although management

seemed satisfied with the system, our guess was that because John was in his middle

60s, their satisfaction would not last long.

Beyond variations in skill or experience, people also differ with respect to their basic

outlook on life. The basic American axiom that “all men are created equal” does not

imply that all people want the same thing. For better or worse, we have observed a funda-

mental distinction between peoples’ attitudes toward their job. Some want responsibility,

challenge, and variety in their jobs; others prefer stability, predictability, and the ability to

leave their work behind at the end of the day. The military has explicitly recognized this

distinction with its definition of the respective roles of officers and enlisted personnel.

Officers have great authority, but are also ultimately responsible for anything done by

those under their command. Enlisted personnel, however, are given little authority and

are held responsible only for following rules and orders.
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Some writers seem to feel that everyone should belong to the first category, and that

only the lack of a supportive environment condemns them to the second category. For

instance, Douglas McGregor (1960) proposed the theory Y approach to management on

the assumption that workers are better motivated by responsibility and challenge than by

the fear and financial incentives of traditional management, which he terms theory X.

While it may be true that theory Y management practices can induce more workers to take

an officer’s view of work, it is our opinion that there will always be workers—including

very good ones—who will adhere to the enlisted’s view.

In the factory, the distinction between people who identify with the officer’s view

and people who identify with the enlisted’s view implies that pushing responsibility for

decision making down to the level of the worker will have varying success, depending

on the workers. Many of the Japanese manufacturing techniques that give machine

operators responsibility for quality control, problem identification, or stopping the line

when problems occur are based on the assumption that workers want this responsibility.

In our experience this is often the case, but not always. Some individuals blossom when

given added responsibility and authority; others chafe and wither under the strain. A key

individual who is not inclined to accept additional responsibility can seriously undermine

techniques that rely on worker empowerment. This is a consideration that must be given

attention when new operating policies are implemented. New procedures may require

retraining or rotation of workers. There is certainly a place for “enlisted” and “officer”

workers in a plant, but having an enlisted worker in an officer’s job, or vice versa, can

make even good operating policies go bad.

As a final observation on human differences, we note that the fact that individuals

differ in their perspectives toward life and work implies that they also differ in their

response to various forms of motivation. As we noted in Chapter 1, Taylor’s view that

workers are motivated almost solely by money has been largely discredited. The work

of Hugo Munsterberg (1913), Lillian Gilbreth (1914), Elton Mayo (1933, 1945), and

Mary Parker Follett (1942) provided convincing evidence that workers are motivated by

social aspects of work, in addition to financial gain. Clearly, the relative weights that

individuals attach to monetary and social considerations differ. But the important point

from an operations standpoint is that there are nonfinancial ways to motivate workers

to participate in new systems. Awards, ceremonies, increased job flexibility, recognition

in company newsletters, and many other creative options can be effective, provided

that they are used in an atmosphere of genuine respect for the worker. As industry

has moved toward the use of pull systems—in which the uncoordinated production of

parts promoted by piecework incentive systems can be particularly destructive—such

nonmonetary motivational techniques have become increasingly important.

11.2.3 The Power of Zealotry

As we alluded to in Part I of this book, recent years have seen a crush of activity in the

factory. From the MRP crusade of the 1970s, to the JIT and TQM revolutions of the

1980s, to the TBC (time-based competition) and BPR (business process re-engineering)

movements of the 1990s, manufacturing managers have been under constant pressure

to change the way they do things. As a result, firms have altered the responsibilities of

various positions, established new positions, and set up transition teams to carry out the

desired changes. Under these conditions, the role of the person in charge of the change

is enormously important. In fact, we go so far as to state the following personnel law.

Law (Advocacy): For almost any program, there exists a champion who can make it
work—at least for awhile.
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Obviously, many programs of change fail in spite of the existence of a champion.

This may or may not mean that the program itself is bad. But it tautologically means

that the champion was not sufficiently gifted to make the program into a success in spite

of itself. The above law implies that champions can be very powerful agents of change,

but that there is both an upside and a downside to our reliance on them.

The upside of champions is that they can have a tremendous influence on the success

of a system. Consider the roles of Taichi Ohno and Shigeo Shingo at Toyota. These

remarkable men developed, sold, and implemented the many features of the Toyota just-

in-time system in a way that turned it into the backbone of an enormously successful

firm. It is important to note, however, that Ohno and Shingo were far more than mere

salesmen. They were thinkers and creators as well. An effective champion must be able

to develop and adapt the system to fit the needs of the target application. Besides being

brilliant, Ohno and Shingo had another advantage as champions: They worked full-time

on site at Toyota for many years. To be truly effective, champions must be intimately

involved with the systems they are trying to change.

The importance of a local champion was brought home to us by the experience of

a consultant close to us. Our friend had just finished a stirring exposition before a group

of managers concerning why their plant should adopt a particular production control

system. As he sat down, he was confident that he had made his point, and the satisfied

looks around the table confirmed this. The plant manager, while clearly impressed by

the performance, responded by deliberately turning his back on our friend and asking his

managers to explain in their own words why he should adopt the new system. When the

managers were unable to even come close to the exhilarating rhetoric and confident logic

of our friend, the plant manager realized he lacked an in-house champion. He dropped

the program and sent our friend packing.

The downside of champions is that in today’s business environment, almost every

manager is being (or is trying to be) groomed for a new position. The sheer speed with

which managers are rotated means that the originator of a program is very likely to leave

it before it has become thoroughly institutionalized. We have seen systems that worked

well enough while their originator was still in charge rapidly collapse once she is gone.

A wag once observed that the definition of a rising star is “someone who keeps one step

ahead of the disasters they cause.” While there may be some truth to this characterization,

the phenomenon it refers to may also be a result of the natural tendency for systems to

degrade once their original champions leave.

The implication of these observations on the role of champions as agents of change

is that we should look at the ability to survive the loss of the originator as an important

measure of the quality of a new system. This is slowly occurring in academia, where

repeated educational experiments that started out as promising dissolved into mechanical

imitations of their original form as soon as the second set of instructors took over. Now, a

routine question asked of a professor who suggests a new course or curricular innovation

is, What will happen when it is turned over to someone else? The result is that some

highly innovative plans may be blocked or altered; but the changes that do get through are

much more likely to have a sustained impact. Similarly, asking about the future beyond

the first champion may lead manufacturing firms to abandon some plans or downgrade

others to proportions manageable by nonzealots.

It is probably wise to remember that the “JIT revolution” was not a revolution in

Japan. Rather, it was the result of a long series of incremental improvements over a period

of decades. Each successive improvement was integrated into the system gradually,

allowing time for the workforce to become acclimated to the change. Consequently,

the Japanese experienced a much less sweeping program of reform with JIT than did

their American counterparts. Because of this stability, the Japanese were less reliant on
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champions for success (despite the fact that in Ohno and Shingo they had truly superior

champions) than were many American companies trying to implement JIT. The lesson:

While champions can be highly influential in promoting change, we should probably

strive for an environment in which they are helpful, but not all-important.

11.2.4 The Reality of Burnout

The rapid pace of revolutions in manufacturing, with the associated coming and going

of champions, has had another very serious negative effect as a consequence of the

following personnel law.

Law (Burnout): People get burned out.

In virtually every plant we visit, we hear of a long line of innovations that were an-

nounced with great fanfare, championed by a true zealot, implemented with enthusiasm,

and then practiced only partly, gradually forgotten, and ultimately dropped. Perhaps on

the first go-around—with MRP in the 1970s—workers were true believers in the change.

But it is our view that many workers, and managers, have become increasingly cynical

with each additional failure. Many take the attitude that a new program is merely the

“revolution of the month”; if they ignore it, it will go away. Unfortunately, it usually

does.

As we noted in Chapter 3, the MRP advocates set the tone for viewing changes

in operating policies in revolutionary terms by describing MRP as no less than “a new

way of life” (Orlicky 1975) and proclaiming the “MRP crusade.” In Chapter 4, we

pointed out that the JIT advocates only intensified this tendency by describing just-in-

time with a fervor that bordered on religious. By now, the pattern has been established,

and anyone with a new manufacturing idea is almost required to use revolutionary rhetoric

to attract any attention at all. The danger in this is that it encourages managers to forsake

small incremental changes at the local level in favor of sweeping systemwide reforms.

While revolutions are occasionally necessary, declaring too many of them risks a distinct

burnout problem.

We now find ourselves in the position of needing to make changes to systems with

a cynical, burned-out workforce. Clearly this is not easy, since the success of any new

operating system is intimately dependent on the people who use it. But there are some

things we can do:

1. Use revolutions sparingly. Not every improvement in a plant needs to be presented

as a new way of life. For instance, instead of going headlong into a full-fledged kanban

system, it may make sense to adopt some limited WIP-capping procedures. As pointed

out in Chapter 10, a WIP cap provides many of the logistical benefits of kanban and is

far more transparent to the workers.

2. Do not skimp on training. If a major system change is deemed necessary, make

sure that all workers are trained at an appropriate level. It is our view that even machine

operators need to know why a new system is being adopted, not just how to use it. Basic

training in statistics may be a prerequisite for a quality control program. Basic Factory

Physics training may be a prerequisite for a pull production or cycle time reduction

program.

3. Use pilot programs. Rather than try to implement a program plantwide, it may

make sense to target a particular line or portion of the plant. One might test a new

scheduling tool on a single-process center or adopt a pull mechanism on a segment of
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the line. The nature of the pilot study should be given thought early on in the planning

and development stages, because the system may need adaptation to be able to perform

in the pilot setting. For example, if a scheduling tool is applied to only part of the

plant, it must be able to function with other portions of the plant not being scheduled in

the same manner. By attacking a manageable portion of the problem, the system has a

higher probability of success and therefore a better chance of overcoming cynicism and

garnering supporters among the workforce. By a similar token, the best place to try a

pilot effort is often in a new plant, line, or product, rather than an existing one, since the

newness helps overcome people’s tendency to resent change and to cling to traditional

methods. Once new procedures have been demonstrated in a pilot program, it is far easier

to expand them to existing parts of the system.

11.3 Planning versus Motivating

There are a number of operations management arenas in which the human element can

cause the distinction between planning and motivating to blur. For instance, for the sake

of accuracy, a scheduling tool should probably make use of historical capacity data.

However, if historical performance is deemed poor, then using it to schedule the future

may be seen as accepting substandard results. We have encountered several managers

who, to avoid this perception, deliberately made use of unrealistic capacity data in their

scheduling procedures. As they put it to us, “If you don’t set the bar high enough, workers

won’t deliver their best efforts.”

Given our previous discussion of how individuals are motivated by different things,

it is certainly reasonable to suppose that some workers perform well under the pressure of

an impossible schedule. However, we have also talked with operators and line managers

who were being measured against production targets that had never even been approached

in the history of the plant. Some were genuinely discouraged; others were openly cynical.

It is our view that most often, unrealistic capacity numbers not only fail to motivate, but

also serve to undermine morale.

There can be even more serious consequences from overestimating capacity, when

these figures are used to quote due dates to customers. We observed a case in which the

plant manager, by fiat, raised the capacity of the plant by 50 percent virtually overnight.

Almost no physical changes were made; his intent was entirely to apply pressure to

increase output. However, because no one in the plant dared defy the plant manager, the

new capacity figures were immediately put into use in all the plant’s systems, including

those used to make commitments to customers. When output failed to go up by an amount

even remotely close to 50 percent, the plant quickly found itself awash in late orders.

The behavior of this plant manager is a variation of that encouraged by the popular

JIT analogy of a plant as a river with WIP as water and problems as rocks. To find the

problems (rocks), one must lower the WIP (water). Of course, this implies that one finds

the problems by slamming headlong into them. Our plant manager found his capacity

limitations in a similarly direct manner. In Part I, we suggested that perhaps sonar (in

the form of appropriate models) might be a valuable addition to this analogy. With it,

one might identify and remove the problems before lowering the WIP, thereby avoiding

much pain and suffering. Our manager could have saved his staff, and customers, a good

deal of anguish if he had made sure that the new mandated capacity figures were not used

for determining customer requirements until or unless they had been proved feasible.

In general, any modeling, analysis, or control system will rely on various per-

formance parameters such as throughput, yield, machine rates, quality measures, and
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rework. Since we naturally wish to improve these performance measures, there is a

temptation to make them better than history justifies, either out of optimism or for mo-

tivational reasons. We feel that it is important to make a distinction between systems

that are used for prediction and those used for motivation. Predictive systems, such as

scheduling tools, due date quoting systems, and capacity planning procedures, should use

the most accurate data available, including actual historical data where appropriate. Mo-

tivational systems, such as incentive mechanisms, merit evaluations, and disciplinary

procedures, may rely on speculative targets, although one must still be careful not to

discourage workers by using overly lofty targets.

11.4 Responsibility and Authority

The observation that evaluating people against unrealistic targets can be demoralizing

is really a specific case of a broader problem. In general, people should not be punished

for things that are beyond their control. Clearly, we recognize this principle in our legal

system, in which minors are treated differently from adults and a plea of insanity is

allowed. But we frequently ignore it in factory management, when we set targets that

cannot be achieved or when we evaluate workers against measures they cannot control.

We feel that this violates a management principle so basic as to be a personnel law.

Law (Responsibility): Responsibility without commensurate authority is demoraliz-
ing and counterproductive.

Deming (1986) gave an illustration of management practice that is inconsistent with

this principle with his well-known “red beads” experiment. When he demonstrated this

experiment in his short courses, he would choose a group of people from the audience to

come up on stage. After some preliminaries designed to simulate the hiring and training

process, he had each person dip a paddle with 50 holes in it into a container filled with red

and white marbles (see Figure 11.3). Each white marble was interpreted as good quality,

while each red marble was defective. The “employee” with the lowest defect rate was

rewarded by being named “employee of the month,” while those with high defect rates

were fired or put on probation. Then the dipping process was repeated. Invariably, the

“employee of the month” did worse on the second try, while most of those on probation

improved. With tongue in cheek, Deming concluded that the top employee was slacking

Figure 11.3

Deming’s red beads

experiment.
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off after being rewarded, while the bottom employees were responding to his disciplinary

methods. He would go through a few more iterations of promotions, demotions, firings,

and disciplining to drive home his point.

Of course, the defect rate in Deming’s red bead experiment is entirely outside the

control of the employees. The tendency of the best workers to get worse and the worst

workers to improve is nothing more than an example of regression to the mean, which

we discussed in Chapter 8. Deming’s management activities, as he well knew, were

responses to statistical noise. The conclusion is that in a manufacturing system with

randomness (i.e., all manufacturing systems), some variations in performance will be

due to pure chance. Effective management practices must be able to distinguish between

real differences and noise. If they do not, then we wind up putting workers in a position

where they will be evaluated, at least partly, according to measures outside their control.

While Deming’s experiment is extreme—seldom are differences in employee per-

formance completely due to chance—there are partial real-world analogies. For instance,

many factories still use piecework incentive systems in which worker pay is tied to the

number of parts produced. If, for whatever reason, a worker does not receive sufficient

raw materials from upstream, she will lose pay through no fault of her own. Similarly, if

a worker gets stuck with a part for which the incentive rate is not very lucrative, he may

be penalized financially even though his productivity did not decline.2 And if a worker

gets compensated only for good parts and quality defects are generated upstream, she

will pay the price. If she acts in accordance with the law of self-interest, she will have

an incentive to ignore quality defects. If the system forces her to inspect parts, she will

be penalized by the resulting slowdown in work.

These examples illustrate some of the reasons that incentive systems have been

hotly debated since the time of Taylor, and why many traditional systems have fallen

into disfavor in recent years. A hundred years of tinkering have not produced a generally

effective piecework incentive system, which leads us to doubt whether such a thing is

even possible.

Incentive systems are not the only operations management practice that frequently

give rise to a mismatch between responsibility and authority. Another is the procedure for

setting and using manufacturing due dates. In general, customer due dates are established

outside manufacturing, by sales, production control, or a published set of lead times (e.g.,

a guarantee of x-week delivery). If, as is often the case, manufacturing is held responsible

for meeting customer due dates, it will wind up being punished whenever demand exceeds

capacity. But since demand is not under the control of manufacturing, this violates the

implication of the responsibility law that responsibility should be commensurate with

authority. For this reason, we feel that it is appropriate to set separate manufacturing
due dates, which are consistent with capacity estimates agreed to by manufacturing, but

may not be identical to customer due dates. If sales overcommits relative to capacity,

that department should be held responsible; if manufacturing fails to achieve output it

promised, it should be held responsible. Of course, we must not be too rigid about this

separation, since it is clearly desirable to encourage manufacturing to be flexible enough

to accommodate legitimate changes from sales. Chapter 15 will probe this problem in

greater detail and will give specifics on how to quote customer due dates sensibly and

derive a set of manufacturing due dates from them.

2Because piecework systems can make some parts more profitable to work on than others, workers tend

to “cherry-pick” the most desirable parts, regardless of the overall needs of the plant. This is a natural

example of the law of self-interest in action.
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The disparity between responsibility and authority can extend beyond the workers

into management and can be the result of subtle factors. We witnessed an example of a

particular manager who had responsibility for the operational aspects of his production

line, including throughput, quality, and cycle time. Moreover, he had full authority,

budgetary and otherwise, to take the necessary steps to achieve his performance targets.

However, he was unable to do so because of a lack of time to spend on operational

issues; he was also responsible for personnel issues for the workforce on the line, and

the majority of his time was taken up with these concerns. As a result, he was taking

a great deal of heat for the poor operational performance of his line. Our impression is

that this is not at all an unusual situation.

To avoid placing managers in a position in which they are unable to deal effectively

with logistical concerns, we suggest using policies to explicitly make time for opera-
tions. One approach is to designate a manager as the “operating manager” for a specific

period (e.g., a shift or day). During this time, the manager is temporarily exempted from

personnel duties and is expected to concentrate exclusively on running the line. The

effect will be to force the manager to appreciate the problems at an intimate level and

provide time for generating solutions. This concept is analogous to the “officer of the

deck” (OOD) policy used in navies around the world. When the OOD “has the con,” he

is ultimately responsible for the operation of the ship and is temporarily absolved from

all duties not directly related to this responsibility. On a ship, having a clearly defined

ultimate authority at all times is essential to making critical decisions on a split-second

basis. As manufacturing practice moves toward low-WIP, short-cycle-time techniques,

having a manager with the time and focus to make real-time judgments on operating

issues is becoming increasingly important in factories as well.

11.5 Summary

We realize that this chapter is only a quick glance at the complex and multifaceted

manner in which human beings function in manufacturing systems. We hope we have

offered enough to convince the reader that operations management is more than just

models. Even strongly technical topics, such as scheduling, capacity planning, quality

control, and machine maintenance, involve people in a fundamental way. It is important

to remember that a manufacturing system consists of equipment, logic, and people.

Well-designed systems make effective use of all three components.

Beyond this fundamental observation, our main points in this chapter are:

1. People act according to their self-interest. Certainly altruism exists and some-

times motives are subtle, but overwhelmingly, peoples’ actions are a consequence of

their real and perceived personal incentives. If these incentives induce behavior that is

counterproductive to the system, they must be changed. While we cannot give here any

kind of comprehensive treatment of the topic of motivation, we have tried to demonstrate

that simple financial incentive systems are unlikely to be sufficient.

2. People differ. Because individuals differ with regard to their talents, interests,

and desires, different systems are likely to work with different workforces. It makes no

sense to force-fit a control system to an environment in which the workers’ abilities are

ill suited to it.

3. Champions can have powerful positive and negative influences. We seem to be

in an age when each new manufacturing management idea must be supported by a guru

of godlike stature. While such people can be powerful agents for change, they can also
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make unsound ideas seem attractive. We would all probably be better off with a little

less hype and a little more plodding, incremental improvement in manufacturing.

4. People can burn out. This is a real problem for the post-1990 era. We have jumped

on so many bandwagons that workers and managers alike are tired of the “revolution

of the month.” In the future, promoting real change in manufacturing plants is likely to

require less reliance on rhetoric and more on logic and hard work.

5. There is a difference between planning and motivating. Using optimistic capacity,

yield, or reliability data for motivational purposes may be appropriate, provided it is not

carried to extremes. But using historically unproven numbers for predictive purposes is

downright dangerous.

6. Responsibility should be commensurate with authority. This well-known and

obvious management principle is still frequently violated in manufacturing practice. In

particular, as we move toward more rapid, low-WIP manufacturing styles, it is becoming

increasingly important to provide managers with time for operations as part of their

authority for meeting their manufacturing responsibilities.

We hope that these simple observations will inspire the reader to think more carefully

about the human element in operations management systems. We have tried to maintain

a human perspective in Part III of this book, in which we discuss putting the factory

physics concepts into practice, and we encourage the reader to do the same.

Discussion Points

1. Comment on the following paraphrase of a statement by an hourly worker overheard in a

plant lunchroom:

Management expects us to bust our butts getting more efficient and reengineering the

plant. If we don’t, they’ll be all over us. But if we do, we’ll just downsize ourselves out

of jobs. So the best thing to do is make it look like we’re working real hard at it, but be

sure that no really big changes happen.

(a) What does this statement imply about the relationship between management and labor at

that plant?

(b) Does the worker have a point?

(c) How might such concerns on the part of workers be addressed as part of a program of

change?

2. Consider the following paraphrase of a statement by the owner of a small manufacturing

business:

Twenty years ago our machinists were craftsmen and knew these processes inside and

out. Today, we’re lucky if they show up on a regular basis. We need to develop an

automated system to control the process settings on our machines, not so much to

enhance quality or keep up with the competition, but because the workers are no longer

capable of doing it manually.

(a) What does this statement imply about the relationship between management and labor at

that plant?

(b) Does the owner have a point?

(c) What kinds of policies might management pursue to improve the effectiveness of

operators?
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3. Consider the following statement:

JIT worked for Toyota and other Japanese companies because they had the champions

who originated it. American firms were far less successful with it because they had less

effective champions to sell the change.

(a) Do you think there is a grain of truth in this statement?

(b) What important differences about JIT in Japan and America does it ignore?

Study Questions

1. The popular literature on manufacturing has sometimes portrayed continual improvement as a

matter of “removing constraints.” Why are constraints sometimes a good thing in

manufacturing systems? How could removing constraints actually make things worse?

2. When dealing with a manufacturing system that is burned out by “revolutions,” what

measures can a manager use to inspire needed change?

3. Many manufacturing managers are reluctant to use historical capacity data for future planning

because they regard it as tantamount to accepting previous substandard performance.

Comment on the dilemma between using historical capacity data for planning versus using

rated capacity for motivation. What measures can a manager take to separate planning from

motivation?

4. In Deming’s red beads example, employees have no control over their performance. What

does this experiment have to do with a situation in the real world, where employees’

performance is a function both of their ability/effort and random factors? What managerial

insights can one obtain from this example?

5. Contrast MRP, Kanban, and CONWIP from a human issues standpoint. What implications do

each of these systems have for the working environment of the employees on the factory

floor? The staff engineers responsible for generating and propagating the schedule? The

managers responsible for supervising direct labor? To what extent are the human factors

benefits of a particular production control system specific to that system, and therefore not to

be obtained by modifying one of the other production control methods?
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12 Total Quality

Manufacturing

Quality is not an act, it is a habit.
Aristotle

12.1 Introduction

A fundamental factory-physics insight is that variability plays an important role in de-

termining the performance of a manufacturing system. As we observed in Chapters 8

and 9, variability can come from a variety of sources: machine failures, setups, operator

behavior, fluctuations in product mix, and many others. A particularly important source

of variability, which can radically alter the performance of a system, is quality. Qual-

ity problems almost always become variability problems. By the same token, variability

reduction is frequently a vehicle for quality improvement. Since quality and variability

are intimately linked, we conclude Part II with an overview of this critical issue.

12.1.1 The Decade of Quality

The 1980s were the decade of quality in America. Scores of books were published on the

subject, thousands of employees went through short courses and other training programs,

and “quality-speak” entered the standard language of corporate America. In 1987, the

International Organization for Standardization established the ISO 9000 series of quality

standards. In the same year, the Malcolm Baldrige National Quality Award was created

by an act of the U.S. Congress.1

The concept of quality and the methods for its control, assurance, and management

were not new in the 1980s. Quality control as a discipline dates back at least to 1924 when

Walter A. Shewhart of Western Electric’s Bell Telephone Laboratories first introduced

process control charts. Shewhart published the first important text on quality in 1931.

Armand Feigenbaum coined the term total quality control in a 1956 paper and used this

as the title of a 1961 revision of his 1951 book, Quality Control.

1Tellingly, the Japanese Union of Scientists and Engineers (JUSE) had already established its major

quality award, the Deming Prize, in honor of American W. Edwards Deming, in 1951.
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But while the terms and tools of quality have been around for a long time, it was

not until the 1980s that American industry really took notice of the strategic potential of

quality. Undoubtedly, this interest was stimulated in large part by the dramatic increase

in the quality of Japanese products during the 1970s and 1980s, much in the same way

that American interest in inventory reduction was prompted by Japanese JIT success

stories.

Did all the talk about quality lead to improvements? It is difficult to say for certain

since, as we will discuss in this chapter, quality is a broad term that can be interpreted

in many ways. There is certainly considerable evidence of improvements. In the auto

industry, for instance, problems in the first 90 days of ownership per 100 vehicles has

steadily declined, and continues to do so, from 176 in 1998 to 118 in 2005 (J. D.

Power 2005). Nevertheless, some surveys have suggested that consumers viewed the

overall quality of American products as declining during the 1980s (Garvin 1988). The

American Customer Satisfaction Index (ACSI), an overall gauge of customer perceptions

of quality that has been tracked quarterly since 1994, showed a decline in satisfaction

with manufactured products during the 1990s (Fornell et al. 2005).2 While the index rose

slightly after the turn of the century, it was still lower in 2004 than in 1994. Satisfaction in

the automotive industry was almost unchanged from 1994 to 2004. The combination of

increases in objective measures of quality and constant or declining subjective measures

of satisfaction suggests that customers are becoming more difficult to please. Given this,

we can expect quality to remain a significant challenge for the future.

12.1.2 A Quality Anecdote

We begin our consideration of the quality issue from a personal perspective. In 1991,

one of the authors purchased a kitchen range that managed to present an astonishing

array of quality problems. First, for styling purposes, the stove came with light-colored

porcelain-coated steel cooktop grates. After only a few days of use, the porcelain cracked

and chipped off, leaving a rough, unattractive appearance. When the author called the

service department (and friends with similar stoves), he found that every single stove

of this model suffered from the same defect—a 100 percent failure rate! So much for

inspection and quality assurance!

The customer service department was reasonably polite and sent replacement grates,

but these lasted no longer than the originals, so the author continued to complain. After

three or four replacements (including one in which the service department sent two sets,

one for regular use and one to save for entertaining guests!), the manufacturer changed

suppliers and sent grates that were more durable but whose darker color did not match

the rest of the color scheme. So much for integrated form and function!

As the grate story was evolving, the stove suffered from a succession of other

problems. For instance, the pilotless ignition feature would not shut off after the burners

lit, causing a loud clicking noise whenever the stove was in use. Repair people came to

fix this problem no fewer than eight times during the first year of use (i.e., the warranty

period). During one of these visits, the repairman admitted that he really had no idea of

how to adjust the stove because he had never received specifications for this model from

the manufacturer and was therefore just replacing parts and hoping for the best. So much

for service after the sale and for doing things right the first time!

2We should note, however, that the ACSI shows that customer satisfaction for services is consistently

lower than that for products and that the decline between 1994 and 2004 was greater for services than

products.
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At the end of the first year, the service department called to sell the author an

extended warranty and actually said that because the stove was so unreliable (they used

a much less polite term) the extended warranty would be a good deal for us. So much

for standing behind your product and for customer-driven quality!

During the writing of the first edition of this book, the oven door fell off. After a few

more troubled years the range was relegated to the author’s alley where it finally met

someone’s expectations when a junk collector took it and happily converted it into scrap

metal. We did not make any of this up!

12.1.3 The Status of Quality

We do not mean to imply that this story is indicative of the quality level prevalent

in manufacturing today. But it is fascinating (and depressing) that a company in the

1990s could be in such glaring violation of virtually every principle of good quality

management. Furthermore, we suspect that this is not an isolated example. Almost

everyone has stories of dreadful quality; far fewer can describe instances where they

were delighted by having their expectations exceeded.

Moreover, as expectations rise, quality standards must rise too. “Good quality” cars

once required their owners to change flat tires multiple times on a 100-mile trip and

remove the oil to heat it on the stove to get started on a cold morning. Today a car with

a dead pixel on the navigation screen is considered defective. Clearly quality is not a

problem that can be solved; the best one can hope for is to keep pace.

What can an individual firm do? The answer is, plenty. There is not a plant in

the world that could not improve its products, processes, or systems; get closer to its

customers; or better understand the influence of quality on its business. Furthermore,

there is a vast literature to consult for ideas. Although the quality literature, like the

JIT literature, contains an overabundance of imprecise romantic rhetoric, it offers much

useful guidance as well. The literature on quality can be divided into two categories,

total quality management (TQM), which focuses on quality in qualitative management

terms (e.g., fostering an overall environment supportive of quality improvement), and

statistical quality control (SQC), which focuses on quality in quantitative engineering

terms (e.g., measuring quality and assuring compliance with specifications). Both views

are needed to formulate an effective quality improvement program. All TQM with no

SQC produces talk without substance, while all SQC with no TQM produces numbers

without purpose.

A strong representative from the TQM literature stream is the work of Garvin (1988),

on which some of the following discussion is based. Garvin’s book offers an insightful

perspective of what quality is and how it affects the firm. Other widely read TQM books

include those by Crosby (1979, 1984), Deming (1986), and Juran (1989, 1992). In the

SQC field there are many solid works, most of which contain a brief introductory section

on TQM; these include those by Banks (1989); DeVor, Chang, Sutherland, and Ermer

(2006); Gitlow et al. (1989); Montgomery (1991); Thompson and Koronacki (1993); and

Wheeler (1999); among others. Some books, notably Juran’s Quality Control Handbook
(1998), address both the TQM and SQC perspectives.

We cannot hope to provide the depth and breadth of these references in this brief

chapter. What we can do is use the factory-physics framework to focus on how quality

fits into the overall picture of plant operations management. We leave the interested

reader to consult references like those mentioned, to flesh out the specifics of quality

management procedures.



402 Part II Factory Physics

12.2 Views of Quality

12.2.1 General Definitions

What is quality? We must have at least a working definition if we are to speak of

measuring and improving quality. Garvin (1988) offers five definitions of quality, which

we summarize as follows:

1. Transcendent. Quality refers to an “innate excellence,” which is not a specific

attribute of either the product or the customer, but is a third entity altogether.

This boils down to the “I can’t define it, but I know it when I see it” view of

quality.

2. Product-based. Quality is a function of the attributes of the product (the quality

of a rug is determined by the number of knots per square inch, or the quality of

an automobile bumper is determined by the dollars of damage caused by a

5-mile-per-hour crash). This is something of a “more is better” view of quality

(more knots, more crashworthiness, etc.).

3. User-based. Quality is determined by how well customer preferences are

satisfied; thus, it is a function of whatever the customer values (features,

durability, aesthetic appeal, and so on). In essence, this is the “beauty is in the

eye of the beholder” view of quality.

4. Manufacturing-based. Quality is equated with conformance to specifications

(e.g., is within dimensional tolerances, or achieves stated performance

standards). Because this definition of quality directly refers to the processes for

making products, it is closely related to the “do it right the first time” view of

quality.

5. Value-based. Quality is jointly determined by the performance or conformance

of the product and the price (e.g., a $1,000 compact disk is not high quality,

regardless of performance, because few would find it worth the price). This is a

“getting your money’s worth” or “affordable excellence” view of quality.

This list of definitions evokes two points. First, quality is a multifaceted concept that

does not easily reduce to simple numerical measures. We need a framework within which

to evaluate quality policies, just as we needed one (i.e., Factory Physics) for evaluating

operations management policies. Indeed, as we will discuss, the two frameworks are

closely related, perhaps as two facets of the larger science of manufacturing to which

we referred in Chapter 6.

Second, the definitions are heavily product-oriented. This is the case with most

of the TQM literature and is a function of the principle that quality must ultimately

be “customer-driven.” Since what the customer sees is the product, quality must be

measured in product terms. However, the quality of the product as seen by the customer

is ultimately determined by a number of process-oriented factors, such as design of the

product, control of the manufacturing operations, involvement of labor and management

in overseeing the process, customer service after the sale, and so on.

12.2.2 Internal versus External Quality

To better understand the relationship between product-oriented and process-oriented

quality, we find it useful to draw the following distinction between internal quality and

external quality:
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1. Internal quality refers to conformance with quality specifications inside the

plant and is closely related to the manufacturing-based definition of quality. It is

typically monitored through direct product measures such as scrap and rework

rates and indirect process measures such as pressure (in an injection molding

machine) and temperature (in a plating bath).

2. External quality refers to how the customer views the product and may be

interpreted by using the transcendent, product-based, user-based, or

value-based definition, or a combination of them. It can be monitored via direct

measures of customer satisfaction, such as return rate, and indirect indications

of customer satisfaction derived from sampling, inspection, field service data,

customer surveys, and so on.

To achieve high external quality, one must translate customer concerns to measures

and controls for internal quality. Thus, from the perspective of a manufacturing manager,

the links between internal and external quality are key to the development of a strategi-

cally effective quality program. The following are some of the more important ways in

which quality inside the plant is linked to the quality that results in customer satisfaction.

� Error prevention. If fewer errors are made in the plant, fewer defects are likely to

slip through the inspection process and reach the customer. Therefore, to the

extent that quality as perceived by the customer is determined by freedom from

defects, high “quality at the source” in the plant will engender high

customer-driven quality.
� Inspection improvement. If fewer defects are produced during the manufacturing

process, then quality assurance will require inspection to detect and reject or

correct fewer items. This tends to reduce pressure on quality personnel to “let

things slide”—in other words, relax quality standards in the name of getting

product out the door.3 Furthermore, the less time spent reworking or replacing

defective parts, the more time people have for tracing quality problems to the

root causes. Ideally, the net effect will be an upward quality spiral, in which error

prevention and error detection both improve over time.
� Environment enhancement. Many quality problems experienced by the customer

cannot be detected in the plant.4 For these, and for problems that are observable

but manage to slip through anyway, it is important to establish a feedback loop in

which field information is used to improve internal processes. John Deere did

this for their Seeding Division by reconfiguring planters into modular designs

and assigning teams for all operations (e.g., fabrication, subassembly, and

assembly) in a given module. When warranty claims indicated a quality problem

with a given module, management knew precisely who was responsible and

where to direct improvement activities.

In short, understanding quality means looking to the customer. Delivering it entails

looking to manufacturing.5 For the purposes of this chapter we will assume that the

3Crosby (1979, 41) relates a story in which manufacturing personnel viewed their inspection colleagues

in an adversarial mode, protesting each rejected part as if quality inspectors were personally trying to

sabotage the plant.
4Garvin (1988, 129) offers the example of the compressor on an air conditioner failing due to corrosion

caused by excess moisture seeping into the unit. Such a problem would not show up in any reasonable “burn

in” period and therefore would most likely be undetected as a defect at the plant level.
5Here we are referring to the “big M” or “enterprise view” of manufacturing, which includes product

design, production, and field service.
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concerns of the customer have been understood and translated to quality specifications

for use by the plant. Our focus will be on the relationship between quality and operations,

and particularly how the two can work together as parts of a continual improvement

process for the plant.

12.3 Statistical Quality Control

Statistical quality control (SQC) generally focuses on manufacturing quality, as mea-

sured by conformance to specifications. The ultimate objective of SQC is the systematic

reduction of variability in key quality measures. For instance, size, weight, smoothness,

strength, color, and speed (e.g., of delivery) are all measurable attributes that can be

used to characterize the quality of manufacturing processes. By working to assure that

these measures are tightly controlled within desired bounds, SQC functions directly at

the interface between operations and quality.

12.3.1 SQC Approaches

We can classify the tools used in SQC to ensure quality into three major categories:

1. Acceptance Sampling. Products are inspected to determine whether they

conform to quality specifications. In some situations, 100 percent inspection is

used, while in others some form of statistical sampling is substituted. Sampling

may be an option chosen for cost reasons or an absolute necessity (e.g., when

inspection is destructive). For example, cell phone plants typically subject every

unit to a cycle of (automated) tests that ensure that circuits and controls

function properly. In contrast, a candy factory cannot subject every piece of

candy to a taste test and so must rely on periodic sampling to ensure quality.

Note that acceptance sampling is essentially an end-of-line method, which can

find problems only after they have occurred.

2. Statistical Process Control (SPC). Processes are continuously monitored with

respect to both mean and variability of performance to determine when special

problems occur or when the process has gone out of control. For example, in a

nickel plating process it is important to monitor and adjust temperature, pH, and

constituent levels in the chemical baths. If these depart from desired levels

quality problems (e.g., poor finish, adhesion or durability) may result and so

corrective steps must be taken. In addition to tracking chemical process

parameters, it is also common to monitor the plated product directly (e.g., using

a coating thickness gauge). Again, if plating thickness departs from the desired

level, then corrective action is needed. Note that SPC is a real-time method,

which identifies problems as they are occurring (or very shortly afterward), and

so facilitates rapid remediation.

3. Design of Experiments (DOE). Causes of quality problems are traced through

specifically targeted experiments. The basic idea is to systematically vary

controllable variables to determine their effect on quality measures. A host of

statistical tools (e.g., block designs, factorial designs, nested designs, response

surface analysis, and Taguchi methods) have been developed for efficiently

correlating controls with outputs and optimizing processes. For example, John

Deere Engine Works used DOE methods to investigate the effects of chromate

conversion, paint type, and surface treatment on paint adhesion to aluminum
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parts. They discovered that paint type was the major determinant of adhesion

and were able to save half a million dollars per year by eliminating chromate

conversion. Note that DOE is a diagnostic tool, which identifies the causes of

problems and thereby helps prevent future occurrences.

Typically, as an organization matures, it relies less on after-the-fact acceptance sam-

pling and more on at-the-source statistical process control and continual-improvement-

oriented design of experiments.

Entire books have been written on each of these subjects, so detailed coverage of

them is beyond the scope of this chapter. Montgomery (2004) provides a good overview of

acceptance sampling, DeVor et al. (2006) contains a fine summary of SPC methods, and

Montgomery (2000) offers a solid introduction to DOE tools. Because statistical process

control deals so specifically with the interface between quality and variability, we offer

an overview of the basic concepts here. After explaining SPC we show how it gave rise

to Six Sigma, which has grown into a comprehensive variability reduction system that

is an excellent complement to the factory-physics framework for improvement.

12.3.2 Statistical Process Control

Statistical process control (SPC) generally begins with a measurable quality attribute6—

for example, the diameter of a hole in a cast steel part. Regardless of how tightly controlled

the casting process is, there will always be a certain amount of variability in this diameter.

If it is relatively small and due to essentially uncontrollable sources, then we call it

natural variability. A process that is operating stably within its natural variation is said

to be in statistical control. Larger sources of variability that can potentially be traced

to their causes are called assignable-cause variation. A process subject to assignable-

cause variation is said to be out of control. The fundamental challenge of SPC is to

separate assignable-cause variation from natural variation. Because we generally observe

directly only the quality attribute itself, but not the causes of variation, we need statistics

to accomplish this. The statistical tools and the charts for displaying the results date back

to the work of Shewhart (1931).

To illustrate the basic principles behind SPC, let us consider the example of control-

ling the diameter of a hole in a steel part made by a sand casting process. Suppose that

the desired nominal diameter is 10 millimeters and we observe a casting with a diameter

of 10.1 millimeters. Can we conclude that the casting process is out of control? The

answer is, of course, “It depends.” It may be that a deviation of 0.1 millimeter is well

within natural variation levels. If this were the case and we were to adjust the process

(e.g., by altering the sand, steel, or mold) in an attempt to correct the deviation, in all

likelihood we would make it worse. The reason is that adjusting a process in response to

random noise increases its variability (see Deming 1982, 327, for discussion of a funnel

experiment that illustrates this point). Hence, to ensure that adjustments are made only

in response to assignable-cause variation, we must characterize the natural variation.

In our example, suppose we have measured a number of castings and have de-

termined that the mean diameter can be controlled to be μ = 10 millimeters and the

standard deviation of the diameter is σ = 0.025 millimeter. Further suppose that every

2 hours we take a random sample of five castings, measure their hole diameters, compute

the average (which we call x̄), and plot it on a chart like that shown in Figure 12.1. From

6As we observe later in this section, SPC can also be applied where quality is assessed subjectively, as

long as we can classify outputs as “acceptable” or “unacceptable.”
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basic statistics, we know that x̄ is itself a random variable that has standard deviation

σx̄ = σ√
n

(12.1)

where n is the number in the sample; n = 5 in this example.7

The basic idea behind control charts is very similar to hypothesis testing. Our null

hypothesis is that the process is in control; that is, the samples are coming from a process

with mean μ and standard deviation σ . To avoid concluding that the process is out of

control when it is not (i.e., type I error), we set a stringent standard for designating

deviations as “assignable cause.” Standard convention is to flag points that lie more than

3 standard deviations above or below the mean. We do this by specifying lower and

upper control limits as follows:

LCL = μ − 3σx̄ (12.2)

UCL = μ + 3σx̄ (12.3)

If we observe a sample mean outside the range between LCL and UCL, then this ob-

servation is designated as assignable-cause variation. In the casting example charted in

Figure 12.1, such a deviation occurred at sample 22. This might have been caused by

defective inputs (e.g., steel or sand), machine problems (e.g., in the mold, the packing

process, the pouring process), or operator error. SPC does not tell us why the deviation

occurred—only that it is sufficiently unusual to warrant further investigation.

Other criteria, in addition to points outside the control limits, are sometimes used to

signal out-of-control conditions. For instance, the occurrence of several points in a row

above (or below) the target mean is frequently used to spot a potential shift in the process

mean. In Figure 12.1, sample 37 is out of control. But unlike the out-of-control point at

7Note that this is another example of variability pooling. Choosing n > 1 tightens our estimate of x̄ and

therefore reduces our chances of reacting to random noise in the system.
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sample 22, this point is accompanied by an unusual run of above-average observations

in samples 35 to 40. This is strong evidence that the cause of the problem is not unique

to sample 37, but instead is due to something in the casting process itself that has caused

the mean diameter to increase. Other criteria based on multiple samples, such as rules

that look for trends (e.g., high followed by low followed by high again), are also used

with control charts to spot assignable-cause variation.

It is important to note that because a process is in statistical control does not neces-

sarily mean that it is capable (i.e., able to meet process specifications with regularity).

For instance, suppose in our casting example that for reasons of functionality we require

the hole diameter to be between a lower specification level (LSL) and an upper spec-

ification level (USL). Whether or not the process is capable of achieving these levels

depends on how they compare with the lower and upper natural tolerance limits,

which are defined as

LNTL = μ − 3σ (12.4)

UNTL = μ + 3σ (12.5)

Note that LNTL and UNTL are limits on the diameter of individual holes, while the LCL

and UCL are limits on the average diameter of samples. Moreover, note that LNTL and

UNTL are internally determined by the process itself, while LSL and USL are externally

determined by performance requirements.

Let us consider some illustrative cases. The natural tolerance limits are given by

LNTL = μ − 3σ = 10 − 3(0.025) = 9.925 and LNTL = μ + 3σ = 10 + 3(0.025) =
10.075. Suppose that the specification levels are given by LSL = LSL1 = 9.975 and

USL = USL1 = 10.025. It is apparent from Figure 12.2 that the casting process will

Figure 12.2 Process capability: comparing specification limits to natural tolerance limits.

9.800 9.825 9.850 9.875 9.900 9.925 9.950 9.975 10.000 10.025 10.050 10.075 10.100 10.125 10.150 10.175 10.200
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produce a large fraction of nonconforming parts. To be precise, if hole diameters are

normally distributed, then

P(9.975 ≤ X ≤ 10.025) = P

(

9.975 − 10

0.025
≤ Z ≤ 10.025 − 10

0.025

)

= P(−1 ≤ Z ≤ 1) = �(−1) + 1 − �(1)

= 0.1587 + 1 − 0.8413

= 0.3174

This means that almost 32 percent will fail to meet specification levels.

Suppose instead that the specification levels are given by LSL = LSL2 = 9.875 and

USL = USL2 = 10.125. Since the natural tolerance limits lie well within this range, we

would expect very few nonconforming castings. Indeed, repeating the calculation above

for these limits shows that the fraction of nonconforming parts will be 0.00000057.

A measure of capability is the process capability index, which is defined as

C pk = Zmin

3
(12.6)

where

Zmin = min{−ZLSL, ZUSL} (12.7)

and

ZLSL = LSL − μ

σ
(12.8)

ZUSL = USL − μ

σ
(12.9)

The minimum acceptable value of C pk is generally considered to be 1. Note that in the

above examples, C pk = 1
3

for (LSL1, USL1), but C pk = 5
3

for (LSL2, USL2). Note that

C pk is sensitive to both variability (σ ) and asymmetry (i.e., a process mean that is not

centered between USL and LSL). Hence, it gives us a simple quantitative measure of

how capable a process is of meeting its performance specifications.

Of course, a host of details need to be addressed to implement an effective SPC

chart. We have glossed over the original estimates of μ and σ ; in practice, there are a

variety of ways to collect these from observable data. We also need to select the sample

size n to be large enough to prevent reacting to random fluctuations but not so large that it

masks assignable-cause variation. The frequency with which we sample must be chosen

to balance the cost of sampling with the sensitivity of the monitoring.

12.3.3 SPC Extensions

The x̄ chart discussed is only one type of SPC chart. Many variations have been proposed

to meet the needs of a wide variety of quality assurance situations. A few that are

particularly useful in manufacturing management include:

1. Range (R charts). An x̄ chart requires process variability (that is, σ ) to be in

control in order for the control limits to be valid. Therefore, it is common to

monitor this variability by charting the range of the samples. If x1, x2, . . . , xn
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are the measurements (e.g., hole diameters) in a sample of size n, then the range

is the difference between the largest and smallest observations

R = xmax − xmin (12.10)

Each sample yields a range, which can be plotted on a chart. Using past data to

estimate the mean and standard deviation of R, denoted by R̄ and σR , we can

set the control limits for the R chart as

LCL = R̄ − 3σR (12.11)

UCL = R̄ + 3σR (12.12)

If the R chart does not indicate out-of-control situations, then this is a sign that

the variability in the process is sufficiently stable to apply an x̄ chart. Often, x̄
and R charts are tracked simultaneously to watch for changes in either the mean

or the variance of the underlying process.

2. Fraction nonconforming (p charts). An alternative to charting a physical

measure, as we do in an x̄ chart, is to track the fraction of items in periodic

samples that fail to meet quality standards. Note that these standards could be

quantitative (e.g., a hole diameter is within specified bounds) or qualitative

(e.g., a wine is approved by a taster). If each item independently has probability

p of being defective, then the variance of the fraction of nonconforming items

in a sample of size n is given by p(1 − p)/n. Therefore, if we estimate the

fraction of nonconforming items from past data, we can express the control

limits for the p chart as

LCL = p − 3

√

p(1 − p)

n
(12.13)

UCL = p + 3

√

p(1 − p)

n
(12.14)

3. Nonquality applications. The basic control chart procedure can be used to track

almost any process subject to variability. For example, we describe a procedure

for statistical throughput control in Chapter 14 that monitors the output from a

process in order to determine whether it is on track to attain a specified

production quota. Another nonquality application of control charts is in due

date quoting, which we discuss in Chapter 15. The basic idea is to attach a

safety lead time to the estimated cycle time and then track customer service

(e.g., as percentage delivered on time). If the system goes out of control, then

this is a signal to adjust the safety lead time.

The power and flexibility of control charts make them extremely useful in monitoring

all sorts of processes where variability is present. Since, as we have stressed repeatedly

in this book, virtually all manufacturing processes involve variability, SPC techniques

are a fundamental part of the tool kit of the modern manufacturing manager.

12.4 Six Sigma

The term “Six Sigma” was coined (and later trademarked) by Motorola to describe the

company’s quality control practices in the 1980s. Initially framed as a statistical method

for driving defects to very low (parts per million) levels, Six Sigma progressively grew
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into a comprehensive quality management system complete with a problem-solving

methodology and an organizational structure. As other companies, notably General

Electric and Allied Signal, elevated Six Sigma from the shop floor to the executive

boardroom in the 1990s, it became viewed as a comprehensive management system

centered on reducing variability in all business processes and making data-driven,

customer-focused decisions.

12.4.1 Statistical Foundations

The core of Six Sigma is a model that links process variability to defects. In fact, it

is the same model as that underlying SPC charts in which the output of a measurable

process is assumed to vary according to a normal distribution with mean μ and standard

deviation σ . As we noted in Figure 12.2, the fraction of nonconforming outputs depends

on the specification limits; the larger the specification interval (USL,LSL), the smaller the

likelihood of a nonconforming output. The Six Sigma model measures the specification

interval in units of σ and uses the normal distribution to compute the expected number

of nonconforming outputs.

We illustrate this by returning to the previously introduced casting example. Suppose

we have determined that a casting is usable as long as the diameter is between 9.95

and 10.05 millimeters. In SPC terms this means the specification interval is given by

(LSL,USL) = (9.95,10.05), which has a half-width of 0.05 millimeters. Suppose further

that the casting process produces castings whose diameter is normally distributed with a

mean of μ = 10 millimeters and a standard deviation of σ = 0.025 millimeters. We call

this a centered process because the mean of the actual process is directly at the center

of the specification limits. Furthermore, since the half-width of the specification interval

is equal to 2 standard deviations of the process (2σ = 2(0.025) = 0.05 millimeters), we

call this a two sigma process. If the specification interval were 3 standard deviations

wide, so that (LSL,USL) = (9.925,10.075), then this would be a three sigma process.

If (LSL,USL) = (9.850,10.150), then we would have a six sigma process.

Figure 12.3 illustrates how this basic model is used to translate variability in the

previously introduced casting process into a defect rate. In a centered k-sigma process,

the fraction of nonconforming (bad) outputs is given by the fraction of area under a

normal distribution that lies beyond k sigma above or below the mean. For a one sigma

process, this is approximately 32 percent; for a two sigma process it is about 5 percent,

and for a three sigma process it is less than 1 percent.

For a centered Six Sigma process, the fraction of nonconforming outputs is less than

2 in a billion (Table 12.1). This may seem like an extremely aggressive standard—and

it is. How many operations can be performed a billion times and have fewer than two

errors? Not air travel—the fatal accident rate in commercial air travel is about 0.17 per

1,000,000 (170 per billion) departures. Not train travel—there are approximately 1.6

deaths per million (1,600 per billion) train miles traveled. Not childbirth—the infant

mortality rate in the U.S. is about 7 per 1,000 (7,000,000 per billion). Not smallpox

vaccinations—the fatality rate is about 1 per 1,000,000 (1,000 per billion). Not even

protection from bees—roughly 0.2 people per million (200 per billion) die from bee

stings each year in the United States.

But this tiny defect rate is not what people mean when they refer to Six Sigma

quality. The reason is that the underlying model used in Six Sigma does not assume that

the mean of the process being measured lies at the center of the specification interval.

Instead, it assumes a shifted process that is centered 1.5 standard deviations away from

the middle of the specification interval.
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Table 12.1 Nonconformities per Million Opportunities for
Various Sigma Values

Fraction Nonconforming Defects in Parts per Million

Sigma Centered Shifted Centered Shifted

1 0.31731 0.69767 317,311 697,672

2 0.04550 0.30877 45,500 308,770

3 0.00270 0.06681 2,700 66,811

4 0.00006 0.00621 63 6,210

5 5.733E-07 0.00023 0.57 233

6 1.973E-09 3.398E-06 0.002 3.4

Figure 12.3 illustrates this 1.5 sigma shift for the casting example. For example,

Figure 12.3(a) shows the case where the specification interval is (9.95, 10.05) but the

process itself has a mean of 10.0375 and a standard deviation of 0.025 millimeters. That

is, the mean of the process is 1.5(0.025) = 0.0375 millimeters above the center of the

specification interval. As a result, it is much more likely to produce castings whose di-

ameter lies above the upper specification limit of 10.05 than it would if the mean of the

process were centered at 10 millimeters. Consequently, the percent of nonconforming

castings is 30.9 percent for the shifted two sigma process, as compared to only 4.6 percent

for the centered two sigma process.

Figures 12.3(b) and 12.3(b) illustrate centered and shifted three sigma and six sigma

processes. The shifted Six Sigma process is used as the goal for Six Sigma programs.

It corresponds to a nonconforming percentage of 3.4 × 10−4 percent or 3.4 parts per

million. While not quite the 2 parts per billion standard represented by the centered Six

Sigma model, this still represents a very ambitious quality target for most operations.

For example, J. D. Power and Associates reported that the rate of wireless call quality

problems (dropped/disconnected calls, static/interference, etc.) is 21 per 100, which is

70,000 times the 3.4 parts per million standard. On the other hand, the fatal accident rate

in commercial air travel of 0.17 per 1,000,000 is considerably better than this standard.

But we need to be careful when interpreting these parts per million quality ratios

because they involve two parts, a numerator and a denominator. To improve quality

to the 3.4 defects per million level, we can either reduce the numerator or inflate the

denominator. The first corresponds to a reduction in the number of defects, while the

second represents an increase in the number of opportunities to generate a defect. It is

quite possible to play games with the definition of opportunities to generate a defect in

order to make quality look better than it really is.

For example, at a conference, we asked the manager of a semiconductor line why

his company considered a 90 percent yield rate acceptable even though it was striving

for “Six Sigma” levels of quality. The manager replied that 10 percent scrap rate was

actually approaching Six Sigma levels when one considered all the possible ways a defect

could be created. Instead of the conventional measure of quality (good chips divided by

the number of chips produced), the company was using as a metric the number of good

chips divided by the millions of potential opportunities for defects.

Hence, while Six Sigma is a reasonable way to measure relative quality improvement

progress provided the number of potential opportunities for defects is fixed, it does not

provide an absolute comparison of quality between different systems. To appreciate the

actual quality of a given system, we need to know more than a parts per million defect

rate. We also need to know how that rate is computed.
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12.4.2 DMAIC

The real substance of Six Sigma lies in the framework and tools developed to achieve

the above statistical quality standard. Depending on the organization, a Six Sigma im-

plementation can involve almost any quality monitoring and improvement methodology,

ranging from control charts to quality circles. The underlying thread of all Six Sigma

programs, however, is a strong emphasis on data and analysis. Unlike some of the “soft”

quality initiatives during the heyday of the TQM movement in the 1980s, which fo-

cused on suggestion boxes and brainstorming sessions, Six Sigma initiatives are heavily

grounded in measurement, metrics, and statistical analysis.

The basic framework in which the quantitative tools of Six Sigma are used to drive

quality toward the 3.4 parts per million defect rate is called DMAIC, which stands for:

Define the process to be improved.

Measure current performance.

Analyze when, where, and why defects occur.

Improve the process by eliminating defects.

Control future process performance.

This framework is appropriate for existing processes that need improvement. For

processes that do not yet exist, or are in need of substantial redesign (e.g., because

DMAIC has been applied and quality still does not meet customer needs or the Six

Sigma target), a variant of DMAIC, called DMADV, is appropriate:

Define the goals for the project.

Measure and determine customer needs and specifications.

Analyze the process options to meet the customer needs.

Design the process to meet customer needs.

Verify the design performance in terms of its ability to meet customer needs.

Like the Six Sigma statistical model, which was based on well-established methods,

DMAIC and DMADV were adaptations of a familiar methodology, the basic systems

analysis process. With their heavy emphasis on quantitative measurement of perfor-

mance, these systems provide a structured problem-solving mechanism that can be ap-

plied to virtually any aspect of a business.

12.4.3 Organizational Structure

If Six Sigma is primarily an amalgam of conventional tools, why did it become so

influential?

One answer is that Six Sigma was a particularly effective amalgam. Plenty of other

innovations (the automobile, the Dell business model, the Broadway musical) owe more

to the successful combination of existing elements than to revolutionary change in any

single area. Combining a rigorous quantitative performance metric with a structured

analysis process is certainly powerful.

But a more likely explanation for the success of Six Sigma is the organizational

structure it uses to implement these processes. As a program, Six Sigma defines five roles:

Executive leadership includes the CEO and other top managers. While not

formally part of the Six Sigma team structure, they are responsible for establishing

a vision and empowering the other players. The success of Six Sigma at companies

like Motorola, GE, and AlliedSignal was strongly dependent on the support and

involvement of top management.
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Champions are the leaders with day-to-day responsibility for Six Sigma

implementation across the organization. These are chosen from the ranks of upper

management and act as mentors to black belts. The names for this level of

certification vary between firms (e.g., GE has used the term “quality leaders”).

Master black belts are identified by the champions and serve as resident expert

coaches for the organization on Six Sigma. Unlike executive leaders and

champions, master black belts devote 100 percent of their time to Six Sigma. They

assist champions and guide black belts and green belts. The role requires rigorous

training in statistics and strong management skills. Apart from applying the usual

rigor of statistics, their time is spent on ensuring integrated deployment of Six

Sigma across various functions and departments.

Black belts operate under master black belts to apply Six Sigma methodology to

specific projects. They devote 100 percent of their time to Six Sigma. Their

primary focus is on Six Sigma project execution, in contrast to champions and

master black belts, who focus on identifying the opportunities for Six Sigma.

Green belts are the employees who take up Six Sigma implementation along with

their other job responsibilities. They usually operate under the guidance of black

belts and support them in achieving the overall results. In some organizations, this

role is split into green belts, who manage projects, and yellow belts, who do not.

By establishing these roles and institutionalizing them through rigorous training

and job definition, Six Sigma develops individuals who have a vested interest in seeing

the methods used successfully. So, unlike some other programs, in which dissemination

ends with a short course, Six Sigma has the advantage of being implemented by full-time

advocates. The titles of black belt and master black belt have become so recognizable

that many people list these on their business cards. While other systems have tried to

copy the practice of granting titles (e.g., lean production engineer), none have come close

to the appeal or visibility of the “belt” system of Six Sigma.

From a factory-physics perspective, Six Sigma is a powerful variability reduction

method. By combining (1) a rigorous statistical model for measuring variability and

comparing it to functional needs, (2) a structured problem-solving process, and (3) a well-

trained and motivated hierarchy of experts, Six Sigma is a nearly ideal tool for rooting

out variability in a system. As we discussed in Chapters 8 and 9, such variability could

be the consequence of quality issues, operator errors, supplier difficulties, reliability

glitches, or any number of other problems. Once a problem area has been identified, the

structured Six Sigma process can establish measures and target an improvement project

to eliminate variability in that area.

However, while Six Sigma is very good at quantifying variability and helping find

ways to eliminate it, it is not very good at predicting where variability is likely to occur

and where it is most corrosive or generating broad management policies for addressing

it. The reason is that Six Sigma is based on a generic statistical model and makes use of a

generic systems analysis procedure. It does not include a science of manufacturing that

provides the perspective needed to focus the variability reduction power of Six Sigma

where it will do the most good. Hence, Six Sigma is a valuable complement to, rather

than a substitute for, the science of Factory Physics.

12.5 Quality and Operations

Variability is one important link between quality and operations. The other key link is

cost. However, there is some disagreement about just how this link works. Two distinct

views follow:
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1. Cost increases with quality. This is the traditional industrial engineering view,

which holds that achieving higher external quality requires more intense

inspection, more rejects, and more expensive materials and processes. Since

customers’ willingness to pay for additional quality diminishes with the level of

quality, this view leads to the “optimal defect level” arguments common to

industrial engineering textbooks in the past.

2. Cost decreases with quality. This is the more recent TQM view, espoused using

phrases such as quality is free (Crosby 1979) or the hidden factory; it holds that

the material and labor savings from doing things right the first time more than

offset the cost of the quality improvements. This view supports the zero-defects

and continual-improvement goals of JIT.

Neither view is universally correct. If improving quality of a particular product

means replacing a copper component with a gold one, then cost does increase with

quality. Where this is the case, it makes sense to ask whether the market is willing to

pay for, or will even notice, the improvement. On the other hand, if quality improvement

is a matter of shifting some responsibility for inspection from end-of-line testing to

individual machine operators, it is entirely possible that the reduction in rework, scrap,

and inspection costs will more than offset the implementation cost.

Whether quality improvement increases or decreases costs also depends on the

quality level. When the defect level is high, yield improvement measures are often

inexpensive. Basic steps, such as improving housekeeping, enforcing procedures, and

making metrics visible, can make a substantial difference in quality. However, as yield

approaches 100 percent, gains become more difficult. Major process changes, equipment

replacement, and product redesigns may be needed to make improvements. As illustrated

in Figure 12.4, these dynamics result the total cost of quality, including both prevention

and failure cost, decreasing and then increasing in the yield.

Ultimately, what matters is accurately assessing the costs and consequences of a spe-

cific quality improvement. This is crucial to determining which policies should be pur-

sued in the name of continual improvement, and which should be tempered by the market.

The effects of quality improvements are often varied and closely tied to operations.

In the following subsections, we rely on the factory-physics framework to examine the

interactions between quality and operations. Our intent is not so much to provide specific

numerical estimates of the cost of quality—the range of situations that arise in industry is
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Cost of quality.
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too varied to permit comprehensive treatment of this nature—but rather to broaden and

extend the intuition we developed for the behavior of manufacturing systems in Part II

to incorporate quality considerations.

12.5.1 Quality Supports Operations

In Chapter 9 we presented two manufacturing laws that are central to understanding the

impact of quality on plant operations, the variability law and the utilization law. These

can be paraphrased as follows:

1. Variability causes congestion.

2. Congestion increases nonlinearly with utilization.

In practice, quality problems are one of the largest and most common causes of

variability. Additionally, by causing work to be done over (either as rework or as re-

placements for scrapped parts), quality problems often end up increasing the utilization

of workstations. By affecting both variability and capacity, quality problems can have

extreme operational consequences.

The Effect of Rework on a Single Machine. To get a feel for how quality affects

utilization and variability, let us consider the simple single-machine example shown in

Figure 12.5. The machine receives parts at a rate of one every 3 minutes. Processing

times have a mean and standard deviation of t0 and σ0 minutes, respectively, so that the

CV of the natural process time is c0 = σ0/t0. However, with probability p, a given part

is defective. We assume that the quality check is integral to the processing, and therefore

whether the part is defective is immediately known upon its completion. If it is defective,

it must be reworked, which requires another processing time with mean t0 and standard

deviation σ0 and again has probability p of failing to produce a good part. The machine

continues reworking the part until a good one is produced. We define the total time it

takes to produce a good part to be the effective processing time.

Letting Te represent the (random) effective processing time of a part, we can compute

the mean te, variance σ 2
e , and squared coefficient of variation (SCV) c2

e of this time, as

well as the utilization of the machine u, as follows:

te = E[Te] = t0
1 − p

(12.15)

σ 2
e = Var(Te) = σ 2

0

1 − p
+ pt2

0

(1 − p)2
(12.16)

c2
e = σ 2

e

t2
e

= (1 − p)σ 2
0 + pt2

0

t2
0

= c2
0 + p(1 − c2

0) (12.17)

u = 1

3
te = t0

3(1 − p)
(12.18)

ra �

t0, �0

1 � p

p

1

3

Rework loop

Figure 12.5

Rework in a single station.
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We can draw the following conclusions from this example:

1. Utilization increases nonlinearly with rework rate. This occurs because the

mean time to process a job increases with the expected number of passes, while

the arrival rate of new jobs remains constant. At some point, the added

workload due to rework will overwhelm the station. In this example, equation

(12.18) shows that for p > 1 − t0/3, utilization exceeds one, indicating that the

system does not have enough capacity to keep up with both new arrivals and

rework jobs over the long run.

2. Variance of process time, given by σ 2
e , increases with rework rate. The reason,

of course, is that the more likely a job is to make multiple passes through the

machine, the more unpredictable its completion time becomes.

3. Variability of process time, as measured by the SCV, may increase or decrease
with rework rate, depending on the natural variability of the process. Although

both the variance and the mean of the effective process time always increase

with the rework rate, the variance does not always increase faster than the

mean. Hence the SCV, which is the ratio of variance to mean, can increase or

decrease. We can see from equation (12.17) that c2
e increases in p if c2

0 < 1,

decreases in p if c2
0 > 1, and is constant in p if c2

0 = 1. The intuition behind this

is that the effects of variability pooling (which happens when we sum the

process times of repeated passes) become large enough when c2
0 > 1 to cause

the SCV of effective process times to decrease in p.

We can use these specific results for a single machine with rework to motivate some

general observations about the effect of rework on the cycle time and lead time of a

process. Since both the mean and the variance of effective process time increase with

rework rate, we can invoke the lead time law of Chapter 9 to conclude that the lead time

required to achieve a given service level also increases the rework rate.

The effect of rework on cycle time is not so obvious, however. The fact that the SCV

of effective process time can go down when rework increases, may give the impression

that rework might actually reduce cycle time. But this is not the case. The reason is that

increasing rework increases utilization, which is a first-order effect on cycle time that

outweighs the second-order effect from a possible reduction in variability. Hence, even

in processes with high natural variability, increasing rework will inflate the mean cycle

time. Moreover, because it also increases the variance of total processing time per job

and the variance of the time to wait in queue, increasing rework also inflates the standard

deviation of cycle time. These cycle time effects represent general observations about

the impact of rework, as we summarize in the following manufacturing law.

Law (Rework): For a given throughput level, rework increases both the mean and
standard deviation of the cycle time of a process.

To give an illustration of this law, suppose the previously mentioned station is fed by

a moderately variable arrival process (that is, ca = 1) but has deterministic processing

times such that t0 = 1 and c0 = 0. Then, for Kingman’s model of a workstation intro-

duced in Chapter 8, the cycle time at the station can be expressed as a function of p as

CT = c2
a + c2

e

2

u

1 − u
te + te

= 1 + p

2

1/(3(1 − p))

1 − 1/(3(1 − p))

1

1 − p
+ 1

1 − p
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Figure 12.6

Cycle time as a function

of rework rate.

Figure 12.6 plots cycle time versus rework rate. This plot shows that cycle time grows

nonlinearly toward infinity as p approaches 2
3
, the point at which rework reduces the

effective capacity of the system below the arrival rate.

Effect of Rework on a CONWIP Line. Of course, station-level measures such as

utilization, variability, and cycle time are only indirect measures; what we really care

about is the throughput, WIP, and cycle time of a line. To illustrate the rework law in a

line, consider the CONWIP line depicted in Figure 12.7. Processing times are two-thirds

of an hour for machines 1, 2, and 4 and one hour for machine 3 (the bottleneck). All

processing times are deterministic (that is, c2
e = 0). However, machine 2 is subject to

rework. As in the previous example, we assume that each job that is processed must be

reprocessed with probability p. Hence, as in the previous example, the mean effective

processing time on machine 2 is given by

te(2) = 2/3

1 − p

We assume that the line has unlimited raw materials, so the only source of variability is

rework.

Because even this simple line is too complex to permit convenient analysis (the

single-machine example was messy enough!), we turn to computer simulation to estimate

the performance measures for various values of p and different WIP levels. Figures 12.8

and 12.9 summarize our simulation results.

When p = 0 (no rework), the system behaves as the best case we studied in Chapter 7.

Thus, we can apply the formulas derived there to characterize the throughput-versus-WIP

and cycle-time-versus-WIP curves. Note that without rework, the bottleneck rate rb is

one job per hour, and the raw process time T0 is rbT0 = 3 hours. Hence, the critical WIP

level is 3 jobs. At this WIP level, maximum throughput (1 job per hour) and minimum

cycle time (3 hours) are attained.

2/3 2/3 p

1 – p

1 2/3

Figure 12.7

A CONWIP line with

rework.
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Throughput versus WIP

for different rework rates.

When p = 1
3
, the mean effective process time on machine 2 is te(2) = 1, the bottle-

neck rate. Thus, rb is not changed, but T0 increases to 3.33 hours. This means that as WIP

approaches infinity, full throughput of one job per hour will be attained. Our simulation

indicates that virtually full throughput is attained at a WIP level of about 10 jobs—more

than three times the WIP level required in the no-rework case. At a WIP level of 10 jobs,

the average cycle time is roughly 10 hours—also 3 times the ideal level of the case. The

implication here is that the primary effect of rework when p = 1
3

is to transform a line

that behaved as the best case to one approaching the practical worst case. This illustrates

the rework law in action with regard to the mean cycle time.

When p = 1
2
, the mean effective process time on machine 2 is te(2) = 4

3
, which

makes it the bottleneck. Thus, even with infinite WIP, we cannot achieve throughput

above rb = 3
4

job per hour. As expected, Figure 12.8 shows substantially reduced through-

put at all WIP levels. Figure 12.9 shows that cycle times are longer, as a consequence of

the reduced capacity at machine 2, at all WIP levels. Moreover, because the bottleneck

rate has been decreased, the cycle time curve increases with WIP at a faster rate than in

the previous two cases.

The simulation model enables us to keep track of other line statistics. Of particular

interest is the standard deviation of cycle time. Recall that the lead time law implies

that if we quote customer lead times to achieve a specified service level (probability of

on-time delivery), then lead times are an increasing function of both average cycle time

and the standard deviation of cycle time. Larger standard deviation of cycle time means

we will have to quote longer lead times, and consequently must hold items in finished

goods inventory longer, to compensate for the variable production rate. As Figure 12.10

shows, the standard deviation of cycle time increases in the rework rate. Moreover, it
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Standard deviation of

cycle time versus WIP for

different rework rates.

increases in the WIP level (as there is more WIP in the line to cause random queueing

delays at the stations). Since, as we noted, rework requires additional WIP in the line

to achieve a given throughput level, this effect tends to aggravate further the cycle time

variability problem. This is an illustration of the rework law with regard to variance of

cycle time.

The results of Figures 12.8, 12.9, and 12.10 imply the following about the operations

and cost impacts of quality problems.

1. Throughput effects. If the rework is high enough to cause a resource to become

a bottleneck (or, even worse, the rework problem is on the bottleneck resource),

it can substantially alter the capacity of the line. Where this is the case, a quality

improvement can facilitate an increase in throughput. The increased revenue

from such an improvement can vastly exceed the cost of improving quality in

the line.

2. WIP effects. Rework on a nonbottleneck resource, even one that has plenty of

spare capacity, increases variability in the line, thereby requiring higher WIP

(and cycle time) to attain a given level of throughput. Thus, reductions in

rework can facilitate reductions in WIP. Although the cost savings from such a

change are not likely to be as large as the revenue enhancement from a capacity

increase, they can be significant relative to the cost of achieving the

improvement.

3. Lead time effects. By decreasing capacity and increasing variability, rework

problems necessitate additional WIP in the line and hence lead to longer

average cycle times. These problems also increase the variability of cycle times

and hence lead to either longer quoted lead times or poorer service to the

customer. The competitive advantage of shorter lead times and more reliable

delivery, achieved via a reduction in rework, is difficult to quantify precisely but

can be of substantial strategic importance.

Further Observations. We conclude our discussion on the operations effects of quality

problems with some observations that go beyond the preceding examples.

To begin, we note that the longer the rework loop, the more pronounced the conse-
quences. In the two examples above, we represented rework as a second pass through

a single machine. In practice, rework is frequently much more involved than this. A

defective part may have to loop back through several stations in the line in order to be

corrected. When this is the case, rework affects the capacity and variability of effective

processing time on several stations. Additionally, because each pass through the rework
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loop adds even more time than in the single-machine rework loop case, the effect on the

standard deviation of cycle time tends to be larger. As a result, the consequences of the

rework law become even more pronounced as the length of the rework loop grows.

Because rework has such a disruptive effect on a production line, manufacturing

managers are frequently tempted to set up separate rework lines. Such an approach does

prevent defective parts from sapping capacity and inflating variability in the main line.

However, it does this by installing extra capacity somewhere else, which costs money,

takes up space, and does little to eliminate the inflation of the mean and standard deviation

of cycle time caused by rework. Even worse, such an approach can serve to sweep quality

problems under the rug. Shunting defective parts to a separate line makes them someone

else’s responsibility. Making a line responsible for correcting its own problems fosters

greater awareness of the causes and effects of quality problems. If such awareness can

lead to quicker detection of problems, it can shorten the rework loop and mitigate the

consequences. If it can lead to ways to avoid the defects in the first place, then truly

major improvements can be achieved. Consequently, despite the short-term appeal of

separate rework lines, it is probably better in the long run to avoid them and strive for

more fundamental quality improvements.

In many manufacturing environments, internal quality problems lead to scrap—

that is, yield loss—rather than rework, either because the defect cannot be corrected or

because it is not economical to do so. Thus, it is important to point out that scrap has
effects similar to rework. From an operations standpoint, scrapped parts are essentially

identical to reworked parts that must be processed again from the beginning of the line.

In this sense, scrap is the most extreme form of rework and therefore has the same effects

we observed for rework, only more so.

A difference between scrap and rework, however, lies in the method used to com-

pensate. While separate lines can be used for rework, they make no sense as a remedy

for scrap. Instead, most manufacturing systems perform some form of job size inflation

as protection against yield loss. (We first discussed this approach in Chapter 3 in the

context of MRP but will review it again here in the context of quality and operations.)

The most obvious approach is to divide the desired quantity by the expected yield rate.

For example, if we have an order for 90 parts and the yield rate is 90 percent (i.e., a

10 percent scrap rate), then we could release

90

0.9
= 100

units. Then if 10 percent are lost to scrap, we will have 90 good parts to ship to the

customer.

This approach would be fine if the scrap rate were truly a deterministic constant

(i.e., we always lose 10 percent). But in virtually all real situations, the scrap rate for a

given job is a random quantity; it might range from 0 to 100 percent. When this is the

case, it is not at all clear that inflating by the expected yield rate is the best approach. For

instance, in the previous example, suppose the expected scrap rate is 90 percent, but what

really happens is that 90 percent of the time the yield for a given job is 100 percent (no

yield loss) and the other 10 percent of the time it is 0 percent (catastrophic yield loss).

If we inflate by dividing the amount demanded by the customer by 0.9, then 90 percent

of the time we will wind up with excess and the other 10 percent of the time we will be

short. In this extreme case, job inflation does not improve customer service at all!

When too little good product finishes to fill an order, we must start additional parts

and wait for them to finish before we can ship the entire amount to the customer. That
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is, it is similar to a rework loop that encompasses the entire line. Unless we have built

in substantial lead time to the customer, this is likely to result in a late delivery. The

costs to the firm are the (hard to quantify) cost of lost customer goodwill and the cost of

disrupting the line to rush the makeup order through the line.

On the other hand, when low yield loss results in more good product finishing than

required to fill an order, the excess will go into finished goods inventory (FGI) and be

used to fill future orders. The cost to the firm is that incurred to hold the extra inventory in

FGI. Of course, if all products are customized and cannot be used against future demand,

the extra inventory will amount to scrap.

At any rate, there is no reason to expect the cost of being short on an order by n
units to be equal to that of being over it by n units. In most cases, the cost of being short

exceeds that of being over. Hence, from a cost-minimization standpoint, it might make

sense to inflate by more than the expected yield loss. For instance, in a situation where

yield varies between 80 and 100 percent, we might divide the amount demanded by 0.85

instead of 0.9, so that we release 106 parts instead of 100 to cover an order of 90. This

would allow us to ship on time as long as the yield loss was not greater than 15 percent.

But in cases where yield loss is frequently all or nothing (e.g., we get either 100

good parts or none from a release quantity of 100), inflating job size is generally futile.

(We would have to start an entire second job of 100 parts to make up for the catastrophic

failure of the first batch.) A more practical alternative is to carry safety stock in finished

goods inventory; for example, we try to carry n jobs’ worth of FGI, where n is the number

of scrapped jobs we want to be able to cover. In a system with many products, this can

require considerable (expensive) inventory.

The unavoidable conclusion is that scrap loss caused by variable yields is costly and

disruptive. The more variable the yields, the more difficult it is to mitigate the effect with

inflated job sizes or safety stocks. Thus, in the long term, the best option is to strive to

minimize or eliminate scrap and rework.

12.5.2 Operations Supports Quality

The previous subsection stressed that better quality promotes better operations. Happily,

the reverse is also frequently true. As pointed out frequently in the JIT literature, to the

extent that tighter operations management leads to less WIP (i.e., shorter queues), it aids

in the detection of quality problems and facilitates tracing them to their source.

Specifically, suppose that there tends to be a great deal of WIP between a point in a

production line that causes defects and the point where these defects are detected. The

defects might be caused by a machine early in the line because it has imperceptibly gone

“out of control” but not be detected until an end-of-line (EOL) test. By the time a defect

is detected at the EOL test, it is likely that all the parts that have been produced by the

upstream machine are similarly defective. If the line has a high WIP level in it, scrap

loss could be large. If the line has little WIP, scrap loss is likely to be much less.

Of course, in the real world, causes and detection of defects are considerably more

complex and varied than this. There are likely to be many sources of potential defects,

some of which have never been encountered before—or at least, for which there is no

institutional memory. Detection of defects can occur at many places in the line, both

at formal inspection points and as a result of informal observations elsewhere. While

these realities serve to make understanding and managing quality a challenge, they do

not alter the main point: High WIP levels tend to aggravate scrap loss by increasing the

time, and hence number of items produced, between the cause and the detection of a

defect.
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Example: A Defect Detection

Consider again the CONWIP line depicted in Figure 12.7, only this time suppose that

the rework rate at machine 2 is zero. Instead, suppose that each time a job is processed

on machine 1, there is a probability q that this machine goes out of control and produces

bad parts until it is fixed. However, the out-of-control status of machine 1 can be inferred

only by detecting the bad parts, which does not occur until after the parts have been

processed at machine 4. Each time a defective part is detected, we assume that machine

1 is corrected instantly. But all the parts that have been produced on machine 1 between

the time it went out of control and the time the defect was detected at machine 4 will be

defective and must be scrapped at the end of the line.

Figure 12.11 illustrates the curve of throughput (of good parts only) versus WIP for

four cases of this example. First, when q = 0 (no quality problems) and all processing

times are deterministic, we get the familiar best-case curve. Second, for comparison,

we plot throughput versus WIP when q = 0 but processing times are exponential (i.e.,

they have CVs of 1). Here, throughput increases with WIP, reaching nearly maximum

output at around 15 jobs. Note that this curve is somewhat better than (i.e., lies above)

the practical worst case due to the imbalance in the line.

However, when q = 0.05 and processing times are deterministic, throughput in-

creases and then declines with WIP. The reason, of course, is that for high WIP levels,

the increased scrap loss outweighs the higher production rate it promotes. The maximum

throughput occurs at a WIP level of three jobs, the critical WIP level. When q = 0.05

and processing times are exponential, throughput again increases and then decreases,

with maximum throughput being achieved at a WIP level of nine jobs. Notice that while

we can make up for the variability induced by random processing times by maintaining a

high WIP level (for example, 15 jobs), the variability due to scrap loss is only aggravated

by more WIP. So instead of putting more WIP in the system to compensate, we must

reduce the WIP level to mitigate this second form of variability and thereby maximize

throughput. Metaphorically speaking, this is like lowering the water to cover the rocks.

Obviously, metaphors have their limits.

It is our guess that in real life, throughput-versus-WIP curves frequently do exhibit

this increasing-then-decreasing type of behavior, not only because of poor quality de-

tection but also because high WIP levels make it harder to keep track of jobs, so that

more time is wasted locating jobs and finding places to put them between processes.

Moreover, more WIP leads to more chances for damage. In general, we can conclude

that better operations (i.e., tighter WIP control) leads to better quality (less scrap loss)
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and hence higher throughput (better operations again). This is a simple illustration of

the fact that quality and operations are mutually supportive and therefore can be jointly

exploited to promote a cycle of continual improvement.

12.6 Quality and the Supply Chain

Total quality management refers to quality outside, as well as inside, the walls of the plant.

Under the topic of vendor certification (e.g., ISO 9000), the TQM literature frequently

mentions the supply chain: the network of plants and vendors that supply raw material,

components, and services to one another. Almost all plants today rely on outside suppliers

for at least some of the inputs to their manufacturing process. Indeed, the tendency in

recent years has been toward vertical deintegration through outsourcing of an increasing

percentage of manufactured components.

When significant portions of a finished product come from outside sources, it is clear

that internal, and perhaps external, quality at the plant can depend critically on these

inputs. As computer programmers say, “garbage in, garbage out.” (Or as farmers say,

“you can’t make a silk purse out of a sow’s ear.”) Whatever the metaphor, the point is that

a TQM program must address the issue of purchased parts if it is to be effective. Vendor

certification, working with fewer vendors, using more than price to choose between

vendors, and establishing quality assurance procedures as close to the front of the line as

possible—all are options for improving purchased part quality. The choice and character

of these policies obviously depend on the setting. We refer the reader to the previously

cited TQM references for more in-depth discussion.

Just as internal scrap and rework problems can have significant operations con-

sequences, quality problems from outside suppliers can have strong impacts on plant

performance. First, any defects in purchased parts that find their way into the production

process to cause scrap or rework problems will affect operations in the fashion we have

discussed. However, even if defective purchased parts are screened out before they reach

the line, either at the supplier plant or at the receiving dock, these quality problems can

still have negative operational effects. The reason is that they serve to inflate the variabil-
ity of delivery time. If scrap or rework problems at the supplier plant cause some orders

to be delivered late, or if some orders must be sent back because quality problems were

detected upon receipt, the effective delivery time (i.e., the time between submission of a

purchase order and receipt of acceptable parts) will not be regular and predictable.

12.6.1 A Safety Lead Time Example

To appreciate the effects of variable delivery times for purchased parts, consider the

following example. A plant has decided to purchase a particular part from one of two

suppliers on a lot-for-lot basis. That is, the company will not buy the part in bulk and

stock it at the plant, but instead will bring in just the quantities needed to satisfy the

production schedule. If the part is late, the schedule will be disrupted and customer

deliveries may be delayed. Therefore, management chooses to build a certain amount of

safety lead time into the purchasing lead time. The result is that, on average, parts will

arrive somewhat early and wait in raw materials inventory until they are needed at the

line. The key question is, How much safety lead time is required?

Figure 12.12 depicts the probability density functions (pdf’s) for the delivery time

from the two candidate suppliers. Both suppliers have mean delivery times of 10 days.

However, deliveries from supplier 2 are much more variable than those from supplier 1
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(perhaps because supplier 2 does not have sound operations and quality control systems

in place). As a result, to be 95 percent certain that an order will arrive on time (i.e., when

required by the production schedule), parts must be ordered with a lead time of 14 days

from supplier 1 or a lead time of 23 days from supplier 2 (see also Figure 12.13). The

additional lead time is required for supplier 2 to make up for the variability in delivery

time. Notice that this implies that an average order from supplier 1 will wait in raw

materials inventory for 14 − 10 = 4 days, while an average order from supplier 2 will

wait in raw materials inventory for 23 − 10 = 13 days—an increase of 225 percent.

From Little’s law, we know that raw materials inventory will also be 225 percent larger

if we purchase from supplier 2 rather than from supplier 1.

12.6.2 Purchased Parts in an Assembly System

The effects of delivery time variability become even more pronounced when assemblies

are considered. In many manufacturing environments, a number of components are

purchased from different suppliers for assembly into a final product. To avoid a schedule

disruption, all the components must be available on time. Because of this, the amount

of safety lead time needed to achieve the same probability of being able to start on time

is larger than it would be if there were only a single purchased component.

To see how this works, consider an example in which a product is assembled from

10 components, all of which are purchased from separate vendors and have the same

distribution (i.e., mean and variance) of delivery time. Since the parts are identical with

regard to their delivery characteristics, it is sensible to choose the same purchasing lead

time for all. Suppose this is done as in the previous single-component example so that

each component has a 95 percent chance of being received on time. Assuming delivery

times of the different components to be independent, the probability that all are on time

is given by the product of the individual on-time probabilities

Prob{all 10 components arrive on time} = (0.95)10 = 0.5987

Assembly will be able to start on time less than 60 percent of the time!

Obviously, the plant needs longer lead times and higher individual on-time proba-

bilities to achieve the desired 95 percent likelihood of having all components in when

required by the schedule. Specifically, if we let p represent the on-time percentage for a

single part, we want

p10 = 0.95
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or

p = 0.951/10 = 0.9949

To ensure that the entire set of parts is available 95 percent of the time, each individual

part must be available 99.49 percent of the time.

To see the operations effects of this, consider Figure 12.13, which shows the cumu-

lative distribution function (cdf) of the delivery times from supplier 1.8 This curve gives

the probability that the delivery time is less than or equal to t for all values of t . For a

single component to be available 95 percent of the time, a purchasing lead time of 14

days (i.e., a safety lead time of 4 days) is sufficient. However, for a single component to

be available 99.49 percent of the time, in order to support the 10-component assembly

system, a purchasing lead time of 16.3 days (i.e., a safety lead time of 6.3 days) is needed.

Thus, purchased parts will reside in raw materials inventory for an additional 2.3 days

on average in the multicomponent assembly system, and therefore the raw materials

inventories will be increased by a corresponding amount.

Since multiple-component systems require high individual on-time probabilities,

the tails of the delivery time distributions are critical. For instance, the purchasing lead

time required for supplier 2 in Figure 12.13 to achieve a 99.49 percent probability of

on-time delivery is 33.6 days. Recall that in the single-component case, there was a

difference of 9 days between the required lead times for suppliers 1 and 2 (that is,

14 days for supplier 1 and 23 days for supplier 2). In the 10-component case, there is

a difference of 33.6 − 16.3 = 17.3 days. The conclusion is that reliable suppliers are

extremely important to efficient operation of an assembly system that involves multiple

purchased parts.

8The cdf is simply the area under the pdf shown in Figure 12.12 from 0 to t .
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12.6.3 Vendor Selection and Management

The preceding discussion has something (though far from everything) to say about the

problem of supplier selection. To see what, suppose components are purchased from two

separate suppliers. Each has a probability p of delivering on time, so that the probability

of receiving both parts on time is p2. Now, further suppose that both parts could be

purchased from a single vendor. If that vendor could provide better on-time performance

than p2 for the combined shipments, then, all other things being equal, it would be

better to switch to the single vendor. Even if the purchasing cost is higher when using

the single vendor, the savings in inventory and schedule disruption costs may justify

the switch. Having fewer vendors providing multiple parts might produce better on-time

performance than having many vendors providing single parts, for these reasons:

1. Purchases become a larger percentage, and therefore a higher-priority piece, of

the supplier’s business.

2. The purchasing department can keep better track of suppliers (by knowing

about special circumstances that would alter the usual purchasing lead times, by

being able to place “reminder” phone calls, etc.) if there are fewer of them.

The insights from these simplified examples extend to more realistic systems. Ob-

viously, in the real world, suppliers do not have identical delivery time distributions, nor

are the costs of the different components necessarily similar. For these reasons, it may

make sense to set the on-time delivery probabilities differently for different components.

An inexpensive component (e.g., a resistor) should probably have a very high on-time

probability because the inventory cost of achieving it is low.9 An expensive component

[e.g., a liquid crystal display (LCD)] should have a relatively lower on-time probability,

in order to reduce its safety lead time and hence average inventory level. The general

idea is that if a schedule disruption is going to occur, it ought to be due to a $500 LCD,

not a 2-cent resistor.

Formal algorithms exist for computing appropriate safety lead times in assembly

systems with multiple nonidentical purchased components (see Hopp and Spearman

1993). But whether we use algorithms or less rigorous methods to establish safety lead

times for the individual components, the result will be to set an on-time probability for

each component. As our previous discussion of Figure 12.12 illustrated, for a fixed on-

time probability, safety lead time and raw materials inventory are both increasing in the

variance of supplier delivery time. Moreover, as we observed in Figure 12.13, the more

independent suppliers we order from, the higher the individual on-time probabilities

required to support a given probability of maintaining schedule.

This discussion can be thought of as a quick factory-physics interpretation of the

JIT view on vendoring. The JIT literature routinely suggests certifying a smaller number

of vendors, precisely because low delivery time variance is needed to support just-in-

time deliveries. Indeed, Toyota has evolved a very extensive system of working with its

suppliers that goes well beyond simple certification—to the point of sending in advisers to

set up the “Toyota system,” which addresses both quality and operations, in the supplier’s

plant. The goal is to nurture suppliers that effectively support Toyota’s operation and are

efficient enough to remain economically viable partners over the long term.

9Actually, for really inexpensive items that are used with some regularity, it makes sense to simply order

them in bulk and stock them on site to ensure that they are virtually never out of stock. However, this advice

does not apply to bulky materials (e.g., packaging) for which the cost of storage space and handling makes

large on-site stocks uneconomical.
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12.7 Conclusions

Quality is a broad and varied subject, which ranges from definitions of customer needs

to analytical measurement and maintenance tools. In this chapter, we have tried to give

a sense of this range and have suggested references for the interested reader to consult

for additional depth. In keeping with the factory-physics framework of this book, we

have concentrated primarily on the relationship between quality and operations and

have shown that the two are intimately related in a variety of ways. Specifically, we have

argued the following:

1. Good quality supports good operations. Reducing recycle and/or scrap serves

to increase capacity and decrease congestion. Thus, better quality

control—through tighter control of inputs, mistake prevention, and earlier

detection—facilitates increased throughput and reduced WIP, cycle time, and

customer lead time.

2. Good operations supports quality improvement. Reducing WIP—via better

scheduling, pull mechanisms for shop floor control, or (although it is hardly an

imaginative option) capacity increases—serves to reduce the amount of product

generated between the cause of a defect and its detection. This has the potential

to reduce the scrap and rework rate and to help identify the root causes of

quality problems.

3. Good quality at the supplier level promotes good operations and quality at the
plant level. A supplier plant with fewer scrap, rework, and external quality

problems will make more reliable deliveries. This enables a customer plant to

use shorter purchasing lead times for these parts (e.g., just-in-time becomes a

possibility), to carry smaller raw materials inventories, and to avoid frequent

schedule disruption.

On the basis of these discussions, we conclude that both quality and operations are

integral parts of a sound manufacturing management strategy. One cannot reasonably

consider one without the other. Hence, perhaps we should really view total quality

management more in terms of quality of management than management of quality.

Study Questions

1. Why is quality so difficult to define? Provide your own definition for a specific operation of

your choosing.

2. Give three major ways that good internal quality can promote good external quality.

3. Using the following definition of the cost of quality:

Quality costs are defined as any expenditures on manufacturing or service in excess of
those that would have been incurred if the product had been built or the service had been
performed exactly right the first time. [Garvin (1988, 78)]

identify the costs associated with each of the following types of quality problems:

(a) A flow line with a single-product family where defects detected at any station are

scrapped.

(b) A flow line with a single-product family where defects detected at any station are

reworked through a portion of the line.

(c) A cutting machine where bit breakage destroys the part in production and brings the

machine down for repair.
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(d) Steel burners for a kitchen range that are coated with a porcelain that cracks off after a

small amount of use in the field.

(e) A minivan whose springs for holding open the hatchback are prone to failure.

(f ) A cheap battery in new cars and light trucks that fails after about 18 months when the

warranty period is 12 months.

4. For each of the following examples, would you expect cost to increase or decrease with

quality? Explain your reasoning.

(a) An automobile manufacturer increases expected battery life by installing more

expensive batteries in new cars.

(b) A publisher reduces the number of errors in newly published books by assigning extra

proofreaders.

(c) A steel rolling mill improves the consistency of its galvanizing process through

installation of a more sophisticated monitoring system (i.e., one that measures

temperature, pH, etc., at various points in the chemical bath).

(d) A manufacturer of high-voltage switches eliminates quality inspection of metal castings

after certifying the supplier from which they are purchased.

(e) An automobile manufacturer repairs an obvious defect (e.g., a defective paint job) after

the warranty period has expired.

5. Why does Six Sigma assume a process that is shifted by 1.5 sigma from the midpoint of the

specification interval? What effect does this have on the quality level implied by Six Sigma?

6. The defect rate in Six Sigma is defined as the number of defects divided by the number of

opportunities to create defects.

(a) Some practitioners define the number of opportunities as the number of inspections

and/or tests. Why is this not a valid way to determine defect rate? (Hint: the best

manufacturers tend to do very little test and inspection.)

(b) Another school of quality thought defines opportunities as value-added transformations.

That is, a product or service is changed by the process, the change matters to the

customer (i.e., if a step removes scratches from a previous step, it doesn’t count), and

only first-time operations count (i.e., rework steps are not opportunities). Will this lead

to a more reliable measure of defect rate than the previous definition? How might an

unscrupulous practitioner manipulate the calculation of opportunities to make the defect

rate look better than it actually is?

7. What quality implications could setup time reduction have in a manufacturing line?

8. How might improved internal quality make scheduling a production system easier?

9. Why do the operational consequences of rework become more severe as the length of the

rework loop increases?

10. How are the operational consequences of rework similar to those of scrap? How are they

different?

11. Why is it important to detect quality problems as early in the line as possible?

Problems

1. Manov Steel Inc. has a rolling mill that produces sheet steel with a nominal thickness of

0.125 inch. Suppose that the specification limits are given by LSL = 0.120 and

USL = 0.130 inch. According to historical data, the actual thickness of a random sheet

produced by the mill is normally distributed with mean and standard deviation of μ = 0.125

and σ = 0.0025.

(a) What are the lower and upper natural tolerance limits (LNTL and UNTL) for individual

sheets of steel?

(b) What are the lower and upper control limits (LSL and USL) if we use a control chart that

plots the average thickness of samples of size n = 4?
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(c) What will be the percentage nonconforming, given the above values for (LNTL, UNTL)

and (LSL, USL)? What is the process capability index Cpk? Do you consider this process

capable of meeting its performance specifications?

(d) Suppose that the process mean suddenly shifts from 0.125 to 0.1275. What happens to

the process capability index Cpk and the percentage nonconforming?

(e) Under the conditions of (d), what is the probability that the x̄ chart specified in (b) will

detect an out-of-control signal on the first sample after the change in process mean?

2. A purchasing agent has requested quotes for valve gaskets with diameters of 3.0 ± 0.018

inches. SPC studies of three suppliers have indicated that their processes are in statistical

control and produce measurements that are normally distributed with the following statistics:

Supplier 1: μ = 3 inches σ = 0.009 inch

Supplier 2: μ = 3 inches σ = 0.0044 inch

Supplier 3: μ = 2.99 inches σ = 0.003 inch

Assuming that all suppliers offer the same price and delivery reliability/flexibility, which

supplier should the agent purchase from? Explain your reasoning.

3. Suppose a power plant represents defects as minutes without power (i.e., outages). Last year,

the plant was up (producing power) for 525,600 minutes and was down (not producing

power) for 500 minutes.

(a) What is the yield in percent uptime?

(b) In Six Sigma terminology (using the 1.5 sigma shift), what sigma level does this

correspond to? (Hint: use Table 12.1 and find the integer sigma levels between which the

true value lies.)

4. Consider a single machine that requires 1 hour to process parts. With probability p, a given

part must be reworked, which requires a second 1-hour pass through the machine. However,

all parts are guaranteed to be good after a second pass, so none go through more than twice.

(a) Compute the mean and variance of the effective processing time on this machine as a

function of p.

(b) Use your answer from (a) to compute the squared coefficient of variation (SCV) of the

effective processing times. Is it an increasing function of p? Explain.

5. Suppose the machine in Problem 4 is part of a two-station line, in which it feeds a second

machine that has processing times with a mean of 1.2 hours and SCV of 1. Jobs arrive to the

line at a rate of 0.8 job per hour with an arrival SCV of 1.

(a) Compute the expected cycle time in the line when p = 0.1.

(b) Compute the expected cycle time in the line when p = 0.2.

(c) What effects does rework have on cycle time, and how do these differ in (a) and (b)?

6. Suppose a cellular telephone plant purchases electronic components from various suppliers.

For one particular component, the plant has a choice between two suppliers: Supplier 1 has

delivery lead times with a mean of 15 days and a standard deviation of 1 day, while supplier 2

has delivery lead times with a mean of 15 days and a standard deviation of 5 days. Both

suppliers can be assumed to have normally distributed lead times.

(a) Assuming that the cellular plant purchases the component on a lot-for-lot basis and wants

to be 99 percent certain that the component is in stock when needed by the production

schedule, how many days of lead time are needed if supplier 1 is used? Supplier 2?

(b) How many days will a typical component purchased from supplier 1 wait in inventory

before being used? From supplier 2? How might this information be used to justify using

supplier 1 even if it charges a higher price?

(c) Suppose that the cellular plant purchases (on a lot-for-lot basis) 100 parts from different

suppliers, all of which have delivery times like those of supplier 1. Assuming all

components are assigned the same lead time, what lead times are required to ensure that

all components are in stock when required by the schedule? How does your answer

change if all suppliers have lead times like those of supplier 2?
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(d) How would your answer to (a) be affected if, instead of ordering lot for lot, the cellular

plant ordered the particular component in batches corresponding to 5 days’ worth of

production?

7. Consider a workstation that machines castings into switch housings. The castings are

purchased from a vendor and are prone to material defects. If all goes well, machining

(including load and unload time) requires 15 minutes, and the SCV of natural processing time

(due to variability in the time it takes the operator to load and start the machine) is 0.1.

However, two types of defect in the castings can disrupt the process.

One type of defect (a flaw) causes the casting to crack during machining. When this

happens, the casting is scrapped at the end of the operation and another casting is machined.

About 15 percent of castings have this first type of defect.

A second type of defect (a hard spot) causes the cutting bit to break. When this happens,

the machine must be shut down, must wait for a repair technician to arrive, must be examined

for damage, and must have its bit replaced. The whole process takes an average of 2 hours,

but is quite variable (i.e., the standard deviation of the repair time is also 2 hours).

Furthermore, since the casting must be scrapped, another one must be machined to replace it

once the repair is complete. About 5 percent of castings have this second type of defect.

(a) Compute the mean and SCV of effective process time (i.e., the time it takes to machine a

good housing). [Hint: Use equations (12.15) and (12.17) to consider the effects of the

first type of defect, and consult Table 8.1 for formulas to address the second type of

defect. Question: Should stoppages due to the second type of defect be modeled as

preemptive or nonpreemptive outages?]

(b) How does your answer to (a) change if the defect percentages are reversed (that is, 5

percent of castings have the first type of defect, while 15 percent have the second type)?

What does this say about the relative disruptiveness of the two types of defects?

(c) Suppose that by feeding the castings through the cutting tool more slowly, we could

ensure that the second type of defect does not cause bit breakage. Under this policy,

castings with the second type of defect will be scrapped, but will not cause any machine

downtime (i.e., they become identical to the first type of defect). However, this increases

the average time to machine a casting without defects from 15 minutes to t minutes.

What is the maximum value of t for which the slower feed speed achieves at least as

much capacity as the original situation in (a)?

(d) Which workstation would you rather manage, that in (a) (i.e., fast feeds and bit breakages)

or that in (c) [i.e., slow speeds, resulting in machining times equal to your answer to (c),

and no bit breakages]? (Hint: How do the effective SCVs of the two cases compare?)
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III Principles in Practice

In matters of style, swim with the current;
In matters of principle, stand like a rock.

Thomas Jefferson
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13 A Pull Planning

Framework

We think in generalities, we live in detail.
Alfred North Whitehead

13.1 Introduction

Recall that we began this book by stating that the three critical elements of an operations
management education are

1. Basics

2. Intuition

3. Synthesis

We devoted almost all of Parts I and II to the first two items. For instance, the tools and
terminology introduced in Part I (e.g., EOQ, (Q, r ), BOM, MPS) and the measures of
variability (e.g., coefficient of variation) and elementary queueing concepts presented in
Part II are basics of manufacturing management. The insights from traditional inventory
models, MRP, and JIT we observed in Part I and the Factory Physics relationships among
throughput, WIP, cycle time, and variability we developed in Part II are key components
of sound intuition for making good operating decisions.

But, with the exception of a bit of integration of the contrasting perspectives of
operations and behavioral science in Chapter 11 and the pervasive aspects of quality
presented in Chapter 12, we have yet to address the third item, synthesis. We are now
ready to fill in this important gap by establishing a framework for applying the principles
from Parts I and II to real manufacturing problems.

Our approach is based on two premises:

1. Problems at different levels of the organization require different levels of detail,
modeling assumptions, and planning frequency.

2. Planning and analysis tools must be consistent across levels.

The first premise motivates us to use separate tools for separate problems. Unfor-
tunately, using different tools and procedures throughout the system can easily bring
us into conflict with the second premise. Because of the potential for inconsistency,
it is not uncommon to find planning tools in industry that have been extended across

434
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applications for which they are ill suited. For instance, we once worked in a plant that
used a scheduling tool that calculated detailed, minute-by-minute production on each
machine in the plant in order to generate two-year aggregate production plans. Although
this tool may have been reasonable for short-term planning (e.g., a day or a week), it
was far too cumbersome to run for long-term purposes (the data input and debugging
alone took an entire week!). Moreover, it was so inaccurate beyond a few weeks into the
future that the schedule, so painfully obtained, was virtually ignored on the plant floor.

To develop methods that are both well suited to their specific application and mu-
tually consistent across applications, we recommend the following steps in developing
a planning framework:

1. Divide the overall system appropriately. Different planning methods for
different portions of the process, different product categories, different planning
horizons, different shifts, and so on, can be used. The key is to find a set of
divisions that make each piece manageable, but still allow integration.

2. Identify links between the divisions. For instance, if production plans for two
products with a shared process center are made separately, they should be
linked via the capacity of the shared process. If we use different tools to plan
production requirements over different time horizons, we should make sure that
the plans are consistent with regard to their assumptions about capacity, product
mix, staffing, and so forth.

3. Use feedback to enforce consistency. All analysis, planning, and control tools
make use of estimated parameters (capacity, machine speeds, yields, failure and
repair rates, demand rates, and many others). As the system runs, we should
continually update our knowledge of these values. Rather than allow the inputs
to the various tools to be estimated in an ad hoc, uncoordinated fashion, we
should explicitly make use of our updated knowledge to force tools to make use
of timely, consistent information.

In the remainder of this chapter, we preview a planning framework that is consistent
with these steps, as well as the Factory Physics principles presented earlier. We do
not pretend that this framework is the only one that is consistent with these principles.
Rather, we offer it as one approach and try to present the issues involved at the various
levels from a sufficiently broad perspective to allow room for customization to specific
manufacturing environments. Subsequent chapters in Part III will flesh out the major
components of this framework in greater detail.

13.2 Disaggregation

The first step in developing a planning structure is to break down the various decision
problems into manageable subproblems. This can be done explicitly, through the devel-
opment of a formal planning hierarchy, as we will discuss. Or it can be done implicitly
by addressing the various decisions piecemeal with different models and assumptions.
Regardless of the level of foresight, some form of disaggregation will be done, since all
real-world production systems are too complex to address with a single model.

13.2.1 Time Scales in Production Planning

One of the most important dimensions along which manufacturing systems are typically
broken down is that of time. The primary reason for this is that manufacturing decisions
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differ greatly with regard to the length of time over which their consequences persist.
For example, the construction of a new plant will affect a firm for years or even decades,
while the effects of selecting a particular part to work on at a particular workstation may
evaporate within hours or even minutes. This makes it essential to use different planning

horizons in the decision-making process. Since the decision to construct a new plant will
influence operations for years, we must forecast these effects years into the future in order
to make a reasonable decision. Hence, the planning horizon should be long for this prob-
lem. Clearly, we do not need to look nearly so far into the future to evaluate the decision
of what to work on at a workstation, so this problem will have a short planning horizon.

The appropriate length of the planning horizon also varies across industries and
levels of the organization. Some industries, oil and long-distance telephone, for example,
routinely make use of horizons as long as several decades because the consequences of
their business decisions persist this long. Within a given company, longer time horizons
are generally used at the corporate office, which is responsible for long-range business
planning, than at the plant, where day-to-day execution decisions are made.

In this book we focus primarily on decisions relevant to running a plant, and we
divide planning horizons in this context into long, intermediate, and short. At the plant
level, a long planning horizon can range from 1 to 5 years, with 2 years being typical.
An intermediate planning horizon can range from a week to a year, with a month being
typical. A short time horizon can range from an hour to a week, with a day being typical.

Table 13.1 lists various manufacturing decisions that are made over long, interme-
diate, and short planning horizons. Notice that, in general, long-range decisions address
strategy, by considering such questions as what to make, how to make it, how to finance
it, how to sell it, where to make it, where to get materials, and general principles for

Table 13.1 Strategy, Tactics, and Control Decisions

Time Horizon Length Representative Decisions

Long term (strategy) Year to decades Financial decisions
Marketing strategies
Product designs
Process technology decisions
Capacity decisions
Facility locations
Supplier contracts
Personnel development programs
Plant control policies
Quality assurance policies

Intermediate term (tactics) Week to year Work scheduling
Staffing assignments
Preventive maintenance
Sales promotions
Purchasing decisions

Short term (control) Hour to week Material flow control
Worker assignments
Machine setup decisions
Process control
Quality compliance decisions
Emergency equipment repairs



Chapter 13 A Pull Planning Framework 437

operating the system. Intermediate-range decisions address tactics, by determining what
to work on, who will work on it, what actions will be taken to maintain the equipment,
what products will be pushed by sales, and so on. These tactical decisions must be made
within the physical and logical constraints established by the strategic long-range deci-
sions. Finally, short-range decisions address control, by moving material and workers,
adjusting processes and equipment, and taking whatever actions are required to ensure
that the system continues to function toward its goal. Both the long-term strategic and
intermediate-range tactical decisions establish the constraints within which these control
decisions must be made.

Different planning horizons imply different regeneration frequencies. A long-
range decision that is based on information extending years into the future does not need
to be reconsidered very often, because the estimates about what will happen this far
into the future do not change very fast. For instance, while it is a good thing for a plant
to reevaluate what products it should be making, this is not a decision that should be
reconsidered every week. Typically, long-range problems are considered on a quarterly
to annual basis, with very long-range issues (e.g., what business should we be in?)
being considered even less frequently. Intermediate-range problems are reconsidered on
roughly a weekly to monthly basis. Short-range problems are reconsidered on a real-
time to daily basis. Of course, these are merely typical values, and considerable variation
occurs across firms and decision problems.

In addition to differing with respect to regeneration frequency, problems with dif-
ferent planning horizons differ with respect to the required level of detail. In general, the
shorter the planning horizon, the greater the amount of detail required in modeling and
data collection. For instance, if we are making a long-term strategic capacity decision
about what size plant to build, we do not need to know very much about the routings that
parts will take. It may be enough to have a rough estimate of how much time each part
will require of each process, in order to estimate capacity requirements. However, at the
intermediate tactical level, we need more information about these routings, for instance,
which specific machines will be visited, in order to determine whether a given schedule is
actually feasible with respect to customer requirements. Finally, at the short-term control
level, we may need to know a great deal about part routings, including whether or not a
given part requires rework or other special attention, in order to guide parts through the
system.

A good analogy for this strategy/tactics/control distinction is mapmaking. Long-term
problems are like long-distance travel. We require a map that covers a large amount of
distance, but not in great detail. A map that shows only major highways may be adequate
for our needs. Likewise, a long-term decision problem requires a tool that covers a large
amount of time (i.e., long planning horizon), but not in great detail. In contrast, short-
term problems are like short-distance travel. We require a map that does not cover much
distance, but gives lots of details about what it does cover. A map showing city streets,
or even individual buildings, may be appropriate. Analogously, for a short-term decision
problem, we require a tool that does not cover much time (i.e., short planning horizon),
but gives considerable detail about what it does cover.

13.2.2 Other Dimensions of Disaggregation

In addition to time, there are several other dimensions along which the production plan-
ning and control problem is typically broken down. Because modern factories are large
and complex, it is generally impossible to consider the plant as a whole when making
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specific decisions. The following are three dimensions that can be used to break the plant
into more manageable pieces for analysis and management:

1. Processes. Traditionally, many plants were organized according to physical man-
ufacturing processes. Operations such as casting, milling, grinding, drilling, and heat
treatment were performed in separate departments in distinct locations and under differ-
ent management. While such process organization has become less popular in the wake
of the JIT revolution, with its flow-oriented cellular layouts, process divisions still exist.
For instance, casting is operationally very different, and sometimes physically distant,
from rolling in a steel mill. Likewise, mass lamination of copper and fiberglass cores in
large presses is distinct—physically, operationally, and logistically—from the circuitiz-
ing process in which circuitry is etched into the copper in a photo-optical/chemical flow
line process. In such situations, it frequently makes sense to assign separate managers to
the different processes. It may also be reasonable to use different planning, scheduling,
and control procedures.

2. Products. Although plants dedicated to a single product exist (e.g., a polystyrene
plant), most plants today make multiple products. Indeed, the pressure to compete via
variety and customization has probably served to increase the average number of different
products produced by an average plant. For instance, it is not uncommon to find a plant
with 20,000 distinct part numbers (i.e., counting finished products and subcomponents).
Because it is difficult, under these conditions, to consider part numbers individually,
many manufacturing plants aggregate part numbers into coarser categories for planning
and management purposes.

One form of aggregation is to lump parts with identical routings together. Typically,
there are much fewer routings through the plant than there are part numbers. For instance,
a printed-circuit board plant, which produces several thousand different circuit boards,
may have only two basic routings (e.g., for small and large boards). Frequently, however,
the actual number of routings can be substantially larger than the number of basic routings
if one counts minor variations (e.g., extra test steps, vendoring of individual operations,
and gold plating of contact surfaces) in the basic routing. For planning, it is generally
desirable to keep the number of “official” routings to a minimum by ignoring minor
variations.

In systems with significant setup times, aggregation by routing may be going too
far. For instance, a particular routing in a circuit board line may produce 1,000 different
circuit boards. However, there may be only four different thicknesses of copper. Since
the speed of the conveyor must be changed with thickness (to ensure proper etching),
a setup involving lost capacity must be made whenever the line switches thicknesses.
In addition, the 1,000 boards may require three different dies for punching rectangular
holes in the boards. Whenever the line switches between boards requiring different dies,
a setup is incurred. If all possible combinations of copper thickness and die requirement
are represented in the 1,000 boards, then there are 4 × 3 = 12 distinct product families

within the routing. This definition of family ensures that there are no significant setups
within families but there may be setups between families. As we will discuss in Chap-
ter 15, setups have important ramifications for scheduling. For this reason, aggregation
of products by family can often simplify the planning process without oversimplifying it.

3. People. There are a host of ways that a factory’s workforce can be broken down:
labor versus management, union versus nonunion, factory floor versus staff support, per-
manent versus temporary, departments (e.g., manufacturing, production control, engi-
neering, personnel), shifts, and so on. In a large plant, the personnel organization scheme
can be almost as complex as the machinery. While a detailed discussion of workforce
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organization is largely beyond the scope of this book—we touched on some of the issues
involved in Chapter 11—we feel it is important to point out the logistical implications
of such organizations. For instance, having separate managers for different processes or
shifts can lead to a lack of coordination. Relying on temporary workers to facilitate a
varying workforce can decrease the institutional memory, and possibly the skill level,
of the organization. Rigidly adhering to job descriptions can preclude opportunities for
cross-training and flexibility within the system. As we stressed in Chapter 11, the ef-
fectiveness of a manufacturing system is very much a function of its workforce. While
it will always be necessary to classify workers into different categories for purposes of
training, compensation, and communication, it is important to remember that we are not
necessarily constrained to follow the procedures of the past. By taking a perspective that
is sensitive to logistics and people, a good manager will seek effective personnel policies
that support both.

13.2.3 Coordination

There is nothing revolutionary about the previous discussion of separating decision prob-
lems along the dimensions of time, process, product, or people. For instance, virtually
every manufacturing operation in the world does some sort of long-, intermediate-, and
short-range decision making. What distinguishes a good system from a bad one is not
whether it makes such a breakdown, but how well the resulting subproblems are solved
and, especially, how well they are coordinated with one another. We will examine the
subproblems in some detail in the remaining chapters of Part III. For now, we begin
addressing the issue of coordination by means of an illustration.

The problem of what parts to make at what times is addressed at the long-,
intermediate-, and short-term levels. Over the long term, we must worry about rough
volumes and product mix in order to be able to plan for capacity and staffing. Over the
intermediate term, we must develop a somewhat more detailed production plan, in order
to procure materials, line up vendors, and rationally negotiate customer contracts. Over
the short term, we must establish and execute a detailed work schedule that controls what
happens at each process center. The basic essence of all three problems is the same; only
the time frame is different. Hence, it seems obvious that the decisions made at the three
different levels should be consistent, at least in expectation, with one another. As one
might expect, this is easier to say than to do.

When we generate a long-range production plan, which gives the quantity of each
part to produce in various time buckets (typically months or quarters), we cannot possibly
consider the production process in enough detail to determine the exact number of
machine setups that will be required. However, when we develop an intermediate-range
production schedule, we must compute the required number of setups, because otherwise
we cannot determine whether the schedule is feasible with respect to capacity. Therefore,
for the long-range plan to be consistent with the intermediate-range plan, we should make
sure that the long-range planning tool subtracts an amount from the capacity of each
process center that corresponds to an anticipated average number of setups. To ensure
this over time, we should track the actual number of setups and adjust the long-range
planning accordingly.

A similar link is needed between the intermediate- and short-term plans. When
we generate an intermediate-range production schedule, we cannot anticipate all the
variations in material flow that will occur in the actual production process. Machines
may fail, operators may call in sick, process or quality problems may arise—none of
which can be foreseen. However, at the short-range level, when we are planning minute
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by minute what to work on, we must consider what machines are down, what workers
are absent, and many other factors affecting the current status of the plant. The result will
be that actual production activities will never match planned ones exactly. Therefore, for
the short-range activities to be able to generate outputs that are consistent, at least on
average, with planned requirements, the intermediate-range planning tool must contain
some form of buffer capacity or buffer lead time to accommodate randomness. Buffer
capacity might be provided in the form of the “two-shifting” we discussed in Chapter
4 on JIT. Buffer lead times are simply additions to the times we quote to customers to
allow for unanticipated delays in the factory.

Next we will discuss other links between planning levels in the context of specific
problems. However, since the reader is certain to encounter planning tools and procedures
other than those discussed in this book, we have raised the issue of establishing links as
a general principle. The main point is that the various levels can and should be addressed
with different tools and assumptions, but linked via simple mechanisms such as those
discussed previously.

13.3 Forecasting

The starting point of virtually all production planning systems is forecasting. This is
because the consequences of manufacturing planning decisions almost always depend
on the future. A decision that looks good now may turn out later to be terrible. But since
no one has a crystal ball with which to predict the future, the best we can do is to make
use of whatever information is available in the present to choose the policies that we
predict will be successful in the future.

Obviously, dependence on the future is not unique to manufacturing. The success
or failure of government policies is heavily influenced by future parameters, such as
interest rates, economic growth, inflation, and unemployment. Profitability of insurance
companies depends on future liabilities, which are in turn a function of such unpredictable
things as natural disasters. Cash flow in oil companies is governed by future success in
drilling ventures. In cases like these, where the effectiveness of current decisions depends
on uncertain outcomes in the future, decision makers generally rely on some type of
forecasting to generate expectations of the future in order to evaluate alternate policies.

Because there are many approaches one can use to predict the future, forecasting is
a large and varied field. One basic distinction is between methods of

1. Qualitative forecasting

2. Quantitative forecasting

Qualitative forecasting methods attempt to develop likely future scenarios by using
the expertise of people, rather than precise mathematical models. One structured method
for eliciting forecasts from experts is Delphi. In Delphi, experts are queried about some
future subject, for instance, the likely introduction date of a new technology. This is
usually done in written form, but can be done orally. The responses are tabulated and
returned to the panel of experts, who reconsider and respond again to the original and
possibly some new questions as well. The process can be repeated several times, until
consensus is reached or the respondents have stabilized in their answers. Delphi and
techniques like it are useful for long-term forecasting where the future depends on the
past in very complex ways. Technological forecasts, where predicting highly uncertain
breakthroughs is at the core of the exercise, frequently use this type of approach. Martino
(1983) summarizes a variety of qualitative forecasting methods in this context.
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Quantitative forecasting methods are based on the assumption that the future can
be predicted by using numerical measures of the past in some kind of mathematical
model. There are two basic classes of quantitative forecasting models:

1. Causal models predict a future parameter (e.g., demand for a product) as a
function of other parameters (e.g., interest rates, growth in GNP, housing starts).

2. Time series models predict a future parameter (e.g. demand for a product) as a
function of past values of that parameter (e.g., historical demand).

Because we cannot hope to provide a comprehensive overview of forecasting, we
will restrict our attention to those techniques that have the greatest relevance to operations
management (OM). Specifically, because operational decisions are primarily concerned
with problems having planning horizons of less than two years, the long-term techniques
of qualitative forecasting are not widely used in OM situations. Therefore, we will focus
on quantitative methods. Furthermore, because time series models are simple to use and
have direct applicability (in a nonforecasting context) to the production tracking module,
we will devote most of our attention to these.

Before we cover specific techniques, we note the following well-known laws of
forecasting.

First law of forecasting: Forecasts are always wrong.

Second law of forecasting: Detailed forecasts are worse than aggregate forecasts.

Third law of forecasting: The further into the future, the less reliable the forecast
will be.

No matter how qualified the expert or how sophisticated the model, perfect prediction
of the future is simply not possible; hence the first law. Furthermore, by the concept
of variability pooling, an aggregate forecast (e.g., of a product family) will exhibit less
variability than a detailed forecast (e.g., of an individual product); hence the second law.
Finally, the further out one goes, the greater the potential for qualitative changes (e.g., the
competition introduces an important new product) that completely invalidate whatever
forecasting approach we use; hence the third law.

We do not mean by these laws to disparage the idea of forecasting altogether. On
the contrary, the whole notion of a planning hierarchy is premised on forecasting. There
is simply no way to sensibly make decisions of how much capacity to install, how large
a workforce to maintain, or how much inventory to stock without some estimate of
future demand. But since our estimate is likely to be approximate at best, we should
strive to make these decisions as robust as possible with respect to errors in the forecast.
For instance, using equipment and plant layouts that enable accommodation of new
products, changes in volume, and shifts in product mix, sometimes referred to as agile

manufacturing, can greatly reduce the consequences of forecasting errors. Similarly,
cross-training of workers and adaptable workforce scheduling policies can substantially
increase flexibility. Finally, as we noted in Part II, shortening manufacturing cycle times
can reduce dependence on forecasts.

13.3.1 Causal Forecasting

In a causal forecast, we attempt to explain the behavior of an uncertain future parameter in
terms of other, observable or at least more predictable, parameters. For instance, if we are
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trying to evaluate the economics of opening a new fast-food outlet at a given location, we
need a forecast of demand. Possible predictors of demand include population and number
of competitor fast-food restaurants within some distance of the location. By collecting
data on demand, population, and competition for existing comparable restaurants, we
can use statistics to estimate constants in a model.

The most commonly used model is the simple linear model, of the form

Y = b0 + b1 X1 + b2 X2 + · · · + bm Xm (13.1)

where Y represents the parameter to be predicted (demand) and the Xi variables are
the predictive parameters (population and competition). The bi values are constants that
must be statistically estimated from data.

This technique for fitting a function to data is called regression analysis; many com-
puter packages, including all major spreadsheet programs, are available for performing
the necessary computations. The following example briefly illustrates how regression
analysis can be used as a tool for causal forecasting.

Example: Mr. Forest’s Cookies

An emerging cookie store franchise was in the process of evaluating sites for future
outlets. Top management conjectured that the success of a store is strongly influenced
by the number of people who live within 5 miles of it. Analysts collected this population
data and annual sales data for 12 existing franchises, as summarized in Table 13.2.

To develop a model for predicting the sales of a new franchise from its 5-mile-radius
population, the analysts made use of regression analysis, which is a tool for finding
the “best-fit” straight line through the data. They did this by choosing the Regression

function in Excel, which produced the output shown in Figure 13.1. The three key
numbers, marked in boldface, are as follows:

1. Intercept coefficient, which is the estimate of b0 in equation (13.1), or 50.30
(rounded to two decimals) for this problem. This coefficient represents the Y
intercept of the straight line being fit through the data.

2. X1 coefficient, or the estimate of b1 in equation (13.1), which is 4.17 for this
problem. This coefficient represents the slope of the straight line being fit
through the data. It is indicated as “Population (000)” in Figure 13.1.

Table 13.2 Mr. Forest’s Cookies
Franchise Data

Franchise Population (000) Sales ($000)

1 50 200
2 25 50
3 14 210
4 76 240
5 88 400
6 35 200
7 85 410
8 110 500
9 95 610

10 21 120
11 30 190
12 44 180
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Figure 13.1 Excel regression analysis output.

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.880008188
R Square 0.774414411
Adjusted R Square 0.751855852
Standard Error 77.79635826
Observations 12

ANOVA
df SS MS F Significance F

Regression 1 207768.9331 207768.9331 34.32907286 0.000159631
Residual 10 60522.73358 6052.273358
Total 11 268291.6667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 50.30456039 45.79857723 1.098386968 0.297777155 −51.74104657 152.3501673
Population (000) 4.169903827 0.711696781 5.859101711 0.000159631 2.584144304 5.755663349

3. R square represents the fraction of variation in the data that is explained by the
regression line. If the data fit the regression line perfectly, R square would be
one. The smaller R square is, the poorer the fit of the data to the regression line.
In this case, R square is 0.77441441, which means that the fit is reasonably
good, but not perfect. Excel also generates a plot of the data and the regression
line, as shown in Figure 13.2, which allows us to visually examine how well the
model fits the data.

Thus, the predictive model is given by

Sales = 50.30 + 4.17 × population (13.2)

where sales are measured in thousands of dollars ($000) and population represents the
5-mile-radius population in thousands. So a new franchise with a 5-mile-radius popula-
tion of 60 thousand would have predicted annual sales of

50.30 + 4.17(60) = 300.5

which equals $300,500 since sales are in thousands.
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Judging from the results in Figures 13.1 and 13.2, the model appears reasonable for
making rough predictions, provided that the population for the new franchise is between
15,000 and 110,000. Since the initial data set does not include populations outside this
range, we have no basis for making predictions for populations smaller than 15,000 or
larger than 110,000.

If the analysts for Mr. Forest want to develop a more refined model, they might
consider adding other predictive variables, such as the average income of the 5-mile-
radius population, number of other cookie stores within a specified distance of the
proposed location, and number of other retail establishments within walking distance
of the proposed location. The general model of equation (13.1), known as a multiple

regression model (as opposed to a simple regression model that includes only a single
predictive variable), allows multiple predictive variables, as do the computer packages
for performing the computations.

Packages such as Excel make the mechanics of regression simple. But full interpre-
tation of the results requires knowledge of statistics. Given that statistics and regression
are widely used throughout business—for marketing analysis, product design, personnel
evaluation, forecasting, quality control, and process control—they are essential basics of
a modern manager’s skill set. Any good business statistics text can provide the necessary
background in these important topics.

Although frequently useful, a causal model by itself cannot always enable us to
make predictions about the future. For instance, if next month’s demand for roofing
materials, as seen by the manufacturer, depends on last month’s housing starts (because
of the time lag between the housing start and the replenishment purchase order placed
on the manufacturer by the supplier), then the model requires only observable inputs and
we can make a forecast directly. In contrast, if next month’s demand for air conditioners
depends on next month’s average daily temperature, then we must forecast next month’s
temperature before we can predict demand. (Given the quality of long-term weather
forecasts, it is not clear that such a causal model would be of much help, however.)

13.3.2 Time Series Forecasting

To predict a numerical parameter for which past results are a good indicator of future
behavior, but where a strong cause-and-effect relationship is not available for constructing
a causal model, a time series model is frequently used. Demand for a product often
falls into this category, and therefore demand forecasting is one of the most common
applications of this technique. The reason is that demand is a function of such factors as
customer appeal, marketing effectiveness, and competition. Although these factors are
difficult to model explicitly, they do tend to persist over time, so past demand is often
a good predictor of future demand. What time series models do is to try to capture past
trends and extrapolate them into the future.

Although there are many different time series models, the basic procedure is the
same for all. We treat time in periods (e.g., months), labeled i = 1, 2, . . . , t , where pe-
riod t is the most recent data observation to be used in the forecast. We denote the actual
observations by A(i) and let the forecasts for periods t + τ , τ = 1, 2, . . . , be represented
by f (t + τ ). As shown in Figure 13.3, a time series model takes as input the past obser-
vations A(i), i = 1, . . . , t (for example, A(i) could represent demand in month i , where
t represents the most recent month for which data are available) and generates predic-
tions for the future values f (t + τ ), τ = 1, 2, . . . (for example, f (t + τ ) represents the
forecasted demand for month t + τ , which is τ months into the future). Toward this end,



Chapter 13 A Pull Planning Framework 445

Time Series Model

ForecastsHistorical data

A(i), i = 1, ..., t F(t +   ),    = 1, 2, ...ττ

Figure 13.3

Basic structure of time
series models.

some models, including those discussed here, compute a smoothed estimate F(t), which
represents an estimate of the current position of the process under consideration, and a
smoothed trend T (t), which represents an estimate of the current trend of the process.

There are many different models that can perform this basic forecasting function;
which is most appropriate depends on the specific application. Here we present four of
the simplest and most common approaches. The moving-average model computes the
forecast for the next period (and thereafter) as the average of the last m observations
(where the user chooses the value of m). Exponential smoothing computes a smoothed
estimate as a weighted average (where the user chooses the weights) of the most recent
observation and the previous smoothed estimate. Like the moving-average model, simple
exponential smoothing assumes no trend (i.e., upward or downward) in the data and
therefore uses the smoothed estimate as the forecast for all future periods. Exponential

smoothing with a linear trend estimates the smoothed estimate in a manner similar to
exponential smoothing, but also computes a smoothed trend, or slope, in the data. Finally,
Winter’s method adds seasonal multipliers to the exponential smoothing with a linear
trend model, in order to represent situations where demand exhibits seasonal behavior.

Moving Average. The simplest way to convert actual observations to forecasts is to
simply average them. In doing this, we are implicitly assuming that there is no trend, so
that T (t) = 0 for all t . We then compute the smoothed estimate as the simple average
and use this average for all future forecasts, so that

F(t) =
∑t

i=1 A(i)

t

f (t + τ ) = F(t) τ = 1, 2, . . .

A potential problem with this approach is that it gives all past data equal weight
regardless of their age. But demand data from 3 years ago may no longer be represen-
tative of future expectations. To capture the tendency for more recent data to be better
correlated with future outcomes than old data are, virtually all time series models contain
a mechanism for discounting old data. The simplest procedure for doing this is to throw
data away beyond some point in the past. The time series model that does this is called
the moving-average model, and it works in the same way as the simple average except
that only the most recent m data points (where m is a parameter chosen by the user) are
used in the average. Again, the trend is assumed to be zero, so T (t) = 0, and all future
forecasts beyond the present are assumed to be equal to the current smoothed estimate:

F(t) =
∑t

i=t−m+1 A(i)

m
(13.3)

f (t + τ ) = F(t) τ = 1, 2, . . . (13.4)

Notice that the choice of m will make a difference in how the moving-average
method performs. A way to find an appropriate value for a particular situation is to try
various values and see how well they predict already known data. For instance, suppose
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Table 13.3 Moving Averages with m = 3 and
m = 5

Forecast f (t)
Month Demand

t A(t) m = 3 m = 5

1 10 — —
2 12 — —
3 12 — —
4 11 11.33 —
5 15 11.67 —

6 14 12.67 12.0
7 18 13.33 12.8
8 22 15.67 14.0
9 18 18.00 16.0

10 28 19.33 17.4

11 33 22.67 20.0
12 31 26.33 23.8
13 31 30.67 26.4
14 37 31.67 28.2
15 40 33.00 32.0

16 33 36.00 34.4
17 50 36.67 34.4
18 45 41.00 38.2
19 55 42.67 41.0
20 60 50.00 44.6

we have 20 months of past demand for a particular product, as shown in Table 13.3. At
any time, we can pretend that we only have data up to that point and use our moving
average to generate a forecast. If we set m = 3, then in period t = 3 we can compute the
smoothed estimate as the average of the first three points, or

F(3) = 10 + 12 + 12

3
= 11.33

At time t = 3, our forecast for demand in period 4 (and beyond, since there is no trend)
is f (4) = F(3) = 11.33. However, once we actually get to period 4 and make another
observation of actual demand, our estimate becomes the average of the second, third,
and fourth points, or

F(4) = 12 + 12 + 11

3
= 11.67

Now our forecast for period 5 (and beyond) is f (5) = F(4) = 11.67. Continuing in this
manner, we can compute what our forecast would have been for t = 4, . . . , 20, as shown
in Figure 13.3. We cannot make forecasts in periods 1, 2, and 3 because we need three
data points before we can compute a three-period moving average.

If we change the number of periods in our moving average to m = 5, we can compute
the smoothed estimate, and therefore the forecast, for periods 6, . . . , 20, as shown in
Table 13.3.

Which is better, m = 3 or m = 5? It is rather difficult to tell from Table 13.3.
However, if we plot A(t) and f (t), we can see which model’s forecast came closer to the
actual observed values. As we see in Figure 13.4, both models tended to underestimate
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Moving average with
m = 3, 5.

demand, with the m = 5 model performing worse. The reason for this underestimation
is that the moving-average model assumes no upward or downward trend in the data.
But we can see from the plots that these data clearly have an upward trend. Therefore,
the moving average of past demand tends to be less than future demand. Since the model
with m = 5 is even more heavily tied to past demand (because it includes more, and
therefore older, points), it suffers from this tendency to a greater extent.

This example illustrates the following general conclusions about the moving-average
model:

1. Higher values of m will make the model more stable, but less responsive to
changes in the process being forecast.

2. The model will tend to underestimate parameters with an increasing trend, and
overestimate parameters with a decreasing trend.

We can address the problem of tracking a trend in the context of the moving-average
model. For those familiar with regression analysis, the way this works is to estimate a
slope for the last m data points via linear regression and then make the forecast equal
to the smoothed estimate plus an extrapolation of this linear trend. However, there is
another, easier way to introduce a linear trend into a different time series model. We will
pursue this approach after presenting another trendless model below.

Exponential Smoothing. Observe that the moving-average approach gives equal
weight to each of the m most recent observations and no weight to observations older
than these. Another way to discount old data points is to average the current smoothed es-
timate with the most recent data point. The result will be that the older the data point, the
smaller the weight it receives in determining the forecast. We call this method exponen-

tial smoothing, and it works as follows. First, we assume, for now, that the trend is always
zero, so T (t) = 0. Then we compute the smoothed estimate and forecast at time t as

F(t) = αA(t) + (1 − α)F(t − 1) (13.5)

f (t + τ ) = F(t) τ = 1, 2, . . . (13.6)

where α is a smoothing constant between 0 and 1 chosen by the user. The best value
will depend on the particular data.
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Table 13.4 Exponential Smoothing with α = 0.2
and α = 0.6

Forecast f (t)
Month Demand

t A(t) α = 0.2 α = 0.6

1 10 — —
2 12 10.00 10.00
3 12 10.40 11.20
4 11 10.72 11.68
5 15 10.78 11.27

6 14 11.62 13.51
7 18 12.10 13.80
8 22 13.28 16.32
9 18 15.02 19.73

10 28 15.62 18.69

11 33 18.09 24.28
12 31 21.08 29.51
13 31 23.06 30.40
14 37 24.65 30.76
15 40 27.12 34.50

16 33 29.69 37.80
17 50 30.36 34.92
18 45 34.28 43.97
19 55 36.43 44.59
20 60 40.14 50.83

Table 13.4 illustrates the exponential method, using the same data we used for the
moving average. Unless we start with a historical value for F(0), we cannot make a
forecast for period 1. Although there are various ways to initialize the model (e.g., by
averaging past observations over some interval), the choice of F(0) will dissipate as time
goes on. Therefore, we choose to use the simplest possible initialization method and set
F(1) = A(1) = 10 and start the process. At time t = 1, our forecast for period 2 (and
beyond) is f (2) = F(1) = 10. When we reach period 2 and observe that A(2) = 12, we
update our smoothed estimate as follows:

F(2) = αA(2) + (1 − α)F(1) = (0.2)(12) + (1 − 0.2)(10) = 10.40

Our forecast for period 3 and beyond is now f (3) = F(2) = 10.40. We can continue in
this manner to generate the remaining f (t) values in Table 13.4.

Notice in Table 13.4 that when we use α = 0.6 instead of α = 0.2, the forecasts are
much more sensitive to each new data point. For instance, in period 2, when demand
increased from 10 to 12, the forecast using α = 0.2 increased only to 10.40, while the
forecast using α = 0.6 increased to 11.20. This increased sensitivity may be good, if
the model is tracking a real trend in the data, or bad, if it is overreacting to an unusual
observation. Hence, analogous to our observations about the moving-average method,
we can make the following points about single exponential smoothing:

1. Lower values of α will make the model more stable, but less responsive, to
changes in the process being forecast.
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Exponential smoothing
with α = 0.2, 0.6.

2. The model will tend to underestimate parameters with an increasing trend, and
overestimate parameters with a decreasing trend.

Choosing the appropriate smoothing constant α for exponential smoothing, like
choosing the appropriate value of m for the moving-average method, requires a bit of
trial and error. Typically, the best we can do is to try various values of α and see which
one generates forecasts that match the historical data best. For instance, Figure 13.5 plots
exponential smoothing forecasts f (t), using α = 0.2 and 0.6, along with actual values
A(t). This plot clearly shows that the values generated by using α = 0.6 are closer to
the actual data points than those generated by using α = 0.2. The increased sensitivity
caused by using a high α value enabled the model to track the obvious upward trend of
the data. However, because the single exponential smoothing model does not explicitly
assume the existence of a trend, both sets of forecasts tended to lag behind the actual
data.

Exponential Smoothing with a Linear Trend. We now turn to a model that is specif-
ically designed to track data with upward or downward trends. For simplicity, the model
assumes the trend is linear. That is, at any point in time our forecasts for the future will
follow a straight line. Of course, each time we receive a new observation, we will update
the slope of this line, so the method can track data that change in a nonlinear fashion,
although less accurately than data with a trend that is generally linear.

The basic method updates a smoothed estimate F(t) and a smoothed trend T (t) each
time a new observation becomes available. From these, the forecast for τ periods into
the future, denoted by f (t + τ ), is computed as the smoothed estimate plus τ times the
smoothed trend. The equations for doing this are as follows:

F(t) = αA(t) + (1 − α)[F(t − 1) + T (t − 1)] (13.7)

T (t) = β[F(t) − F(t − 1)] + (1 − β)T (t − 1) (13.8)

f (t + τ ) = F(t) + τT (t) (13.9)

where α and β are smoothing constants between 0 and 1 to be chosen by the user.
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Notice that the equation for computing F(t) is slightly different from that for expo-
nential smoothing without a linear trend. The reason is that at period t − 1 the forecast for
period t is given by F(t − 1) + T (t − 1) (i.e., we need to add the trend for one period).
Therefore, when we compute the weighted average of A(t) and the current forecast, we
must use F(t − 1) + T (t − 1) as the current forecast.

We update the trend in equation (13.8) by computing a weighted average between the
last smoothed trend T (t − 1) and the most recent estimate of the trend, which is computed
as the difference between the two most recent smoothed estimates, or F(t) − F(t − 1).
The F(t) − F(t − 1) term is like a slope. By giving this slope a weight ofβ (less than one),
we smooth our estimate of the trend to avoid overreacting to sudden changes in the data.

As in simple exponential smoothing, we must initialize the model before we can
begin. We could do this by using historical data to estimate F(0) and T (0). However, the
simplest initialization method is to set F(1) = A(1) and T (1) = 0. We illustrate the ex-
ponential smoothing with linear trend method using this initialization procedure, the de-
mand data from Table 13.4, and smoothing constants α = 0.2 and β = 0.2. For instance,

F(2) = αA(2) + (1 − α)[F(1) + T (1)] = 0.2(12) + (1 − 0.2)(10 + 0) = 10.4

T (2) = β[F(2) − F(1)] + (1 − β)T (1) = 0.2(10.4 − 10) + (1 − 0.2)(0) = 0.08

The remaining calculations are given in Table 13.5.
Figure 13.6 plots the forecast values f (t) and the actual values A(t) from Table 13.5

and plots the forecast that results from using α = 0.3 and β = 0.5. Notice that these
forecasts track these data much better than either the moving average or exponential

Table 13.5 Exponential Smoothing with a Linear Trend, α = 0.2
and β = 0.2

Month Demand Smoothed Estimate Smoothed Trend Forecast

t A(t) F(t) T(t) f(t)

1 10 10.00 0.00 —
2 12 10.40 0.08 10.00
3 12 10.78 0.14 10.48
4 11 10.94 0.14 10.92
5 15 11.87 0.30 11.08

6 14 12.53 0.37 12.17
7 18 13.93 0.58 12.91
8 22 16.00 0.88 14.50
9 18 17.10 0.92 16.88

10 28 20.02 1.32 18.03

11 33 23.67 1.79 21.34
12 31 26.57 2.01 25.46
13 31 29.06 2.11 28.58
14 37 32.33 2.34 31.17
15 40 35.74 2.55 34.67

16 33 37.23 2.34 38.29
17 50 41.66 2.76 39.57
18 45 44.53 2.78 44.42
19 55 48.85 3.09 47.31
20 60 53.55 3.41 51.94
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Exponential smoothing
with linear trend.

smoothing without a linear trend. The linear trend enables this method to track the
upward trend in these data quite effectively. Additionally, it appears that using smoothing
coefficients α = 0.3 and β = 0.5 results in better forecasts than using α = 0.2 and
β = 0.2. We will discuss how to choose smoothing constants later in this section.

The Winters Method for Seasonality. Many products exhibit seasonal demand. For
instance, lawn mowers, ice cream, and air conditioners have peaks associated with sum-
mer, while snow blowers, weather stripping, and furnaces have winter peaks. Toys and
other gift items experience spikes in demand right before Christmas. When demand is
seasonal, the above forecasting models will not work well because they will interpret
seasonal rises in demand as permanent and consequently will overshoot actual demand
when it declines in the off-season. Likewise, they will interpret low off-season demand
as permanent and will undershoot actual demand during the peak season.

A natural way to build seasonality into a forecasting model was suggested by Winters
(1960). The basic idea is to estimate a multiplicative seasonality factor c(t), t = 1, 2, . . . ,

where c(t) represents the ratio of demand during period t to the average demand during
the season. Therefore, if there are N periods in the season (for example, N = 12 if periods
are months and the season is 1 year), then the sum of the c(t) factors over the season will
always be equal to N . The seasonally adjusted forecast is computed by multiplying the
forecast from the exponential smoothing with linear trend model (that is, F(t) + τT (t))
by the appropriate seasonality factor. The equations for doing this are as follows:

F(t) = α
A(t)

c(t − N )
+ (1 − α)[F(t − 1) + T (t − 1)] (13.10)

T (t) = β[F(t) − F(t − 1)] + (1 − β)T (t − 1) (13.11)

c(t) = γ
A(t)

F(t)
+ (1 − γ )c(t − N ) (13.12)

f (t + τ ) = [F(t) + τT (t)]c(t + τ − N ) (13.13)

for t + τ = N + 1, N + 2, . . . , 2N , where α, β, and γ are smoothing constants between
0 and 1 to be chosen by the user. Notice that equations (13.10) and (13.11) are identical
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Table 13.6 The Winters Method for Forecasting with Seasonality

Time Actual Smoothed Smoothed Seasonal

Period Demand Estimate Trend Factor Forecast

Year Month t A(t) F(t) T(t) c(t) f(t)

1997 Jan 1 4 — — 0.480
Feb 2 2 — — 0.240
Mar 3 5 — — 0.600
Apr 4 8 — — 0.960
May 5 11 — — 1.320
Jun 6 13 — — 1.560

Jul 7 18 — — 2.160
Aug 8 15 — — 1.800
Sep 9 9 — — 1.080
Oct 10 6 — — 0.720
Nov 11 5 — — 0.600
Dec 12 4 8.33 0.00 0.480

1998 Jan 13 5 8.54 0.02 0.491 4.00
Feb 14 4 9.37 0.10 0.259 2.06
Mar 15 7 9.69 0.12 0.612 5.68
Apr 16 7 9.57 0.10 0.937 9.43
May 17 15 9.83 0.12 1.341 12.76
Jun 18 17 10.04 0.13 1.573 15.52

Jul 19 24 10.26 0.13 2.178 21.97
Aug 20 18 10.36 0.13 1.794 18.72
Sep 21 12 10.55 0.14 1.086 11.33
Oct 22 7 10.59 0.13 0.714 7.69
Nov 23 8 10.98 0.15 0.613 6.43
Dec 24 6 11.27 0.17 0.485 5.34

to equations (13.7) and (13.8) for computing the smoothed estimate and smoothed trend
in the exponential smoothing with linear trend model, except that the actual observation
A(t) is scaled by dividing by the seasonality factor c(t − N ). This normalizes all the
observations relative to the average and hence places the smoothed estimate and trend in
units of average (nonseasonal) demand. Equation (13.12) uses exponential smoothing to
update the seasonality factor c(t) as a weighted average of this season’s ratio of actual
demand to smoothed estimate A(t)/F(t) and last season’s factor c(t − N ). To make the
forecast in seasonal units, we multiply the nonseasonal forecast for period t + τ , which
is computed as F(t) + τT (t), by the seasonality factor c(t + τ − N ).

We illustrate the Winters method with the example in Table 13.6. To initialize
the procedure, we require a full season of seasonality factors plus an initial smoothed
estimate and smoothed trend. The simplest way to do this is to use the first season of data
to compute these initial parameters and then use the above equations to update them with
additional seasons of data. Specifically, we set the smoothed estimate to be the average
of the first season’s data

F(N ) =
∑N

t=1 A(t)

N
(13.14)
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So, in our example, we can compute the smoothed estimate as of December 1998 to be

F(12) =
∑12

t=1 A(t)

12
= 4 + 2 + · · · + 4

12
= 8.33

Since we are starting with only a single season of data, we have no basis for estimating
a trend, so we will assume initially that the trend is zero, so that T (N ) = T (12) = 0.
The model will quickly update the trend as seasons are added.1 Finally, we compute
initial seasonality factors as the ratio of actual demand to average demand during the
first season:

c(i) = A(i)
∑N

t=1 A(t)/N
= A(i)

F(N )
(13.15)

For instance, in our example, the initial seasonality factor for January is

c(1) = A(1)

F(12)
= 4

8.33
= 0.480

which means that demand in January is only 48 percent of that in an average month.
Once we have computed values for F(N ), T (N ), and c(1), . . . , c(N ), we can begin

the smoothing procedure. The smoothed estimate for January 1998 is computed as

F(13) = α
A(13)

c(13 − 12)
+ (1 − α)[F(12) + T (12)]

= 0.1

(

5

0.480

)

+ (1 − 0.1)(8.33 + 0) = 8.54

The smoothed trend is

T (13) = β[F(13) − F(12)] + (1 − β)T (12) = 0.1(8.54 − 8.33) + (1 − 0.1)(0) = 0.02

The updated seasonality factor for January is

c(13) = γ
A(13)

F(13)
+ (1 − γ )c(1) = 0.1

(

5

8.54

)

+ (1 − 0.1)(0.48) = 0.491

The computations continue in this manner, resulting in the numbers shown in Table
13.6. We plot the actual and forecasted demand in Figure 13.7. In this example, the
Winters method works very well. The primary reason is that the seasonal spike in 1998
had a similar shape to that in 1997. That is, the proportion of total annual demand
that occurred in a given month, such as July, is fairly constant across years. Hence, the
seasonality factors provide a good fit to the seasonal behavior. The fact that total annual
demand is growing, which is accounted for by the positive trend in the model, results
in an appropriately amplified seasonal spike in the second year. In general, the Winters
method gives reasonable performance for seasonal forecasting where the shape of the
seasonality does not vary too much from season to season.

1Alternatively, one could use multiple seasons of data to initialize the model and estimate the trend from
these (see Silver, Pyke, and Peterson 1998 for a method).



454 Part III Principles in Practice

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24

Month

D
em

a
n

d

A(t)

f (t)

Figure 13.7

The Winters method,
α = 0.1, β = 0.1,
γ = 0.1.

Adjusting Forecasting Parameters. All of the above time series models involve ad-
justable coefficients (for example, m in the moving-average model and α in the exponen-
tial smoothing model), which must be “tuned” to the data to yield a suitable forecasting
model. Indeed, we saw in Figure 13.6 that adjusting the smoothing coefficients can sub-
stantially affect the accuracy of a forecasting model. We now turn to the question of how
to find good coefficients for a given forecasting situation.

The first step in developing a forecasting model is to plot the data. This will help us
decide whether the data appear predictable at all, whether a trend seems to be present,
and whether seasonality seems to be a factor. Once we have chosen a model, we can plot
the forecast versus actual past data for various sets of parameters to see how the model
behaves. However, to find a good set of coefficients, it is helpful to be more precise about
measuring model accuracy.

The three most common quantitative measures for evaluating forecasting models are
the mean absolute deviation (MAD), mean square deviation (MSD), and bias (BIAS).
Each of these takes the differences between the forecast and actual values, f (t) − A(t),
and computes a numerical score. The specific formulas for these are as follows:

MAD =
∑n

t=1 | f (t) − A(t)|
n

(13.16)

MSD =
∑n

t=1[ f (t) − A(t)]2

n
(13.17)

BIAS =
∑n

t=1 f (t) − A(t)

n
(13.18)

Both MAD and MSD can be only positive, so the objective is to find model coef-
ficients that make them as small as possible. BIAS can be positive, indicating that the
forecast tends to overestimate the actual data, or negative, indicating that the forecast
tends to underestimate the actual data. The objective, then, is to find coefficients that
make BIAS close to zero. However, note that zero BIAS does not mean that the forecast
is accurate, only that the errors tend to be balanced high and low. Hence, one would
never use BIAS alone to evaluate a forecasting model.
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Table 13.7 Exponential Smoothing with Linear Trend for Various α and β

α β MAD MSD BIAS α β MAD MSD BIAS

0.1 0.1 10.23 146.94 −10.23 0.4 0.1 4.30 30.14 −3.45
0.1 0.2 8.27 95.31 −8.27 0.4 0.2 3.89 23.78 −2.34
0.1 0.3 6.83 64.91 −6.69 0.4 0.3 3.77 22.25 −1.77
0.1 0.4 5.83 47.17 −5.43 0.4 0.4 3.75 22.11 −1.46
0.1 0.5 5.16 36.88 −4.42 0.4 0.5 3.76 22.36 −1.29
0.1 0.6 4.69 30.91 −3.62 0.4 0.6 3.79 22.67 −1.18

0.2 0.1 6.48 60.55 −6.29 0.5 0.1 4.13 27.40 −2.84
0.2 0.2 5.04 37.04 −4.49 0.5 0.2 3.91 23.61 −1.94
0.2 0.3 4.26 27.56 −3.29 0.5 0.3 3.88 23.02 −1.49
0.2 0.4 3.90 23.75 −2.51 0.5 0.4 3.90 23.26 −1.25
0.2 0.5 3.73 22.32 −2.02 0.5 0.5 3.94 23.73 −1.10
0.2 0.6 3.65 21.94 −1.71 0.5 0.6 3.97 24.27 −1.00

0.3 0.1 4.98 37.81 −4.45 0.6 0.1 4.12 26.85 −2.42
0.3 0.2 4.11 26.30 −3.03 0.6 0.2 4.03 24.63 −1.66
0.3 0.3 3.82 22.74 −2.23 0.6 0.3 4.04 24.69 −1.29
0.3 0.4 3.66 21.81 −1.77 0.6 0.4 4.09 25.35 −1.08
0.3 0.5 3.65 21.78 −1.52 0.6 0.5 4.14 26.25 −0.95
0.3 0.6 3.68 22.06 −1.38 0.6 0.6 4.21 27.29 −0.84

To illustrate how these measures might be used to select model coefficients, let us
return to the exponential smoothing with linear trend model as applied to the demand
data in Table 13.5. Table 13.7 reports the values of MAD, MSD, and BIAS for various
combinations of α and β. From this table, it appears that the combination α = 0.3,
β = 0.5 works well with regard to minimizing MAD and MSD, but that α = 0.6, β = 0.6
is better with regard to minimizing BIAS. In general, it is unlikely that any set of
coefficients will be best with regard to all three measures of effectiveness. In this specific
case, as can be seen in Figure 13.6, the actual data not only have an upward trend, but
also tend to increase according to a nonlinear curve (i.e., the curve has a sort of parabolic
shape). This nonlinear shape causes the model with a linear trend to lag slightly behind
the data, resulting in a negative BIAS. Higher values of α and β give the new observations
more weight and thereby cause the model to track this upward swing more rapidly. This
reduces BIAS. However, they also cause it to overshoot the occasional downward dip in
the data, increasing MAD and MSD.

Table 13.7 shows that the model with α = 0.3, β = 0.5 has significantly smaller
MSD than the model with our original choice of α = 0.2, β = 0.2. This means that it
fits the past data more closely, as illustrated in Figure 13.6. Since our basic assumption
in using a time series forecasting model is that future data will behave similarly to past
data, we should set the coefficients to provide a good fit to past data and then use these
for future forecasting purposes.

The enumeration offered in Table 13.7 is given here to illustrate the impact of
changing smoothing coefficients. However, in practice we do not have to use a trial-and-
error approach to search for a good set of smoothing coefficients. Instead, we can use the
internal optimization tool, Solver, that is included in Excel to do the search for us (see
Chapter 16 for details on Solver). If we set up Solver to search for the values of α and
β that (1) are between zero and one and (2) minimize MSD in the previous example, we
obtain the solution α = 0.284, β = 0.467, which attains an MSD value of 21.73. This is
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slightly better than the α = 0.3, β = 0.5 solution we obtained by brute-force searching,
and much faster to obtain.

Notice that in this discussion of choosing smoothing coefficients we have compared
the forecast for one period into the future (i.e., the lag-1 forecast) with the actual value.
However, in practice, we frequently need to forecast further into the future. For instance,
if we are using a demand forecast to determine how much raw material to procure, we
may need to forecast several months into the future (e.g., we may require the lag-τ
forecast). When this is the case, we should use the formulas to compute the forecast
for τ periods from now f (t + τ ) and compare this to the actual value A(t + τ ) when
it occurs. Hence, the model parameters should be chosen with the goal of minimizing
the deviations between f (t + τ ) and A(t + τ ), and MAD, MSD, and BIAS should be
defined accordingly.

13.3.3 The Art of Forecasting

The regression model for causal forecasting and the four time series models are represen-
tative of the vast number of quantitative tools available to assist the forecasting function.
Many others exist [see Box and Jenkins (1970) for an overview of more sophisticated
time series models]. Clearly, forecasting is an area in which quantitative models can be
of great value.

However, forecasting is more than a matter of selecting a model and tinkering with
its parameters to make it as accurate as possible. No model can incorporate all factors that
could be relevant in anticipating the future. Therefore, in any forecasting environment,
situations will arise in which the forecaster must override the quantitative model with
qualitative information. For instance, if there is reason to expect an impending jump in
demand (e.g., because a competitor’s plant is scheduled to shut down), the forecaster
may need to augment the quantitative model with this information. Although there is
no substitute for experience and insight, it is a good idea to occasionally look back at
past forecasting experience to see what information could have been used to improve
the forecast. While this will not enable us to predict the future precisely, it may help us
avoid some future blunders.

13.4 Planning for Pull

A logical and customary way to break the production planning and control (PPC)

problem into manageable pieces is to construct a hierarchical planning framework. We
illustrated a typical MRP II hierarchy in Figure 3.2. However, that framework was based
on the basic MRP push job release mechanism. As we saw in our discussion of JIT in
Chapter 4 and our comparison of push and pull in Chapter 10, pull systems offer many
potential benefits over push systems. Briefly, pull systems are

1. More efficient, in that they can attain the same throughput as a push system
with less average WIP.

2. Easier to control, since they rely on setting (easily observable) WIP levels,
rather than release rates as do push systems.

3. More robust, since the performance of a pull system is degraded much less by
an error in WIP level than is a push system by a comparable percentage of error
in release rate.
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4. More supportive of improving quality, since low WIP levels in pull systems
both require high quality (to prevent disruptions) and facilitate it (by shortening
queues and quickening detection of defects).

These benefits urge us to incorporate aspects of pull into our manufacturing control
systems. Unfortunately, from a planning perspective, there is a drawback to pull. Pull
systems are inherently rate-driven, in that we fix the level of WIP and let them run.
Capacity buffers (e.g., preventive maintenance periods available to be used for overtime
between shifts) are used to facilitate a very steady pace, which in turn requires highly
stable demand. To achieve this, the JIT/lean literature places considerable emphasis on
production smoothing.

While a rate-driven system is logistically appealing, it is not necessarily well suited
to planning. There is no natural link to customer due dates in a pull system. Customers
“pull” what they need, and signals (cards or whatever) trigger replenishments. But until
the demands actually occur, the system offers us no information about them. Hence, a
pull system provides no inherent mechanism for planning raw material procurement,
staffing, opportunities for machine maintenance, and so on.

In contrast, as we noted in Chapter 5, push systems can be operational nightmares,
but are extremely well suited to planning. There is a simple and direct link between
customer due dates and order releases in a push system. For instance, in a lot-for-lot
MRP system, the planned order releases are the customer requirements (only time-
phased according to production lead times). If only the infinite-capacity assumption of
MRP did not make these lead times largely fictional, we could use them to drive all sorts
of planning modules. Indeed, this is precisely what systems using MRP II logic try to do.

The question then is, Can we obtain the operational benefits of pull and still develop
a coherent planning structure? We think the answer is yes. But the mechanism for
linking a rate-based pull system with due dates is necessarily more complex than the
simple time phasing of MRP. The simplest link we know of is the conveyor model of
a pull production line or facility, depicted in Figure 13.8 and upon which we will rely
extensively in subsequent chapters.

The conveyor model is based on the observation that a pull system maintains a
fairly steady WIP level, so the speed of the line and the time to traverse it are relatively
constant over time. This allows us to characterize a production line with two parameters:
the practical production rate r P

b and the minimum practical lead time T P
0 . These

serve the same functions as, but are somewhat different from, the bottleneck rate rb and
the raw process time T0 of the line as defined in Chapter 7, and their ideal realizations r∗

b
and T ∗

0 introduced in Chapter 9. Unlike the bottleneck rate, the practical production rate
is the anticipated throughput of the line. This rate can also be standardized according
to part complexity (e.g., we could count parts in units of hours of work at a bottleneck
process). Thus, since rb is the capacity of the line, we expect r P

b < rb with utilization
u = r P

b /rb. Likewise, T P
0 is the practical minimum (i.e., no queueing) practical time to

traverse the line. This will include detractors for short-term disruptions, such as setups

rb
P

T
0
PFigure 13.8

The conveyor model of a
production line.
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and routine machine failures along with routine waiting to move and any other delays
that do not involve queueing. Consequently, T P

0 > T0.
Using Little’s law, we see that the WIP level W must be

W = r P
b × T P

0

Typically,

T P
0 /T0 � rb/r P

b

so that the WIP level will be significantly larger than the critical WIP, W0 = rbT0.
We can now use the conveyor model to predict when jobs will be completed by a

line or process center. For instance, suppose we release a job into the line when there
are already n jobs waiting in queue to be admitted into the CONWIP line (i.e., waiting
for a space on the conveyor). The time until the job will be completed, denoted by �, is
computed as

� = n

r P
b

+ T P
0 = n + W

r P
b

(13.19)

For example, suppose the conveyor depicted in Figure 13.8 represents a circuit
board assembly line. The line runs at an average rate of r P

b = 2 jobs per hour, where a
job consists of a standard-size container of circuit boards. Once started, a job takes an
average of T P

0 = 8 hours to finish. A new job that finds n = 3 jobs waiting to released
into the line (i.e., waiting for CONWIP authorization signals) will be completed in

� = n

rP
+ T P

0 = 3

2
+ 8 = 9.5 hours

on average. We will revisit this problem in Chapter 15 where we further refine the
conveyor model by adding variability to the production rate.

Being able to estimate output times of specific jobs allows us to address a host of
planning problems:

1. If sales personnel have a means of keeping track of factory loading, they could
use the conveyor model to predict how long new orders will require to fill and
therefore will be able to quote reasonable due dates to customers.

2. If we project how the system will evolve (i.e., what jobs will be in the line and
what jobs will be waiting in queue) over time, we can “simulate” the
performance of a line. This would provide the basis for a “what if” tool for
analyzing the effects of different priority rules or capacity decisions on outputs.
As we noted in Chapter 3, capacity requirements planning (CRP) attempts such
an analysis. However, as we pointed out there, CRP uses an infinite-capacity
model that invalidates predictions beyond any point where a resource becomes
fully loaded. More sophisticated, finite-capacity models for making such
predictions are now available on the market. While more accurate than CRP,
finite models frequently have massive data needs and complex computations
akin to those used in discrete event simulation models. The conveyor model can
simplify both data requirements and computation, as we will discuss in various
contexts throughout Part III.

3. We can use the conveyor model to determine whether completions will satisfy
customer due dates to develop an optimization model for setting job release
times. We will do this in Chapter 15 to generate a finite-capacity scheduling
tool.
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By addressing these and other problems, the conveyor model can provide the linch-
pin of a planning framework for pull production systems. Where lines are simple enough
to invoke it directly, it can be a powerful integrating tool. We give an outline of a frame-
work that can exploit this integration. We will fill in the details and discuss generaliza-
tions to situations in which the conveyor model is overly simplistic in the remainder of
Part III.

13.5 Hierarchical Production Planning

With the conveyor model to predict job completions, we can develop a hierarchical
production planning and control (PPC) framework for pull production systems. Fig-
ure 13.9 illustrates such a hierarchy, spanning from long-term strategic issues at the top
levels to short-term control issues at the bottom levels.

Each rectangular box in Figure 13.9 represents a separate decision problem and
hence a planning module.2 The rounded rectangular boxes represent outputs from
modules, many of which are used as inputs in other modules. The oval boxes repre-
sent inputs to modules that are generated outside this planning hierarchy (e.g., by mar-
keting or engineering design). Finally, the arrows indicate the interdependence of the
modules.

The PPC hierarchy is divided into three basic levels, corresponding to long-term
(strategy), intermediate-term (tactics), and short-term (control) planning. Of course,
from a corporate perspective, there are levels above those shown in Figure 13.9, such
as product development and business planning. Certainly these are important business
strategy decisions, and their interaction with the manufacturing function deserves seri-
ous consideration. Indeed, it is our hope that readers whose careers take them outside
of manufacturing will actively pursue opportunities for greater integration of manu-
facturing issues into these areas. However, we will adhere to our focus on operations
and assume that business strategy decisions, such as what business to be in and the
nature of the product designs, have already been made. Therefore, when we speak of
strategy, we are referring to plant strategy, which is only part of an overall business
strategy.

The basic function of the long-term strategic planning tools shown in Figure 13.9
is to establish a production environment capable of meeting the plant’s overall goals. At
the plant level, this begins with a forecasting module that takes marketing information
and generates a forecast of future demand, possibly using a quantitative model like those
we discussed previously. A capacity/facility planning module uses these demand fore-
casts, along with descriptions of process requirements for making the various products,
to determine the needs for physical equipment. Analogously, a workforce planning

module uses demand forecasts to generate a personnel plan for hiring, firing, training,
and so forth, in accordance with company labor policies. Using the demand forecast,
the capacity/facilities plan, and the labor plan, along with various economic parameters
(material costs, wages, vendoring costs, etc.), the aggregate planning module makes
rough predictions about future production mix and volume. The aggregate plan can also
address other related issues, such as which parts to make in-house and which to con-
tract out to external suppliers, and whether adjustments are needed in the personnel
plan.

2We use the term module to represent the combination of analytic models, computer tools, and human
judgment used to address the individual planning problems. As such, they are never fully automated, nor
should they be.
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The intermediate tactical tools in Figure 13.9 take the long-range plans from the
strategic level, along with information about customer orders, to generate a general plan of
action that will help the plant prepare for upcoming production (by procuring materials,
lining up subcontractors, etc.). A WIP/quota-setting module works to translate the
aggregate plan into card counts and periodic production quotas required by a pull system.
The production quotas form part of the master production schedule (MPS), which is
based on the forecast demands as processed by the aggregate planning module. The
MPS also contains firm customer orders, which are suitably smoothed for use in a pull
production system by the demand management module. The sequencing and scheduling
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module translates the MPS into a work schedule that dictates what is to be worked on in
the near term, for example, the next week, day, or shift.

The low-level tools in Figure 13.9 directly control the plant. The shop floor control

module controls the real-time flow of material through the plant in accordance with
this schedule, while the production tracking module measures actual progress against
the schedule. In Figure 13.9, the production tracking module is also shown as serving
a second useful function, that of feeding back information (e.g., capacity data) for use
by other planning modules. Finally, the PPC hierarchy includes a real-time simulation

module, which allows examination of what-if scenarios, such as what will happen if
certain jobs are made “hot.”

In the following sections, we discuss in overview fashion the issues involved at
each level and the integrative philosophy for this PPC hierarchy. In this discussion, we
will proceed top-down, since this helps highlight the interactions between levels. In
subsequent chapters, we will provide details of how to construct the individual modules.
There we will proceed bottom-up, in order to emphasize the relationship of each planning
problem to the actual production process.

13.5.1 Capacity/Facility Planning

Once we have a forecast of future demand, and have made the strategic decision to attempt
to fill it, we must ensure that we have adequate physical capacity. This is the function of
the capacity/facility planning module depicted in Figure 13.9. The basic decisions to
be made regarding capacity concern how much and what kind of equipment to purchase.
Naturally, this includes the actual machines used to make components and final products.
But it also extends to other facility issues related to the support of these machines, such as
factory floor space, power supplies, air/water/chemical supplies, spare-parts inventories,
material handling systems, WIP and FGI storage, and staffing levels.

Issues that can be considered in the capacity/facility planning process include the
following:

1. Product lifetimes. The decisions of what type and how much capacity to install
depend on how long we anticipate making the product. In recent years, product
lifetimes have become significantly shorter, to the point where they are
frequently shorter than the physical life of the equipment. This means that the
equipment must either pay for itself during the product lifetime or be
sufficiently flexible to be used to manufacture other future products. Because it
is often difficult to predict with any degree of confidence what future products
will be, quantifying the benefits of flexibility is not easy. But it can be one of
the most important aspects of facility planning, since a flexible plant that can be
swiftly “tooled up” to produce new products can be a potent strategic weapon.

2. Vendoring options. Before the characterization of the nature of the equipment
to install, a “make or buy” decision must be made, for the finished product and
its subcomponents. While this is a complex issue that we cannot hope to cover
comprehensively here, we offer some observations.
(a) This make-or-buy decision should not be based on cost alone. Outsourcing

a product because it appears that the unit cost of the vendor is lower than
the (fully loaded) unit cost of making it in-house can be risky. Because unit
costs depend strongly on the manner in which overhead allocation is done,
a decision that seems locally rational may be globally disastrous. For
example, a product that is outsourced because its unit cost is higher than the
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price offered by an outside supplier may not eliminate many of the overhead
costs that were factored into its unit cost. Hence, these costs must be spread
over the remaining products manufactured in-house, causing their unit costs
to increase and making them more attractive candidates for outsourcing.
There are examples of firms that have fallen into a virtual “death spiral” of
repeated rounds of outsourcing on the basis of unit cost comparisons. In
addition to the economic issues associated with outsourcing, there are other
benefits to in-house production, such as learning effects, the ability to
control one’s own destiny, and tighter control over the scheduling process,
that are not captured by a simple cost comparison.

(b) Consideration should be given to the long term in make-or-buy decisions.
We have seen companies evolve from manufacturing into distribution/
service through a sequence of outsourcing decisions. While this is not
necessarily a bad transition, it is certainly one that should not be made
without a full awareness of the consequences and careful consideration
of the viability of the firm in the marketplace as a nonmanufacturing
entity.

(c) When the make-or-buy decision concerns whether or not to make the
product at all, then it is clearly a capacity planning decision. However,
many manufacturing managers find it attractive to vendor a portion of the
volume of certain products they have the capability to make in-house. Such
vendoring can augment capacity and smooth the load on the plant. Since
the decision of which products and how much volume to vendor depends on
capacity and planned production, this is a question that spills over into the
aggregate planning module, in which long-term production planning is
done. We will discuss this problem in greater detail later and in Chapter 16.
From a high-level strategic perspective, it is important to remember that
giving business to outside vendors enables them to breed capabilities that
may make them into competitors some day. We offer the example of IBM
using Microsoft to supply the operating system for its personal computers
as one example of what can happen.

3. Pricing. We have tried to ignore pricing as much as possible in this book, since
it is a factor over which plants generally have little influence. However, in
capacity decisions, a valid economic analysis simply cannot be done without
some sort of forecast of prices. We need to know how much revenue will be
generated by sales in order to determine whether a particular equipment
configuration is economically justified. Because prices are frequently subject to
great uncertainty, this is an area in which sensitivity analysis is critical.

4. Time value of money. Typically, capacity increases and equipment
improvements are made as capital requisitions and then depreciated over time.
Interest rate and depreciation schedule, therefore, can have a significant impact
on the choice of equipment.

5. Reliability and maintainability. As we discussed in Part II, reliability [e.g.,
mean time to failure (MTTF)] and maintainability [e.g., mean time to repair
(MTTR)] are important determinants of capacity. Recall that availability A
(the fraction of time a machine is working) is given by

A = MTTF

MTTF + MTTR
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Obviously, all things being equal, we want MTTF to be big and MTTR to be
small. But all things are never equal, as we point out in the next two
observations.

6. Bottleneck effects. As should be clear from the discussions in Part II, capacity
increases at bottleneck resources typically have a much larger effect on
throughput than increases at nonbottleneck resources. Thus, it would seem that
paying extra for high-speed or high-availability machines is likely to be most
attractive at a bottleneck resource. However, aside from the fact that a stable,
distinct bottleneck may not exist, there are problems with this overly simple
reasoning, as we point out in the next observation.

7. Congestion effects. The single most neglected factor in capacity analysis, as it
is practiced in American industry today, is variability. As we saw again and
again in Part II, variability degrades performance. The variability of machines,
which is substantially affected by failures, is an important determinant of
throughput. When variability is considered, reliability and maintainability can
become important factors at nonbottleneck resources as well as at the
bottleneck.

We will discuss the capacity/facility analysis problem in greater detail in Chapter
18. For now, we point out that it should be done with an eye toward long-term strategic
concerns and should explicitly consider variability at some level. In terms of our hierar-
chical planning structure, the output of a capacity planning exercise is a forecast of the
physical capacity of the plant over a horizon at least long enough for the purposes of
aggregate planning—typically on the order of 2 years.

13.5.2 Workforce Planning

As the capacity/facility planning module in Figure 13.9 determines what equipment
is needed, the workforce planning module analogously determines what workforce is
needed to support production. Both planning problems involve long-term issues, since
neither the physical plant nor the workforce can be radically adjusted in the near term. So
both planning modules work with long-range forecasts of demand and try to construct
an environment that can achieve the system’s goals. Of course, the actual sequence of
events never matches the plan exactly, so both long-term capacity/facility and workforce
plans are subject to short-term modification over time.

The basic workforce issues to be addressed over the long term concern how much
and what kind of labor to make available. These questions must be answered within the
constraints imposed by corporate labor policies. For instance, in plants with unionized
labor, labor contracts may restrict who can be hired or laid off, what tasks different labor
classifications can be assigned, and what hours people can work. Usually, management
spends far more time hammering out the details of such agreements with labor than with
determining what labor is required to support a long-term production plan. Although
careful use of the workforce planning module cannot undo years of management-labor
conflict, it can help both sides focus on issues that are of strategic importance to the firm.

At the root of most long-term workforce planning is a set of estimates of the standard

hours of labor required by the products made by the plant. For example, a commercial
vent hood might require 20 minutes ( 1

3 hour) of a welder’s time to assemble. If a welder is
available 36 hours per week, then one welder has the capacity to produce 36 × 3 = 108
vent hoods per week. Thus, a production plan that calls for 540 vent hoods per week
requires five welders.
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Simple standard labor hour conversions can be a useful starting point for a workforce
planning module. However, they fall far short of a complete representation of the issues
involved in workforce planning. These issues include the following:

1. Worker availability. Estimates of standard labor hours must be sophisticated
enough to account for breaks, vacations, training, and other factors that reduce
worker availability. Many firms set “inflation factors” for converting the number
of workers directly needed to the number of “onboard” workers. For instance, a
multiplier of 1.4 would mean that 14 workers must be employed in order to
have the equivalent of 10 directly on the jobs at all times during a given shift.

2. Workforce stability. Although production requirements may move up and
down suddenly, it is generally neither possible nor desirable to rapidly increase
and decrease the size of the workforce. A firm’s ability to recruit qualified
people, as well as its overall workplace attitude, can be strongly affected by
changes in the size of the workforce. Some of these “softer issues” are difficult
to incorporate into models but are absolutely critical to maintenance of a
productive workforce.

3. Employee training. Training new recruits costs money and takes the time of
current employees. In addition, inexperienced workers require time to reach full
productivity. These considerations argue against sudden large increases in the
workforce. However, when growth requires rapid expansion of the workforce,
concerted efforts are needed to maintain the corporate culture (i.e., whatever it
was that made growth occur in the first place).

4. Short-term flexibility. A workforce is described by more than head count. The
degree of cross-training among workers is an important determinant of a plant’s
flexibility (its ability to respond to short-term changes in product mix and
volume). Thus, workforce planning needs to look beyond the production plan to
consider the unplanned contingencies (emergency customer orders, runaway
success of a new product) with which the system should be able to cope.

5. Long-term agility. The standard labor hours approach views labor as simply
another input to products, along with material and capital equipment. But
workers represent more than this. In the current era, where products and
processes are constantly changing, the workforce is a key source of agility
(the plant’s ability to rapidly reconfigure a manufacturing system for efficient
production of new products as they are introduced). So-called agile

manufacturing is largely dependent on its people, both managers and workers,
to learn and evolve with change.

6. Quality improvement. As we noted in Chapter 12, quality, both internal and
external, is the result of a number of factors, many under the direct control of
workers. Educating machine operators in quality control methods,
cross-training workers so that they develop a systemwide appreciation of the
quality implications of their actions, and moderating the influx of new
employees so that a corporate consciousness of quality is not undermined—all
these are critical parts of a plan to continuously improve quality. Although such
factors are difficult to incorporate explicitly into manpower planning models, it
is important that they be recognized in the overall workforce planning module.

Workforce planning is a deep and far-reaching subject that occupies a position close
to the core of manufacturing management. As such, it goes well beyond operations man-
agement or Factory Physics. In Chapter 16 we will revisit this topic from an analytical
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perspective and will examine the relationship between workforce planning and aggre-
gate planning. While this is a useful starting place for workforce planning, we remind
the reader that it is only that. A well-balanced manpower plan must consider issues
such as those listed previously and will require input from virtually all segments of the
manufacturing organization.

13.5.3 Aggregate Planning

Once we have estimated future demand and have determined what equipment and la-
bor will be available, we can generate an aggregate plan that specifies how much of
each product to produce over time. This is the role of the aggregate planning module
depicted in Figure 13.9. Because different facilities have different priorities and oper-
ating characteristics, aggregate plans will differ from plant to plant. In some facilities
the dominant issue will be product mix, so aggregate planning will consist primarily of
determining how much of each product to produce in each period, subject to constraints
on demand, capacity, and raw material availability. In other facilities, the crucial issue
will be the timing of production, so the aggregate planning module will seek to balance
the costs of production (e.g., overtime and changes in the workforce size) with the costs
of carrying inventory while still meeting demand targets. In still others, the focus will
be on the timing of staff additions or reductions. In all these, we may also include the
possibility of augmenting capacity through the use of outside vendors.

Regardless of the specific formulation of the aggregate planning problem, it is
valuable to be able to identify which constraints are binding. For instance, if the aggregate
planning module tells us that a particular process center is heavily utilized on average over
the next year, then we know that this is a resource that will have to be carefully managed.
We may want to institute special operating policies, such as using floating labor, to make
sure this process keeps working during breaks and lunches. If the problem is serious
enough, it may even make sense to go back and revise the capacity and manpower plans
and requisition additional machinery and/or labor if possible.

The decisions that are addressed by the aggregate planning module require a fair
amount of advance planning. For instance, if we are seeking to build up inventory for
a period of peak demand during the summer, clearly we must consider the production
plan for several months prior to the summer. If we want to consider staffing changes to
accommodate the production plan, we may require even more advance warning. This
generally means that the planning horizon for aggregate planning must be relatively
long, typically a year or more. Of course, we should regenerate our aggregate plan more
frequently than this, since a year-long plan will be highly unreliable toward the end. It
often makes sense to update the aggregate plan quarterly or biannually.

We give specific formulations of representative aggregate planning modules in Chap-
ter 16. Because we can often state the problem in terms of minimizing cost subject to
meeting demand, we frequently use the tool of linear programming to help solve the
aggregate planning problem. Linear programming has the advantages that

1. It is very fast, enabling us to solve large problems quickly. This is extremely
important for using the aggregate planning module in what-if mode.

2. It provides powerful sensitivity analysis capability, for instance, calculating how
much additional capacity would affect total cost. This enables us to identify
critical resources and quickly gauge the effectiveness of various changes.

As we will see in Chapter 16, linear programming also offers us a great deal of
flexibility for representing different aggregate planning situations.
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13.5.4 WIP and Quota Setting

The WIP/quota-setting module, depicted in Figure 13.9 as working in close conjunction
with the aggregate planning module, is needed to translate the aggregate plan to control
parameters for a pull system. Recall that the key controls in a pull system are the WIP
levels, or card counts, in the production lines. Also, to link the pull system to customer due
dates, we need to set an additional control, namely, the production quota. By establishing
a quota, and then using buffer capacity to ensure that the quota is met with regularity,
we make the system behavior approximate that of the “conveyor model” discussed.
The predictability of the conveyor model allows us to coordinate system outputs with
customer due dates.

Card Counts. We include WIP setting, or card count setting, at the intermediate level
in the PPC hierarchy in Figure 13.9, instead of at the bottom level, to remind the reader
that WIP levels should not be adjusted too frequently. As we noted in Chapter 10, WIP
is a fairly insensitive control. Altering card counts in an effort to cause throughput to
track demand is not likely to work well because the system will not respond rapidly
enough. Therefore, like other decisions at this level in the hierarchy, WIP levels should
be reevaluated on a fairly infrequent basis, say, monthly or quarterly.

Fortunately, the fact that WIP is an insensitive control also makes it relatively easy
to set. As long as WIP levels are adequate to attain the desired throughput and are not
grossly high, the system will function well. In systems with a stable product mix that
are moving from push to pull, it probably makes sense to set the initial WIP levels in the
pull system equal to the average levels that were experienced under push. Then, once
the system is operating stably, make incremental reductions.

However, if the product mix changes, one may need more sophisticated methods to
set kanban and/or CONWIP levels. For kanban-type systems, one where WIP levels are
set at different points in the line, the techniques from Chapter 2 for establishing a (Q, r )
inventory policy can be used. In the case of kanban, Q is the container size and r is the
number of containers in the system minus one.

In a CONWIP system we can use the basic Factory Physics relations from Chapter 7
to set WIP levels. Figure 13.10 shows a set of plots for a given system operating with
a prescribed product mix. These plots can be generated only by performing multiple
Monte-Carlo simulation runs (one for each point) or by using specialized software like
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the “Flow Optimizer” offered by Factory Physics Inc. The y axis on the left measures best
case and current throughput curves, while the y axis on the right measures best case and
current cycle time curves. The solid line marked “Demand” indicates the current demand
for the system and has the same units as throughput. The left-most vertical dashed line
indicates the minimum WIP required to meet throughput. However, this level of WIP
will not reliably meet demand. To do this, we should set WIP at a level that corresponds
to the capacity buffer provided by the rate r P

b , which is larger than demand. The vertical
dashed line to the right indicates this WIP level, which becomes the CONWIP level for
the line. This implies that the cycle time will be T P

0 . With the CONWIP line configured
with this WIP level, the values r P

b and T P
0 can be used in the conveyor model to predict

when jobs will be completed.

Production Quotas and Takt Time. In addition to WIP levels, the other key parameter
for controlling a pull system is the takt time which is equivalent to a production quota.
Hence, quota setting is included with the WIP setting module in the PPC hierarchy in
Figure 13.9.

Production quotas and takt time are equivalent, since

Takt time = time available during the period

demand to be met during the period

Thus, the takt time reflects the time between single outputs in a smoothly running system
while the production quota is the “demand to be met during the period.” Meeting one
will always ensure meeting the other. Unless one is running a paced assembly line, it is
usually easier to manage with a production quota than with a takt time.

Thus, the production quota is the quantity of work that we will (almost) always
complete during a given period, which could correspond to a shift, a day, or a week. In
its strictest form, a production quota means that

1. Production during the period stops when quota is reached.

2. Make-up time (e.g., overtime) is used at the end of the period to make up any
shortage that occurred during regular time.

This allows us to count on a steady output and therefore facilitates planning and due
date quoting. Of course, in practice, few quota systems adhere rigidly to this protocol.
Indeed, one of the benefits of CONWIP that we cited in Chapter 10 is that it allows
working ahead of the schedule when circumstances permit. However, for the purposes
of planning a reasonable periodic production quota, it makes sense to model the system
as if we stop when the quota is reached.

Establishing an economic production quota requires consideration of both cost and
capacity data. Relevant costs are those related to lost throughput and overtime. Important
capacity parameters include both the mean and the standard deviation of production
during a specified time interval (e.g., a week or a day). Standard deviation is needed
because variability of output has an impact on our ability to make a given production
quota. In general, the more variable the production process, the more likely we are to
miss the quota.

To see this, consider Figure 13.11. Suppose we have set the production quota for
regular time production (e.g., Monday through Friday) to be Q units of work.3 If we do

3In a simple, single-product model, units of work are equal to physical units. In a more complex,
multiproduct situation, units must be adjusted for capacity, for instance, by measuring them in hours required
at a critical resource.
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not make Q units during regular time, then we must run overtime (e.g., Saturday and
Sunday) to make up the shortage. Because of the usual contingencies (machine failures,
worker absenteeism, yield loss, etc.), the actual amount of work completed during regular
time will vary from period to period. Figure 13.11 represents two possible distributions
of regular time production that have the same mean μ but different standard deviations
σ . The probability of missing the quota is represented by the area under each curve to
the left of the value Q. Since the area under curve A, with the smaller standard deviation,
is less than that under B, the probability of missing the quota is less. What this means
is that if we define a probability of missing the quota that we are willing to live with—a
“service level” of sorts—then we will be able to set a higher quota for curve A than for
curve B. We can aim closer to capacity because the greater predictability of curve A
gives us more confidence in our ability to achieve our goal with regularity.

This analysis suggests that if we knew the mean μ and standard deviation σ of regular
time production,4 a very simple way to set a production quota would be to calculate the
quota we can achieve S percent of the time, where S is chosen by the user. If regular
time production X can be reasonably approximated by the normal distribution, then we
can compute the appropriate quota by finding the value Q that satisfies

�

(

Q − μ

σ

)

= 1 − S

where �(·) represents the cdf of the standard normal distribution.
For example, suppose that μ = 100, σ = 10, and we have selected S = 85 percent

as our service level. Then the quota Q is the value for which

�

(

Q − 100

10

)

= 1 − 0.85 = 0.15

From a standard normal table, we find that �(−1.04) = 0.15. Therefore, we can find Q
from

Q − 100

10
= −1.04

Q = 89.6

4We will discuss a mechanism for obtaining estimates of μ and σ from actual operating experience in
Chapter 14.
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A problem with this simple method is that it considers only capacity, not costs.
Therefore it offers no guidance as to whether the chosen service level is appropriate. A
lower service level will result in a higher quota, which will increase throughput but will
also increase overtime costs. A higher service level will result in a lower quota, which
will reduce throughput and overtime costs. We offer a model for balancing the cost of
lost throughput with the cost of overtime in Appendix 13A and more complex variations
on this model in Hopp et al. (1993).

13.5.5 Demand Management

The effectiveness of any production control system is greatly determined by the envi-
ronment in which it operates. A simple flow line can function well with very simple
planning tools, while a complex job shop can be a management nightmare even with
very sophisticated tools. This is just a fact of life; some plants are easier to manage than
others. But it is also a good reason to remember one of our “lessons of JIT,” namely, that
the environment is a control. For example, if managers can make a job shop look like a
flow shop by dedicating machines to “cells” for making particular groups of products,
they can greatly simplify the planning and control process.

One key area in which we can shape the environment “seen” by the modules in the
lowest levels of the planning hierarchy is in managing customer demands. The demand

management module shown in Figure 13.9 does this by filtering and possibly adjusting
customer orders into a form that produces a manageable master production schedule.
As we noted in Chapter 4, leveling demand or “production smoothing” is an essential
feature of JIT. Without a stable production volume and product mix, the rate-driven,
mixed-model production approach described by Ohno (1988) and the other JIT advocates
cannot work. This implies that customer orders cannot be released to the factory in the
random order in which they are received. Rather, they must be collected and grouped in
a way that maintains a fairly constant loading on the factory. Balancing the concern for
factory stability with the desire for dependable customer service and short competitive
due date quotes is the challenge of the demand management module.

There are many approaches one could use to quote due dates and establish a near-term
MPS within the demand management module. As we discussed, if we establish periodic
production quotas, then we can use the conveyor model for predicting flow through the
plant. Under these conditions, we can think of customer due date quoting as “loading
the conveyor.” If we do not have to worry about machine setups and have a capacity
cushion, we can quote due dates in the order they are received, using the conveyor model
described by equation (13.19). However, when there is variability and little or no capacity
cushion, we must quote due dates using a different procedure (see Chapter 15). Likewise,
if batching products according to family (i.e., parts that share important machine setups)
is important to throughput, we may want to use some of the sequencing techniques
discussed in Chapter 15.

While there are many methods, the important point is not which method but that some
method be employed. Almost anything that achieves consistency with the scheduling
procedure will be better than the all-too-common approach of quoting due dates in near
isolation from the manufacturing process.

13.5.6 Sequencing and Scheduling

The MPS is still a production plan, which must be translated to a work schedule in order
to guide what actually happens on the factory floor. In the MRP II hierarchy, shown in
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Figure 3.2, this figure is carried out by MRP.5 In the production planning and control
hierarchy for pull systems shown in Figure 13.9, we include a sequencing/scheduling

module that is the pull analog of MRP. As in MRP, the objective of this sequenc-
ing/scheduling module is to provide a schedule that governs release times of work orders
and materials and then facilitates their movement through the factory.

To paraphrase Einstein, we should strive to make the work schedule as simple as
possible, but no simpler. The goal should be to provide people on the floor with enough
information to enable them to make reasonable control choices, but not so much as to
overly restrict their options or make the schedule unwieldy. What this means in practice
is that different plants will require different scheduling approaches. In a simple flow
line with no significant setup times, a simple sequence of orders, possibly arranged
according to earliest due date (EDD), may be sufficient. Maintaining a first-in-system,
first-out (FISFO) ordering of jobs at the other stations will yield a highly predictable and
easily manageable output stream for this situation.

However, in a highly complex job shop, with many routings, machine setups, and
assemblies of subcomponents, a simple sequence is not even well defined, let alone
useful. In the more complex situations, it will not be clear that the MPS is feasible.
Consequently, iteration between the MPS module and the sequencing/scheduling module
will be necessary. In complex situations such as this, we may need to provide a fairly
detailed schedule, with specific release times for jobs and materials and predicted arrival
times of jobs at workstations. Of course, the data requirements and maintenance overhead
of the system required to generate such a schedule may be substantial, but this is the
price we pay for complexity.

13.5.7 Shop Floor Control

Regardless of how accurate and sophisticated the scheduling tool is, the actual work
sequence never follows the schedule exactly. The shop floor control (SFC) module
shown in Figure 13.9 uses the work schedule as a source of general guidance, adhering
to it whenever possible, but also making adjustments when necessary. For instance, if a
machine failure delays the arrival of parts required in an assembly operation, the SFC
module must determine how the work sequence should be changed. In theory, this can
be an enormously complex problem, since the number of options is immense—we could
wait for the delayed part, we could jump another job ahead in the sequence, we could
scramble the entire schedule, and so on. But, in practice, we must make decisions quickly,
in real time, and therefore cannot hope to consider every possibility. Therefore, the SFC
module must restrict attention to a reasonable class of actions and help the user make
effective and robust choices.

To take advantage of the pull benefits we discussed in Chapter 10, we favor an
SFC module based on a pull mechanism. The CONWIP protocol is perhaps the sim-
plest approach and therefore deserves at least initial consideration. To use CONWIP in
conjunction with the sequencing/scheduling module, we establish a WIP cap and do not
allow releases into the line when the WIP exceeds the maximum level. This will serve
to delay releases when the plant is behind schedule and further releases cannot help.
CONWIP also provides a mechanism for working ahead of the schedule when things

5Recall from Chapter 3 that MRP (“little mrp”) refers to material requirements planning, the tool for
generating planned order releases, while MRP II (“big MRP”) refers to manufacturing resources planning,
the overarching planning system incorporating MRP. Enterprise resources planning (ERP) extends the MRP
II hierarchy to multiple-facility systems.
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are going well. If the WIP level falls below the WIP cap before the next job is scheduled
to be released, we may want to allow the job to start anyway. As long as we do not work
too far ahead of the schedule and cause a loss of flexibility by giving parts “personality”
too early, this type of work-ahead protocol can be very effective.

Chapter 14 is devoted to the SFC problem; there we will discuss implementation
of CONWIP-type SFC modules and will identify situations in which more complicated
SFC approaches may be necessary.

13.5.8 Real-Time Simulation

In a manufacturing management book such as this, one is tempted to make sweeping
admonitions of the form “Never have hot jobs,” and “Always follow the published sched-
ule.” Certainly, the factory would be easier to run if such rigid rules could be followed.
But the ultimate purpose of a manufacturing plant is not to make the lives of its managers
easy; it is to make money by satisfying customers. Since customers change their minds,
ask for favors, and so forth, the reality of almost every manufacturing environment is
that sometimes emergencies occur and therefore some jobs must be given special treat-
ment. One would hope that this doesn’t occur all the time (although it all too frequently
does, as in a plant we once visited where every job shown on the MRP system had been
designated “rush”). But, given that it will happen, it makes sense to design the planning
system to survive these eventualities, and even provide assistance with them. This is the
job of the real-time simulation module shown in Figure 13.9.

We have found simulation to be useful in dealing with emergency situations, such
as hot jobs. By simulation, however, we do not mean full-blown Monte Carlo simulation
with random number generators and statistical output analysis. Instead, we are referring
to a very simple deterministic model that can mimic the behavior of the factory for short
periods of time. One option for doing this is to make use of the previously described
conveyor model to represent the behavior of process centers and take the current position
of WIP in the system, a list of anticipated releases, and a set of capacity data (including
staffing), to generate a set of job output times. Such a model can be reasonably accurate
in the near term (e.g., over the next week), but because it cannot incorporate unforeseen
events such as machine failures, it can become very inaccurate over the longer term. Thus,
as long as we restrict the use of such a model to answering short-term what-if questions—
What will happen to due date performance of various other jobs if we expedite job
n?—this type of tool can be very useful. Knowing the likely consequences in advance of
taking emergency actions can prevent causing serious disruption of the factory for little
gain.

13.5.9 Production Tracking

In the real world there will always be contingencies that require human intervention by
managers. While this may seem discouraging to the designers of production planning
systems, it is one of the key reasons for the existence of manufacturing managers. A
good manager should strive for a system that functions smoothly most of the time, but
also be ready to take corrective action when things do not function smoothly. To detect
problems in a timely fashion and formulate responses, a manager must have key data
at her fingertips. These data might include the location of parts in the factory, status of
equipment (e.g., up, down, under repair), and progress toward meeting schedule. The
production tracking module depicted in Figure 13.9 is responsible for tabulating and
displaying this type of data in a usable format.
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Many of the planning modules in Figure 13.9 rely on estimated data. In particular,
capacity data are essential to several planning decisions. A widely used practice for esti-
mating capacity of currently installed equipment is to start with the rated capacity (e.g.,
in parts per hour) and reduce this number according to various detractors (machine down-
time, operator unavailability, setups, etc.). Since each detractor is subject to speculation,
such estimates can be seriously in error. For this reason, it makes sense to use the produc-
tion tracking module to collect and update capacity data used by other planning modules.
As we will see in Chapter 14, we can use the technique of exponential smoothing from
forecasting to generate a smoothed estimate of capacity and to monitor trends over time.

13.6 Conclusions

In this chapter, we have offered an overview of a production planning and control hier-
archy that is consistent with the pull production systems we discussed in Chapters 4 and
10. This overview was necessarily general, since there are many ways a planning system
could be constructed and different environments are likely to require different systems.
We will fill in specifics in subsequent chapters on the individual planning modules. For
now, we close with a summary of the main points of this chapter pertaining to the overall
structure of a planning hierarchy:

1. Planning should be done hierarchically. It makes no sense to try to use a
precise, detailed model to make general, long-term decisions on the basis of
rough, speculative data. In general, the shorter the planning horizon, the more
details are required. For this reason, it is useful to separate planning problems
into long-term (strategic), intermediate-term (tactical), and short-term (control)
problems. Similarly, the level of detail about products increases with nearness in
time, for instance, planning for total volume in the very long term, part families
in the intermediate term, and specific part numbers in the very short term.

2. Consistency is critical. Good individual modules can be undermined by a lack
of coordination. It is important that common capacity assumptions, consistent
staffing assumptions, and coordinated data inputs be used in the different
planning modules.

3. Feedback forces consistency and learning. Some manufacturing managers
continue to use poor-quality data without checking their accuracy or setting up
a system for collecting better data from actual plant performance. Regardless of
how it is done (e.g., manually or in automated fashion), it is important to
provide some kind of feedback for updating critical parameters. Furthermore,
by providing a mechanism for observing and tracking progress, feedback
promotes an environment of continual improvement.

4. Different plants have different needs. The above principles are general; the
details of implementing them must be specific to the environment. Small,
simple plants can get away with uncomplicated manual procedures for many of
the planning steps. Large, complex plants may require sophisticated automated
systems. Although we will be as specific as possible in the remainder of Part III,
the reader is cautioned against taking details too literally; they are presented for
the purposes of illustration and inspiration and cannot replace the thoughtful
application of basics, intuition, and synthesis.



Appendix 13A

A Quota-Setting Model

The key economic trade-off to consider in the quota-setting module is that between the cost of
lost throughput and the cost of overtime. High production quotas tend to increase throughput, but
run the risk of requiring more frequent overtime. Low quotas will reduce overtime, but will also
reduce throughput.

To develop a specific quota-setting model, let us consider regular time consisting of Monday
through Friday (three shifts per day) with Saturday available for preventive maintenance (PM) and
catch-up. If catch-up time is needed, we assume a full shift is worked (e.g., union regulations or
company policy requires it). Consequently the cost of overtime is essentially fixed, and we will
represent it by COT. If we let the net profit per standardized unit of production be p and the total
expected profit (net revenue minus expected overtime cost) be denoted by Z , the quota-setting
problem can be formally stated as

max
Q

Z = pQ − COTP (overtime is needed) (13.20)

Notice that, as expected, decreasing Q affects the objective by lost sales, while increasing Q will
affect it by increasing the probability that overtime will be needed. The optimization problem is
to find the value of Q that strikes the right balance.

Where shifts are long compared to the time to produce one part, it may be reasonable to assume
that production during regular time is normally distributed with mean μ and standard deviation σ .
This assumption allows us to express the weekly quota as Q = μ − kσ . Now the question becomes,
How many standard deviations below mean production should we set the quota to be? In other
words, our decision variable is now k. Under this assumption, we can rewrite equation (13.20) as

max
k

Z = p(μ − kσ ) − COT[1 − �(k)] (13.21)

where �(k) represents the cumulative distribution function of the standard normal distribution.
It not difficult to show (although we will not burden the reader with the details) that the unique

solution to equation (13.21) is

k∗ =
√

2 ln
COT√
2π pσ

(13.22)

We can then express the optimal quota directly in units of work, instead of units of standard
deviations, as follows:

Q∗ = μ − k∗σ (13.23)

Notice that since k∗ will never be negative, equation (13.23) implies that the optimal quota
will always be less than mean regular time production. As long as overtime costs are sufficiently
high to make using overtime on a routine basis unattractive, this result will be reasonable. If we
were to use a quota equal to the mean regular time production, then we would expect to miss
it, and require overtime, approximately 50 percent of the time. Hence, if overtime is sufficiently
expensive, less frequent use of it will be economical; therefore we should choose a quota less than
the mean regular time production, and this model is plausible.

However, it is quite possible that the profitability of additional sales outweighs the cost of
overtime. In this situation, our intuition tells us that a high quota (i.e., to force additional production)
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may be attractive, even if it results in missing the quota more than 50 percent of the time. For
instance, consider an example with the following costs and production parameters:

p = $100 μ = 5,000

COT = $10,000 σ = 500

Notice that we can “pay” for overtime with the profits of just 100 units, which is only 2 percent of the
mean regular time production. This means that there is strong incentive to use the overtime period
for extra production. Using our model to analyze this issue by substituting the above numbers into
expression (13.22), we get

k∗ = √−5.06

which is mathematically ridiculous. Clearly, the model runs into trouble whenever

COT√
2π pσ

< 1 (13.24)

because the natural logarithm term in equation (13.22) becomes negative. In economic terms, this
means that the fixed cost of overtime is not large enough to discourage the use of overtime for
routine production. In practical terms, it means either of the following:

1. The fixed overtime cost should be reexamined, and perhaps altered. It may also make
sense to include a variable (i.e., per unit) overtime cost. Development of such a model is
given in Hopp, Spearman, and Duenyas (1993).

2. It may really be economically attractive to use overtime for routine production. If this is
the case, it may make sense to run continuously, without capacity cushions. To set a target
quota for the purposes of quoting due dates to customers, we need to balance the cost of
running at less than maximum capacity with the cost of failing to meet a promised due
date. A model for this case is also described in Hopp, Spearman, and Duenyas (1993).

The above simple model can be used to give a rough measure of the economics of capacity
parameters. Clearly, equations (13.21) and (13.22) indicate that both the mean and the standard
deviation of regular time production are important. By using these equations, we can compute the
effect on the weekly profit of changes in various parameters. In particular, we can examine
the effect of changes in the mean of regular time production μ and standard deviation of reg-
ular time production σ .

To see this, consider a simple example in which p = $100, COT = $10,000, and μ and σ are
varied to determine their impact. From equation (13.21) it is obvious that profit will increase
linearly in mean regular time capacity μ. If σ is fixed, k∗ does not change when μ is varied.
Therefore, each increase in μ by one unit increases Z by p. Obviously, we are able to make more
and therefore sell more.6

The situation is a little more complex when μ is fixed but σ is varied. This is because (from
(13.22)) k∗ will change as σ is altered. Furthermore, we must be careful that the term inside the
square root of equation (13.22) does not become negative. Condition (13.24) implies that we must
have

σ >
COT√
2πp

= 10,000√
2π100p

= 39.9

6Note that this is only true because of our assumption that capacity is the constraint on sales. If demand
becomes the constraint, then this is clearly no longer true, since it makes no sense to set the quota beyond
what can be sold.
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for k* to be well defined. Figure 13.12 plots the optimal weekly profit when f.L is fixed at 100 units 

and a is varied from a to 39.9. This figure illustrates the general result that profits increase when 

variability is reduced. The reason for this is that when regular time production is less variable, we 

can set quota closer to capacity without risking frequent overtime. Thus, we can achieve greater 

sales revenues without incurring greater overtime costs. 

I. Why does it make sense to address the problems of planning and control in a manufacturing 

system with a hierarchical system? What would a nonhierarchical system look like? 

2. Is it reasonable to specify rules regarding the frequency of regeneration of particular 

planning functions (e.g., "aggregate planning should be done quarterly")? Why or why not? 

3. Give some possible reasons why MRP has spawned elaborate hierarchical planning 

structures while JIT has not. 

4. Why is it important for the various modules in a hierarchical planning system to achieve 

consistency? Why is such consistency not always maintained in practice? 

5. What is the difference between causal forecasting and time seriesforecasting? 

6. Why might an exponential smoothing model exhibit negative bias? An exponential 

smoothing model with a linear trend? 

7. In this era of rapid change and short product lifetimes, it is common for process technology 

to be used to produce several generations of a product or even completely new products. 

How might this fact enter into the decisions related to capacity/facility planning? 

8. In what ways are capacity/facility planning and workforce planning analogous? How do they 

differ? 

9. How must the capacity/facility planning and aggregate planning be coordinated? What can 

happen if they are not? 

10. One of the functions of sequencing and scheduling is to make effective use of capacity by 

balancing setups and due dates. This implies that actual capacity is not known until a 

schedule is developed. But both the capacity/facility planning and aggregate planning 

functions rely on capacity data. How can they do this in the absence of a schedule (i.e., how 

can they be done at a higher level in the hierarchy than sequencing or scheduling)? 

11. How is demand management practiced in MRP? In JIT? 

12. If a plant generates a detailed schedule at the beginning of every week, does it need a shop 

floor control module? If so, what functions might an SFC module serve in such a system? 

13. What purpose does feedback serve in a hierarchical production planning system? 
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Problems

1. Suppose the monthly sales for a particular product for the past 20 months have been as
follows:

Month 1 2 3 4 5 6 7 8 9 10
Sales 22 21 24 30 25 25 33 40 36 39

Month 11 12 13 14 15 16 17 18 19 20
Sales 50 55 44 48 55 47 61 58 55 60

(a) Use a five-period moving average to compute forecasts of sales for months 6 to 20 and a
seven-period moving average to compute forecasts for months 8 to 20. Which fits the data
better for months 8 to 20? Explain.

(b) Use an exponential smoothing approach with smoothing constant α = 0.2 to forecast
sales for months 2 to 20. Change α to 0.1. Does this make the fit better or worse? Explain.

(c) Using exponential smoothing, find the value of α that minimizes the mean squared
deviation (MSD) over months 2 to 20. Find the value of α that minimizes BIAS. Are they
the same? Explain.

(d) Use an exponential smoothing with a linear trend and smoothing constants α = 0.4 and
β = 0.2 to predict output for months 2 to 20. Does this fit better or worse than your
answers to (b)? Explain.

2. The following data give closing values of the Dow Jones Industrial Average for the 30 weeks,
months, and years prior to August 1, 1999.
(a) Use exponential smoothing with a linear trend and smoothing coefficients of

α = β = 0.1 on each set of data to generate forecasts for the Dow Jones Industrial
Average on August 1, 2000. Which data set do you think yields the best forecast?

(b) What weight does a 1-year-old data point get when we use smoothing constant α = 0.1
on the weekly data? On the monthly data? On the annual data? What smoothing constant
for the monthly model that gives the same weight to 1-year-old data is given by the
annual model with α = 0.1?

(c) Does using the adjusted smoothing constant computed in part (b) (for α and β) in the
monthly model make it predict more accurately the closing price for August 1, 2000? If
not, why not?

(d) How much value do you think time series models have for forecasting stock prices? What
features of the stock market make it difficult to predict, particularly in the short term?

Weekly Data Monthly Data Annual Data

Date Close Date Close Date Close

1/4/99 9,643.3 2/1/97 6,877.7 8/1/69 836.7
1/11/99 9,340.6 3/1/97 6,583.5 8/1/70 764.6
1/18/99 9,120.7 4/1/97 7,009.0 8/1/71 898.1
1/25/99 9,358.8 5/1/97 7,331.0 8/1/72 963.7
2/1/99 9,304.2 6/1/97 7,672.8 8/1/73 887.6

2/8/99 9,274.9 7/1/97 8,222.6 8/1/74 678.6
2/15/99 9,340.0 8/1/97 7,622.4 8/1/75 835.3
2/22/99 9,306.6 9/1/97 7,945.3 8/1/76 973.7
3/1/99 9,736.1 10/1/97 7,442.1 8/1/77 861.5
3/8/99 9,876.4 11/1/97 7,823.1 8/1/78 876.8

(continued)
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Weekly Data Monthly Data Annual Data

Date Close Date Close Date Close

3/15/99 9,903.6 12/1/97 7,908.3 8/1/79 887.6
3/22/99 9,822.2 1/1/98 7,906.5 8/1/80 932.6
3/29/99 9,832.5 2/1/98 8,545.7 8/1/81 881.5
4/5/99 10,173.8 3/1/98 8,799.8 8/1/82 901.3
4/12/99 10,493.9 4/1/98 9,063.4 8/1/83 1,216.2

4/19/99 10,689.7 5/1/98 8,900.0 8/1/84 1,224.4
4/26/99 10,789.0 6/1/98 8,952.0 8/1/85 1,334.0
5/3/99 11,031.6 7/1/98 8,883.3 8/1/86 1,898.3
5/10/99 10,913.3 8/1/98 7,539.1 8/1/87 2,663.0
5/17/99 10,829.3 9/1/98 7,842.6 8/1/88 2,031.7

5/24/99 10,559.7 10/1/98 8,592.1 8/1/89 2,737.3
5/31/99 10,799.8 11/1/98 9,116.6 8/1/90 2,614.4
6/7/99 10,490.5 12/1/98 9,181.4 8/1/91 3,043.6
6/14/99 10,855.6 1/1/99 9,358.8 8/1/92 3,257.4
6/21/99 10,552.6 2/1/99 9,306.6 8/1/93 3,651.3

6/28/99 11,139.2 3/1/99 9,786.2 8/1/94 3,913.4
7/5/99 11,193.7 4/1/99 10,789.0 8/1/95 4,610.6
7/12/99 11,209.8 5/1/99 10,559.7 8/1/96 5,616.2
7/19/99 10,911.0 6/1/99 10,970.8 8/1/97 7,622.4
7/26/99 10,655.1 7/1/99 10,655.1 8/1/98 7,539.1
8/2/99 10,714.0 8/1/99 10,829.3 8/1/99 10,829.3

3. Hamburger Heaven has hired a team of students from the local university to develop a
forecasting tool for predicting weekly burger sales to assist in the purchasing of supplies. The
assistant manager, who has taken a couple of college classes, has heard of exponential
smoothing and suggests that the students try using it. He gives them the following data on
sales for the past 16 weeks.

Week 1 2 3 4 5 6 7 8
Sales 3,500 3,700 3,400 3,900 4,100 3,500 3,600 4,200

Week 9 10 11 12 13 14 15 16
Sales 9,300 8,900 9,100 9,200 9,300 9,000 9,400 9,100

(a) What happens if exponential smoothing (with no trend) is applied to these data in a
conventional manner? Use a smoothing constant α = 0.3.

(b) Does it improve the forecast if we use exponential smoothing with a linear trend and
smoothing constants α = β = 0.3?

(c) Suggest a modification of exponential smoothing that might make more sense for this
situation.

4. Select-a-Model offers computer-generated photos of people posing with famous supermodels.
You simply send in a photo of yourself, and the company sends back a photo of you skiing, or
boating, or night clubbing, or whatever, with a model. Of course, Select-a-Model must pay
the supermodels for the use of their images. To anticipate cash flows, the company wants to
set up a forecasting system to predict sales. The following table gives monthly demand for the
past 2 years for three of the top-selling models.
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Month Model 1 Model 2 Model 3

1 82 95 148
2 25 12 125
3 44 90 78
4 36 56 53
5 27 54 25
6 91 65 29

7 100 65 9
8 33 92 68
9 97 91 84

10 92 116 110
11 39 141 147
12 94 137 120

13 70 124 147
14 72 90 109
15 90 72 96
16 73 71 70
17 6 92 42
18 30 140 36

19 98 170 34
20 9 150 28
21 0 141 71
22 17 180 102
23 25 171 103
24 11 124 144

(a) Plot the demand data for all three models, and suggest a forecasting model that might be
suited to each.

(b) Find suitable constants for model 1. How good a predictor is the resulting model?
(c) Find suitable constants for model 2. How good a predictor is the resulting model?
(d) Find suitable constants for model 3. How good a predictor is the resulting model?

5. Can-Do Canoe sells lightweight portable canoes. Quarterly demand for its most popular
product family over the past 3 years has been as follows:

Year 1996 1997 1998

Quarter 1 2 3 4 1 2 3 4 1 2 3 4
Demand 25 120 40 60 30 140 60 80 35 150 55 90

(a) Use an exponential smoothing model with smoothing constant α = 0.2 to develop a
forecast for these data. How does it fit? What is the resulting MSD?

(b) Use an exponential smoothing with a linear trend model with smoothing constants
α = β = 0.2 to develop a forecast for these data. How does it fit? What is the resulting
MSD?

(c) Use the Winters method with smoothing constants α = β = γ = 0.2 to develop a
forecast for these data. How does it fit? What is the resulting MSD?

(d) Find smoothing constants that minimize MSD over the second two years of data. How
does the resulting forecast fit the data in the third year?
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(e) Find smoothing constants that minimize MSD over the third year of data. How much
better does the model fit the data in the third year than that of part (d)? Which model, (d)
or (e), do you think is likely to better predict demand in year 4?

6. Suppose a plant produces 50 customized high-performance bicycles per day and maintains on
average 10 days’ worth of WIP in the system.
(a) What is the average cycle time (i.e., time from when an order is released to the plant until

the bicycle is completed, ready to ship)?
(b) When would the conveyor model predict that the 400th bicycle will be completed?
(c) Suppose we currently have orders for 1,000 bicycles (i.e., including the orders for the

500 bicycles that have already been released to the plant) and a customer is inquiring
about when we could deliver an order of 50 bicycles. Use the conveyor model to predict
when this new order will be completed. If we have flexibility concerning the due date we
quote to the customer, should we quote a date calculated earlier, later, or at the same time
as that computed using the conveyor model? Why?

7. Marco, the manager of a contractor’s supply store, is concerned about predicting demand for
the DeWally 519 hammer drill in order to help plan for purchasing. He has brought in a team
of MBAs, who have suggested using a moving-average or exponential smoothing method.
However, Marco is not sure this is the right approach because, as he points out, sales of the
drill are affected by price. Since the store periodically runs promotions during which the price
is reduced, he thinks that price should be accounted for in the forecasting model. The
following are price and sales data for the past 20 weeks.

Week Price Sales

1 199 25
2 199 27
3 199 24
4 179 35
5 199 21

6 199 26
7 199 29
8 199 28
9 199 32

10 169 48

11 169 45
12 199 30
13 199 38
14 199 37
15 199 38

16 199 39
17 179 45
18 199 40
19 199 39
20 199 42

(a) Propose an alternative to a time series model for forecasting demand for the DeWally 519.
(b) Use your method for the first n weeks of data to predict sales in week n + 1 for

n = 15, . . . , 19. How well does it work?
(c) What does your model predict sales will be in week 21 if the price is $199? If the price is

$179?
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8. Suppose Clutch-o-Matic Inc. has been approached by an automotive company to provide a
particular model of clutch on a daily basis. The automotive company needs 1,000 clutches per
day, but expects to divide this production among several suppliers. What the company wants
from Clutch-o-Matic is a commitment to supply a specific number each day (i.e., a daily
quota). Under the terms of the contract, failure to supply the quota will result in a financial
penalty.

Clutch-o-Matic has a line it could dedicate to this customer and has computed that the line
has a mean daily production of 250 clutches with a standard deviation of 50 clutches under
single (8-hour) shift production. A clutch sells for $200, of which $30 is profit. If overtime is
used, union rules require at least 2 hours of overtime pay. The cost of worker pay, supervisor
pay, utilities, and so forth, for running a typical overtime shift has been estimated at $6,200.
(a) What is the profit-maximizing quota from the perspective of Clutch-o-Matic?
(b) What is the average daily profit to Clutch-o-Matic if the quota is set at the level computed

in (a)?
(c) If the automotive company insists on 250 clutches per day, is it still profitable for

Clutch-o-Matic? How much of a decrease in profit does this cause relative to the quota
from (b)?

(d) How might a quota-setting model like this one be used in the negotiation process between
a supplier and its customers requesting JIT contracts?



C H A P T E R

14 Shop Floor Control

Even a journey of one thousand li begins with a single step.
Lao Tzu

14.1 Introduction

Shop floor control (SFC) is where planning meets processes. As such, it is the foundation

of a production planning and control system. Because of its proximity to the actual

manufacturing process, SFC is also a natural vehicle for collecting data for use in the

other planning and control modules. A well-designed SFC module both controls the flow

of material through the plant and makes the rest of the production planning system easier

to design and manage.1

Despite its logical importance in a production planning hierarchy, SFC is frequently

given little attention in practice. In part, this is because it is perceived, too narrowly, we

think, as purely material flow control. This view makes it appear that once one has a good

schedule in hand, the SFC function can be accomplished by routing slips attached to

parts and giving the sequence of process centers to be visited; one simply works on parts

in the order given by the schedule and then moves them according to the routing slips.

As we will see here and in Chapter 15, even with an effective scheduling module, the

control of material flow is frequently not so simple. No scheduling system can anticipate

random disruptions, but the SFC module must accommodate them anyway. Furthermore,

as we have already noted and will discuss further in this chapter, SFC can and should

play a larger role than just material flow control.

There may be another reason for the lack of attention to SFC. A set of results from

the operations management literature indicates that decisions affecting material flow

are less important to plant performance than are decisions dealing with shaping the

production environment. Krajewski et al. (1987) used simulation experiments to show

that the benefits from improving the production environment by reducing setup times,

improving yields, and increasing worker flexibility were far larger than the benefits from

1We remind the reader that we are using the term module to include all the decision making, record

keeping, and computation associated with a particular planning or control problem. So while the SFC

module may make use of a computer program, it involves more than this. Indeed, some SFC modules may

not even be computerized at all.
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switching to a kanban system from a reorder point or MRP system. They concluded

that (1) reshaping the production environment was key to the Japanese success stories

of the 1980s, and (2) if a firm improves the environment enough, it does not make much

difference what type of production control system is used. In a somewhat narrower vein,

Roderick et al. (1991) used simulation to show that the release rate has a far greater effect

on performance than work sequencing at individual machines. Their conclusion was that

master production schedule (MPS) smoothing is likely to have a stronger beneficial effect

than sophisticated dispatching techniques for controlling work within the line.

If one narrowly interprets SFC to mean dispatching or flow control between ma-

chines, then studies like these do indeed tend to minimize its importance. However,

if one takes the broader view that SFC controls flow and establishes links between

other functions, then the design of the SFC module serves to shape the entire produc-

tion environment. For instance, the very decision to install a kanban system signals a

commitment to small-lot manufacture and setup reduction. Moreover, a pull system au-

tomatically governs the release rate into the factory, thereby achieving the key benefits

identified by Roderick et al.

But is kanban (or something like it) essential to achieving these environmental

improvements? Krajewski et al. imply that environmental improvements, such as setup

reduction, could be just as effective without kanban, while lean proponents contend that

kanban is needed to apply the necessary pressure to force these improvements. Our view is

closer to that of the lean proponents; without an SFC module that promotes environmental

improvements and, by means of data collection, documents their effectiveness, it is

extremely difficult to identify areas of leverage and make changes stick. Thus, we will take

the reshaping of the production environment as part and parcel of SFC module design.

On the basis of our discussions in Chapters 4, 10, and 13, we feel that the most

effective (and manageable) production environment is that established by a pull system.

Recall that the basic distinction between push and pull is that push systems schedule

production, while pull systems authorize production. Fundamental to any pull mechanism

for authorizing production is a WIP cap that limits the total inventory in a production

line. In our terminology, a system cannot be termed pull if it does not establish a WIP

cap. Complementing this defining feature are a host of other supporting characteristics

of pull systems, including setup time reduction, worker cross-training, cellular layouts,

quality at the source, and so on. The manner and extent to which these techniques can

be used depend on the specific system. The objective for the SFC module is to make

the actual production environment as close as possible to the ideal environments we

examined in Chapters 4 and 10. At the same time, the SFC module should be relatively

easy to use, integrate well with the other planning functions, and be flexible enough to

accommodate changes the plant is likely to face. As we will see, because manufacturing

settings differ greatly, the extent to which we can do this will vary widely, as will the

nature of the appropriate SFC module.

Figure 14.1 illustrates the range of functions one can incorporate into the SFC

module. At the center of these functions is material flow control (MFC), without which

SFC would not be shop floor control. Material flow control is the mechanism by which

we decide which jobs to release into the factory, which parts to work on at the individual

workstations, and what material to move to and between workstations. Although SFC

is sometimes narrowly interpreted to consist solely of material flow control, there are a

number of other functions that are integrally related to material flow control, and a good

SFC module can provide a platform for these.

Several functions deal with what is happening in the plant in real time. WIP tracking

involves identifying the current location of parts in the line. Its implementation can be
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detailed and automated (e.g., through the use of optical scanners) or rough and manual

(e.g., performed by log entries at specified points in the line). Status monitoring refers to

surveillance of other parameters in the line besides WIP position, such as machine status

(i.e., up or down) or staffing situation. Throughput management consists of tracking

output from the line or plant against an established production quota and/or customer

due dates, and making corresponding adjustments.

Since the SFC module is the place where real-time control decisions are imple-

mented, it is a natural place for monitoring these types of changes in real-time status

of the line. If the SFC module is implemented on a computer, these data collection and

display tasks are likely to share files used by the SFC module for material flow control.

Even if material flow control is implemented as a manual system, it makes sense to think

about monitoring the system in conjunction with controlling it, since this may have an

impact on the way paperwork forms are devised. A specific mechanism for monitoring

the system is statistical throughput control (STC), in which we track progress toward

making the periodic production quota. We give details on STC in Section 14.5.1.

In addition to collecting information about real-time status, the SFC module is a

useful place to collect and process some information about future events (e.g., projected

completion dates). One possibility is the real-time simulation function, in which pro-

jections are made about the timing of arrival of specific parts at various points in the line.

Chapter 13 addressed this function as an off-line activity. However, it is also possible to in-

corporate a version of the real-time simulation module directly into the SFC module. The

basic mechanism is to use information about current WIP position, collected by the WIP

tracking function, plus a model of material flow (e.g., based on the conveyor model) to

predict when a particular job will reach a specific workstation. Being able to call up such

information from the system can allow line personnel to anticipate and prepare for jobs.

A different function of the SFC module is the collection of data to update capacity

estimates. This capacity feedback function is important for ensuring that the high-level

planning modules are consistent with low-level execution, as we noted in Chapter 13.

Since the SFC module governs the movement of materials through the plant, it is the

natural place to measure output. By monitoring input over time we can estimate the actual

capacity of a line or plant. We will discuss the details of how to do this in Section 14.5.2.

The fact that move points represent natural opportunities for quality assurance es-

tablishes a link between the SFC module and quality control. If the operator of a

downstream workstation has the authority to refuse parts from an upstream workstation
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on the basis of inadequate quality, then the SFC module must recognize this disruption

of a requested transaction. The material flow control function must realize that replace-

ments for rejected parts are required or that rework will cause delays in part arrivals; the

WIP tracking function must note that these parts did not move as anticipated; and the

work forecasting function must consider the delay in order to make work projections.

Furthermore, since quality problems must be noted for these control purposes, it is often

convenient to use the system to keep a record of them. These records provide a link

to a statistical process control (SPC) system for monitoring quality performance and

identifying opportunities for improvement.

In the remainder of this chapter, we give

1. An overview of issues that must be resolved prior to designing an SFC module.

2. A discussion of CONWIP as the basis for an SFC module.

3. Extensions of CONWIP schemes.

4. Mechanisms for tracking production in order to measure progress toward a

quota in the short term, and collecting and validating capacity data for other

planning modules in the long term.

14.2 General Considerations

One is naturally tempted to begin a discussion of the design of an SFC system by address-

ing questions about the control mechanism itself: Should work releases be controlled by

computer? Should kanban cards be used? How do workers know which jobs to work on?

And so on. However, even more basic questions should be addressed first. These deal

with the general physical and logical environment in which the SFC system must operate.

To develop a reasonable perspective on the management implications of the SFC

module, it is important to consider shop floor control from both a design and a control
standpoint. Design issues deal with establishing a system within which to make decisions,

while control issues treat the decisions themselves. For instance, choosing a work release

mechanism is a design decision, while selecting parameters (e.g., WIP levels) for making

the mechanism work is a control issue. We will begin by addressing relatively high-level

design topics and will move progressively toward lower-level control topics throughout

the chapter.

14.2.1 Gross Capacity Control

Production control systems work best in stable environments. When demand is steady,

the product mix (i.e., the fraction that each part is of the whole demand) is constant,

and processes are well behaved, almost any type of system (e.g., reorder points, MRP,

or kanban) can work well, as shown by the simulation studies of Krajewski et al. (1987).

From a manufacturing perspective, we would like to set up production lines and run

them at a nice, steady pace without disruptions. Indeed, to a large extent, this is precisely

what lean, with its emphasis on production smoothing and setup reduction, attempts to

do. But efforts to create a smooth, easy production environment can conflict with the

business objectives to make money, grow and maintain market share, and ensure long-

term viability. Customer demand fluctuates, products emerge and decline, technological

competition forces us to rely on new and unstable processes. Therefore, while we should

look for opportunities to stabilize the environment, we must take care not to lose sight of

higher-level objectives in our zeal to do this. We shouldn’t forgo an opportunity to gain
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a strategic edge via a new technology simply because the old technology is more stable

and easier to manage.

Even while we respond to market needs, there are things we can do to avoid un-

necessary volatility in the plant. One way to stabilize the environment in which the SFC

module must operate is to use gross capacity control to ensure that, when running, the

lines are close to optimally loaded. The goal is to avoid drastic swings in line speed by

controlling the amount of time the line, or part of it, is used. Specific options for gross

capacity control include

1. Varying the number of shifts. For instance, three shifts per day may be used

during periods of heavy demand, but only two shifts during periods of lighter

demand. A plant can use this option to match capacity to seasonal fluctuations

in demand. However, since it typically involves laying off and rehiring workers,

it is typically only appropriate for accommodating persistent demand changes

(e.g., months or more). Nonetheless, some companies have had success in using

“flex workers” who are guaranteed less than a full week of work and are called

in on short notice to work an additional shift when demand rises.

2. Varying the number of days per week. For instance, weekends can be used to

meet surges of demand. Since weekend workers can be paid on overtime, a

plant can use this approach on much shorter notice than it can use shift changes.

Notice that we are talking here of planned overtime, where the weekends are

scheduled in advance because of heavy demand. This is in contrast with

emergency overtime used to make up quota shortfalls, as we discussed in

Chapter 13.

3. Varying the number of hours per day. Another source of planned overtime is to

lengthen the workday, for instance, from 8 to 10 hours.

4. Varying staffing levels. In manual operations, capacity can be augmented by

adding workers (e.g., floating workers from another part of the plant, or

temporary hires). In multimachine workstations, managers can alter capacity by

changing the number of machines in use, possibly requiring staffing changes as

well. Again, flex workers can be an option to provide a flexible capacity buffer.

5. Using outside vendors. One way to maintain a steady loading on a plant or line

is to divert work beyond a specified level to another firm. Ideally, this transfers

at least part of the burden of demand variability to the vendor.2

As the term gross capacity control implies, these activities can only alter the effective

capacity in a rough fashion. Shifts must be added whole and only infrequently removed.

Weekend overtime may have to be added in specific amounts (e.g., a day or half-day)

because of union rules or personnel policy. Options for varying capacity through floating

workers are limited by worker skill levels and loadings in other portions of the plant.

Adding and releasing temporary workers requires training and other expenses, which

limits the flexibility of this option. Vendoring contracts may require minimum and/or

maximum amounts of work to be sent to the vendor, so this approach may remove

only part of the demand variability faced by the firm. Moreover, since finding and

certifying vendors is a time-consuming process, vendor contracts are likely to persist over

time.

2Of course, there is no guarantee that a vendor will be able to accommodate varying demand any better

than the firm itself. Moreover, vendors who can are likely to charge for it. So while vendors can be useful,

they are hardly a panacea.
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Despite the limitations of gross capacity control methods, it is important that they

be used to match capacity to demand at least roughly. This will help moderate variations

in workload that can seriously degrade its performance.

14.2.2 Bottleneck Planning

In Part II we stressed that the rate of a line is ultimately determined by the bottleneck pro-

cess (i.e., the process with the highest long-term utilization). In the simple single-product,

single-routing lines we considered in Chapter 7 to illustrate basic factory dynamics, the

bottleneck process represents the maximum rate of the line. This rate is only achieved

when the WIP in the line is allowed to become large,3 as illustrated in Figure 14.2.

In lines where all parts follow the same routing and processing times are such that

the same process is the slowest operation for all parts, the conveyor model is an accurate

representation of reality and useful for analysis, as well as intuition. In such cases, the

bottleneck plays a key role in the performance of the line and therefore should be given

special attention by the SFC module. Because throughput is a direct function of the

utilization of the bottleneck, it makes sense to trigger releases into the line according to

the status of the bottleneck. Such “pull from the bottleneck” schemes can work well in

some systems.

In spite of the theoretical importance of bottlenecks, it has been our experience that

few manufacturers can identify their bottleneck process with any degree of confidence.

The reason is that few manufacturing environments closely resemble a single-product,

single-routing line. Most systems involve multiple products with different processing

times. As a result, the bottleneck machine for one product may not be the bottleneck

for another product. This can cause the bottleneck to “float,” depending on the product

mix. Figure 14.3 illustrates this type of behavior where machine 2 is the bottleneck for

product A, machine 4 is the bottleneck for product B, and machine 3 is the bottleneck

for a 50–50 mix of A and B.

This discussion has two important implications for design of the SFC module:

1. Stable bottlenecks are easier to manage. A line with a distinct identifiable

bottleneck is simpler to model (i.e., with the conveyor model) and control than

a line with multiple moving bottlenecks. A manager can focus on the status of

3What is meant by large, of course, depends on the amount of variability in the line, as we noted in

Chapter 9.
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the bottleneck and think about the rest of the line almost exclusively in terms of

its impact on the bottleneck (i.e., preventing starvation or blocking of the

bottleneck). If we are fortunate enough to have a line with a distinct bottleneck,

we should exploit this advantage with an SFC module that gives the bottleneck

favorable treatment and provides accurate monitoring of its status.

2. Bottlenecks can be designed. Although some manufacturing systems have their

bottleneck situation more or less determined by other considerations (e.g., the

capacity of all key processes would be too expensive to change), we can often

proactively influence the bottleneck. For instance, we can reduce the number of

potential bottlenecks by adding capacity at some stations to ensure that they

virtually never constrain throughput. This may make sense for stations where

capacity is inexpensive.4 Alternatively, interacting lines can be separated into

cells; for example, the two lines in Figure 14.3 could be separated by adding an

additional machine 3 (or dedicating machines to lines, if station 3 is a

multimachine workstation). This type of cellular manufacturing has become

increasingly popular in industry, in large part because small, simple cells are

easier to manage than large, complex plants.

Although it is difficult to estimate accurately the cost benefits of simplifying bottle-

neck behavior, it is clear that there are costs associated with complexity. The simplest

plant to manage is one with separate routings and distinct, steady bottlenecks. Any depar-

tures from this only serve to increase variability, congestion, and inefficiency. This does

not mean that we should automatically add capacity until our plant resembles this ideal;

only that we should consider the motivation for departures from it. If we are plagued

by a floating bottleneck that could be eliminated via inexpensive capacity, the addition

deserves consideration. If interacting routings could be separated without large cost, we

should look into it.

Moreover, line design and capacity allocation need not be plantwide to be effec-

tive. Sometimes great improvements can be achieved by assigning a few high-volume

product families to separate, well-designed cells, leaving many low-volume families to

an inefficient “job shop” portion of the plant. This “factory within a factory” idea has

been promoted by various researchers and practitioners, most prominently Wickham

Skinner (1974), as part of the focused factory philosophy. The main idea behind fo-

cused factories is that plants can do only a few things very well and therefore should

be focused on a narrow range of products, processes, volumes, and markets. As we will

see repeatedly throughout Part III, simplicity offers substantial benefits throughout the

planning hierarchy, from low-level shop floor control to long-range strategic planning.

4Note that the idea of deliberately adding capacity that will result in some resources being underutilized

runs counter to the principle of line balancing. But, as we see in Chapter 18, line balancing is justified only

for “paced” lines such as moving assembly lines. Moreover, these lines are really not “balanced” because the

average task time is typically shorter than the “takt time” for the line. The appropriate amount of extra

capacity at nonbottlenecks requires taking a line-wide perspective that considers variability, as we have

stressed throughout this book.
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14.2.3 Span of Control

In Chapter 13, we discussed disaggregation of the production planning problem into

smaller, more manageable units. We devoted most of that discussion to disaggregation

along the time dimension, into short-, intermediate-, and long-range planning. But other

dimensions can be important as well. In particular, in large plants it is essential to divide

the plant by product or process in order to avoid overloading individual line managers.

Typically, a reasonable span of control, which usually refers to the number of

employees under direct supervision of the manager, is on the order of 10 employees.

A line with many more workers than this will probably require intermediate levels of

management (foremen, lead technicians, multiple layers of line managers). Of course,

10 is only a rough rule of thumb; the appropriate number of employees under direct

supervision of a manager will vary across plants. Strictly speaking, the term span of
control should really refer to more than simply the number of subordinates, to consider

the range of products or processes the manager must supervise.

For instance, printed-circuit board (PCB) manufacture involves, among other oper-

ations, a lamination process, in which copper and fiberglass sheets are pressed together,

and a circuitize process, in which the copper sheets are etched to produce the desired

circuitry. The technology, equipment, and logistics of the two processes are very differ-

ent. Lamination is a batch process involving large mechanical presses, while circuitizing

is a combination of a one-board-at-a-time process using optical expose machines and

a conveyorized flow process involving chemical etching. These differences, along with

physical separation, make it logical to assign different managers to the two processes.

However, no matter how the line is broken up, be it for bottleneck design, span

of control, or other considerations, one must always strive to achieve a smooth flow.

Thus, it may make sense to assign line management to a collection of similar routings

with supporting, technical, managers assigned to the particular processes. All of these

considerations are relevant to the configuration of the SFC module. Moreover, depending

on the complexity of the line, managers may be able to coordinate movement of material

through the portion of the line for which they are responsible, with very little assistance

from the production control system.

At a minimum, the SFC module must tell managers what parts are required by

downstream workstations. If the module can also project what materials will be arriving

at each station, so much the better, since this information enables the line managers to plan

their activities in advance. The division of the line for management purposes provides a

natural set of points in the line for reporting this information. How the line is divided may

also affect the other functions of the SFC module listed in Figure 14.1. For purposes of

accountability, it may be desirable to build in quality checks between workstations under

separate management (e.g., the downstream station checks parts from an upstream station

and refuses to accept them if they do not meet specifications). Under these conditions,

the links between SFC and quality control must be made with this in mind.

14.3 CONWIP Configurations

As we observed in Chapter 5, Lean authors sometimes get carried away with the rhetoric

of simplicity, making statements like “Kanban . . . can be installed . . . in 15 minutes,

using a few containers and masking tape” (Schonberger 1990, p. 308). As any manager

who has installed a pull system knows, getting a system that works well is not simple

or easy. Manufacturing enterprises are complex, varied activities. Neither the high-level

philosophical guidelines of “lean thinking” nor the collection of specific techniques
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available from more pragmatic sources can possibly provide ready-made solutions for

individual manufacturing environments. With this in mind, we begin our review of pos-

sible SFC configurations. We start with the simplest possibilities, note where they will

and won’t work well, and move to more sophisticated methods for more complex en-

vironments. Since we cannot discuss every option in detail, our hope is that the range

offered here will provide the reader with a mix-and-match starting point for choosing

and developing SFC modules for specific applications.

14.3.1 Basic CONWIP

The simplest manufacturing environment from a management standpoint is the single-

routing, single-family production line. In such situations, the CONWIP protocol (i.e.,

start a new job whenever one in process finishes) can be easily and effectively used for

shop floor control.

Perhaps the simplest way to maintain the constant-WIP protocol is by using a fixed

number of physical cards or containers, as illustrated in Figure 14.4. Raw materials arrive

to the line in standard containers but are only released into the line if there is an available

CONWIP card. These cards can be laminated sheets of paper, metal, or plastic tags, or

the empty containers themselves. Since no routing or product information is required

on the cards, they can be very simple. Provided that work is only released into the line

with a card, and cards are faithfully recycled (e.g., they don’t get trapped with a job

diverted for rework or terminated by an engineering change order), the WIP in the line

will remain constant at the level set by the number of CONWIP cards.

The basic CONWIP system, in which releases into a single product line are controlled

by holding the WIP level constant, can be very useful in simple production environments.

However, many environments involve multiple products, multiple (possibly intersecting)

routings, and other complicating factors. So, to use CONWIP in these settings we must

expand the methodology. Below we discuss the environmental conditions needed to

support CONWIP and address the major design and control issues involved in setting

up an appropriate CONWIP system.

14.3.2 More Complex CONWIP Systems

CONWIP can be applied to a very broad range of production environments.5 Of

course, greater system complexity generally implies greater variability and hence lower

5In contrast, as we discussed in Chapter 4, kanban is largely restricted to repetitive manufacturing

environments, in which volume and mix are quite steady over time. In that chapter we discussed methods for

overcoming the intrinsic rigidity of a kanban pull system by increasing flexibility. CONWIP naturally

provides an important source of flexibility because it uses cards that are specific to a flow rather than a product

type. That is, when a CONWIP card signals for a job to be released into the flow, the job may be of any type.
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efficiency. Nevertheless, the WIP cap provided by CONWIP will prevent inventory from

growing without bound, which will make the system more stable and manageable.

The following conditions are needed for CONWIP to work well as the basis for the

SFC module:

1. Part routings can be grouped into a small number of product flows. Each

flow will make up a CONWIP loop. While the routings in a CONWIP loop

need not be identical (e.g., some parts could require extra steps), differences

will translate into variability. Higher variability will require more WIP and

cycle time to obtain a given throughput target.

2. The loop should not be too long. For instance, one should not create a single

CONWIP loop spanning an entire semiconductor fab—there are simply too

many steps. There are two reasons for this: (1) span of control considerations

discussed above make long loops difficult to manage, and (2) a long CONWIP

line begins to behave like a push system. That is, when the WIP cap is large

(because the line is long) WIP can accumulate in sections of the line and be

unavailable in others. This creates “WIP bubbles,” which disrupt flow and

thereby defeat the flow smoothing role of a pull system. Fortunately, a long line

can be broken into several tandem lines (see the discussion below).

3. There must be a measure of WIP. In some systems, this can simply be a count

of the units in the system. But in systems where different part types require

vastly different process times, the same number of units does not represent the

same use of resources. Hence, in order to maintain a level loading on the

system, it makes sense to measure the WIP in terms of time required at the

bottleneck. If the bottleneck is stable, this method can work well. If the

bottleneck is different for different products, bottleneck time is still a

reasonable measure of WIP provided that the product mix does not vary too

widely. For simplicity, in most of this chapter we will speak as though WIP is

measured in simple units, but we note that all versions of CONWIP presented

here can be adapted to use time measures of WIP.

Figure 14.5 shows a schematic configuration of a CONWIP line having both make-

to-order (MTO) and make-to-stock (MTS) jobs. The release sequence for both types of

jobs is given by a release list, with actual releases occurring only when authorized by a

Shipments

Stock (MTS system) 
Early completion 
(MTO system) 

Active WIP

Release
list

Lead time

MTS
signal

CONWIP
level

MTO
signal

Figure 14.5

A CONWIP line showing

MTO and MTS elements.
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Figure 14.6

A CONWIP line with

electronic tracking.

CONWIP card. Although MTO and MTS jobs are generated by different mechanisms,

both are treated the same once released. MTO jobs come directly from customer demands,

possibly using a demand management procedure like that used in the master production

scheduling step of MRP, which we discussed in Chapter 3. MTS jobs are generated to

replenish stock levels, using an inventory method like those described in Chapter 2 (e.g.,

Q,r). The WIP for both MTS and MTO jobs can be monitored electronically as shown

in Figure 14.6.

The release list is one important mechanism for linking output from a CONWIP

line with customer demand. But since demand is usually more variable than production,

additional sources of buffering/flexibility are often needed. So, after describing the con-

struction and use of the release list, we discuss variability reduction via line discipline

and variability buffering via WIP setting and throughput management below.

Release List

In MRP systems, the planned order releases specify the sequence of job releases. In

kanban systems, cards are product specific and so indicate which type of job to release.

But in a CONWIP system, cards are specific to the flow, not to individual products.

Hence, additional information is needed to select which jobs to release into the line.

The release list represents a list of jobs awaiting release into the flow. Each entry on

the release list indicates the unique part or stock keeping unit (sku) number of the

product, the quantity, and a due date. Other information might include the expected

completion date, whether the components or raw materials are available, whether the job

is completed, in WIP, or yet to be released, and so on.

The construction of the release list is the task of the sequencing and scheduling

module, which may use a simple earliest due date (EDD) sequence (if there are no setups

that encourage batching) or a more involved batching routine (to achieve a rhythm by

working on similar parts for extended periods). Once generated, the release list can

be communicated to the line in a variety of ways. The simplest consists of a piece of

paper with a prioritized list of jobs. Whenever a CONWIP card is available, the next

job for which raw materials are available is released into the line. Some situations may

call for more sophisticated release list displays that utilize WIP tracking systems (see

Figure 14.13). This is particularly important when there are numerous distinct parts in

the line (see Section 14.3.5).

One easy source for the release list in a MTO system is the set of planned order

releases from an MRP system. In a MTS system the analogous orders are those generated

by a (Q, r ) inventory system. In both cases, whenever the inventory on-hand plus that

on-order is not expected to cover the anticipated demand during the lead time, a new
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job is released. The release list should also provide an appropriate set of work for the

CONWIP line to tap if it runs ahead of schedule. Thus, the lead time used in the MRP

system should include the time jobs are expected to wait on the release list. That is, the

MRP lead times should be computed as

MRP lead time = wait-to-release time + time in active WIP

+ planned inventory time

Note that this calculation includes “planned inventory time,” that is, the time spent in

finished inventory before being shipped. This means that we should also not use safety

stock in the MRP system. By Little’s law, planned inventory time and safety stock are

equivalent, since

Safety stock = demand × planned inventory time

In a make-to-stock (MTS) CONWIP system there is a different lead time to set—the

one used by the (Q, r ) model to generate replenishment orders for the FGI stock. This

lead time should include only the wait-to-release time and the time in active WIP, since

the reorder point already includes safety stock. This implies that we should place a new

order whenever the inventory position drops below,

r + 1 = demand ∗ (wait-to-release time + time in active WIP) + safety stock

= mean lead time demand + safety stock

Hence, the MRP lead time and the reorder point r are related by

MRP lead time = r + 1

demand

In addition to providing a work sequence, the release list also specifies job sizes. As we

know from Chapter 9, lot size can have a large impact on WIP and cycle time. Hence,

whether jobs on the release list come from an MRP or a (Q, r ) system, they should be

set in consideration of available capacity (both labor and machines), WIP and finished

goods inventory, any “out-of-pocket” costs associated with setups (changeovers), and

constraints on the practical minimum and maximum lot sizes and lot-size increment (e.g.,

we always make 12 at a time). Out-of-pocket costs include things such as the loss of any

material during a setup, the destruction of any jigs or fixtures, and so forth. Labor and

machine idle time are not out-of-pocket costs but must be considered as constraints in the

problem. Although solving this specific optimization problem is beyond the scope of this

book, we provide some insight by studying related scheduling problems in Chapter 15.

Line Discipline

Once jobs have moved from the release list into the system they present the problem of

what to work on at each station. In general, we recommend that a line maintain a first-

in-system, first-out (FISFO) order. This means that, barring yield loss, rework problems,

or passing at multimachine stations, jobs will exit the line in the same order they were

released. Since the CONWIP protocol keeps the line running at a steady pace, this makes

it easy to predict when jobs—even those still in the release list—will be completed.

However, if the CONWIP loop is long, there may arise situations in which certain

jobs require expediting. While we wish to discourage incautious use of expediting be-

cause it can dramatically increase variability in the line, it is unreasonable to expect the
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firm never to expedite. To minimize the resulting disruption, it may make sense to allow

only two levels of priority and to establish specific passing points. The passing points are

buffers or stock points in the line, typically between segments run as CONWIP loops,

where “hot” jobs are allowed to pass “normal” jobs. The discipline of a workstation

taking material from such a buffer is to take the first job from the hot list, if there is one,

and, if not, the oldest job currently in the buffer. To allow passing only at designated

points in the line makes it easier to build a model (the real-time simulation module)

for predicting when jobs will exit the line. If many levels of priority and unrestricted

passing are permitted, the variability or “churn” in the line can become acute, and it can

be almost impossible to predict line behavior.

CONWIP Level

As we know from Chapter 10, the magic of pull is a result of capping WIP. Hence, to be

effective, a CONWIP SFC module must establish a reasonable maximum level of WIP

for the flow. If this level is too low (i.e., near the critical WIP), throughput will suffer. If

too high, then cycle time will be excessive.

If CONWIP is being implemented on an established line, the easiest approach for

setting CONWIP levels is to simply begin with the current WIP level. After the line has

stabilized, we can look for persistent queues at the workstations, particularly the bottle-

neck. If a station’s queue virtually never empties, then reducing the CONWIP level will

not have much effect on throughput and hence will improve overall performance. Finally,

we should make periodic reviews of queue lengths to adjust CONWIP levels to accom-

modate physical changes (hopefully improvements) in the line. As we noted in Chapter

13, however, adjusting CONWIP levels should be done infrequently (e.g., monthly or

quarterly) or when a significant change has occurred either in capacity or demand.

If CONWIP is being implemented on a new line (or an old line with new products),

we do not have a historical standard to use to set WIP. Instead, we should appeal to a

model showing the relation between WIP, cycle time, and throughput. The model can be

constructed by using Monte Carlo simulation software (e.g., Arena, AutoMod, ProModel,

Witness, etc.) or from a queueing model that is specifically designed to generate such

curves (e.g., the “Flow Optimizer” offered by Factory Physics Inc.). The advantage of a

queueing model is speed, since more than 40 simulations must be performed to generate

the plots. Figure 14.7 shows the output of such a queueing model that presents WIP,

cycle time, and throughput on one chart.
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utilization.

The CONWIP level should be selected so that throughput is above demand but not

too far above it. The reason is that setting throughput well above demand is usually

wasteful. In situations where the system falls behind demand, it is more effective to rely

on a source of makeup capacity (e.g., overtime). As we will discuss below, we can make

use of a throughput tracking procedure to determine when we need the makeup capacity.

Example

Consider a line with a bottleneck rate of 10.2 units per day and a raw process time of 116

hours (which includes some down time and some setup time). Demand is 48 units per

week. If we run 5 days per week, utilization will be 96 percent and the relation between

WIP, cycle time, and throughput will look like that shown in Figure 14.7. Hence to meet

weekly demand, we will need to achieve a throughput rate of 48/5 = 9.6 units per day,

which requires a CONWIP level of at least 165 units. Alternatively, using a CONWIP

level of 250 would provide a small capacity buffer but at the cost of a substantial increase

in cycle time (from around 17 to about 25 days).

However, if we have Saturday available as makeup capacity, the picture looks much

different. To meet the same demand in 6 days requires an output rate of only 48/6 = 8

units per day. Figure 14.8 shows that with the CONWIP level set to 165 units we have a

comfortable capacity cushion if we were to always use the available Saturday.

Thus, we have some choices. Referring back to Figure 14.7, we could set the

CONWIP level to 65 and have short cycle times but also a fairly high probability of

needing the Saturday makeup day. Or we could set CONWIP at 165 and seldom need

the makeup day but have significantly longer cycle times. Finally, we could choose an

“in-between” CONWIP, say 100, which adds 3 days to cycle time but decreases the like-

lihood of needing the makup day. The “correct” answer depends on the cost of running

on Saturday versus the added cycle time and WIP.

Card Deficits

If the WIP level is sufficiently large relative to variability in the line, rigidly adhering

to the CONWIP protocol can work well. However, there are situations where we may

be tempted to violate the constant-WIP release rule. Figure 14.9 illustrates one such

situation, where a nonbottleneck machine downstream from the bottleneck is experienc-

ing an unusually long failure, causing the bottleneck to starve for lack of cards. If the

nonbottleneck machine is substantially faster than the bottleneck, then it will easily catch
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Figure 14.9

CONWIP card deficits in

failure situations.

up once it is repaired. But in the meantime, will lose valuable time at the bottleneck. One

remedy for this situation is to run a card deficit, in which we release some jobs without

CONWIP cards into the line. This will allow the bottleneck to resume work. Once the

failure situation is resolved, we revert to the CONWIP rules and only allow releases with

cards. The jobs without cards will eventually clear the line, and WIP will fall back to

the target level. Another remedy for this type of problem is to pull from the bottleneck

instead of the end of the line. We discuss this in Section 14.4.2.

Throughput Management

As we noted in Chapter 10, pull systems are intrinsically rate driven, in contrast with

push systems, which are date driven. While the steady flow and predictability of pull

systems offer many operational benefits, they present a problem of matching output to

demand.

The Toyota production system dealt with this problem by making use of a takt

time, which defines the time interval between outputs. The takt time is set to achieve a

specified production quota in a 10-hour period. If this quota is missed, a 2-hour makeup

time period is invoked.

A production quota with extra capacity can be used for longer periods than a day,

provided we have a means to track production against the quota during the period. We

describe a methodology called statistical throughput control in Section 14.5.1 that can

be used to track production against a quota and provide early detection of a potential

shortfall. A typical application might use a regular time interval consisting of Monday

through Friday with Saturday available as makeup capacity.

Matching output to demand is not simply a matter of making up shortfalls. It is

also about taking advantage of opportunities to work ahead of schedule when conditions

permit. For example, if the bottleneck is unusually fast or reliable this week, we may be

able to do more work than we had planned. Assuming that the release list has work on

it, it probably makes sense to take advantage of our good fortune—up to a limit. While

it almost certainly makes sense to start some of next week’s jobs, it may not make sense

to start jobs that are not due for months. If the release list for a particular flow is not full

then we may want to establish an earliest start date for each job in the release list.

For instance, when authorized by the CONWIP mechanism, we may release the

next job into the line, provided that it is within n days of its due date. The mechanics

of adding earliest start dates to an electronic CONWIP release list is a simple matter.

However, setting the limit n is an additional CONWIP design question that is closely

related to the concepts of frozen zones and time fences discussed in Chapter 3. Since

jobs within the frozen zone of their due dates are not subject to change, it makes sense to

allow the line to work ahead on them. Jobs beyond the restricted frozen zone (or partially

restricted time fences) are much riskier to work ahead on, since customer requirements

for these jobs may change. Clearly, the choice of an appropriate work-ahead policy is

strongly dependent on the manufacturing environment.
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14.3.3 Tandem CONWIP Lines

Even if our flow is composed of parts with similar routings and in a single level of the

bill of materials, we may not want to run the line as a single CONWIP loop. The reason

is that span-of-control considerations may encourage us to decouple the line into more

manageable parts. One way to do this is to control the line as several tandem CONWIP

loops separated by WIP buffers. The WIP levels in the various loops are held constant at

specified levels. The interloop buffers hold enough WIP to allow the loops to temporarily

run at different speeds without affecting (blocking or starving) one another. This makes

it easier for different managers to be in charge of the different loops. The extra WIP and

cycle time introduced by the buffers also degrade efficiency. This is a trade-off one must

evaluate in light of the particular needs of the manufacturing system.

Figure 14.10 illustrates different CONWIP breakdowns of a single production line,

ranging from treating the entire line as a single CONWIP loop to treating each workstation

as a CONWIP loop. Notice that this last case, with each workstation as a loop, is identical

to one-card kanban. In a sense, basic CONWIP and kanban are extremes in a continuum

of CONWIP-based SFC configurations. The more CONWIP loops we break the line

into, the closer its behavior will be to kanban. As we discussed in Chapter 10, kanban

provides tighter control over the material flow through individual workstations and,

if WIP levels are low enough, can promote communication between adjacent stations.

However, because there are more WIP levels to set in kanban, it tends to be more complex

to implement than basic CONWIP. Therefore, in addition to the efficiency/span-of-

control trade-off to consider in determining how many CONWIP loops to use to control

a line, we should think about the complexity/communication trade-off.

Another control issue that arises in a line controlled with multiple tandem CONWIP

loops concerns when to release cards. The two options are (1) when jobs enter the

interloop buffers or (2) when they leave them. If CONWIP cards remain attached to jobs

in the buffer at the end of a loop, then the sum of the WIP in the line plus the WIP in the

buffer will remain constant. Therefore, if WIP in the buffer reaches the level specified

by the CONWIP limit, then the loop will shut down until the downstream loop removes

WIP from the buffer and releases some cards. As Figure 14.11 illustrates (in loops 1 and

3), this mechanism makes sense for nonbottleneck loops that are fast enough to keep

Basic CONWIP

Multiloop CONWIP

Kanban

Card flowBufferWorkstation

Figure 14.10

Tandem CONWIP loops.



Chapter 14 Shop Floor Control 497

Bottleneck

CONWIP loop Buffer Job

Card flowMaterial flowCONWIP card

Figure 14.11
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CONWIP loops.

pace with the overall line. If we did not link loop 1 to the pace of the line by leaving

cards attached to jobs in the buffer, it could run far ahead of other loops, swamping the

system with WIP.

If one loop is a clearly defined bottleneck, however, we may want to decouple it

from the rest of the line, in order to let it run as fast as it can (i.e., to work ahead). As

loop 2 in Figure 14.11 illustrates, we accomplish this by releasing cards as soon as jobs

exit the end of the line—before they enter the downstream buffer. This will let the loop

run as fast as it can, subject to availability of WIP in the upstream buffer and subject to

a WIP cap on the total amount of inventory that can be in the line at any point in time.

Of course, this means that the WIP in the downstream buffer can float without bound,

but as long as the rest of the line is consistently faster than the bottleneck loop, the faster

portion will catch up and therefore WIP will not grow too large. Of course, in the long

run, all the CONWIP loops will run at the same speed—the speed of the bottleneck

loop.

14.3.4 Shared Resources

While it is certainly simplest from a logistics standpoint if machines are dedicated to

routings—and this is precisely what is sometimes achieved by assigning a set of product

families to manufacturing cells—other considerations sometimes make this impossible.

For instance, if a certain very expensive machine with a large capacity (e.g., heat treat)

is required by more than one product flow, it may not be economical to duplicate the

operation in order to completely isolate the flows. The result will be something like that

illustrated previously in Figure 14.3. If several multiple resources are shared across many

routings, the situation can become quite complex.

Shared resources complicate both control and prediction of CONWIP lines. Control

is complicated at a shared resource because we must choose a job to work on from

multiple incoming routings. If the shared resource is in the interior of a CONWIP loop,

then the natural information to use for making this choice is the “age” of the incoming

jobs. The proper choice is to work on jobs in FISFO (first-in-system, first-out) order,

because the time a job entered the line corresponds to the time of a downstream demand,

as it is a pull system. Hence FISFO will coordinate production with demand.

If it is important to ensure that the shared resource works on jobs imminently needed

downstream, then it may make sense to break the line into separate CONWIP loops be-

fore and after the shared resource, as Figure 14.12 illustrates. This figure shows two

routings, for product families A and B, that share a common resource. Both routings

are treated as CONWIP loops before and after the common resource. This provides the
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Splitting a CONWIP loop

at a shared resource.

common resource with incoming parts in the upstream buffers, and with cards indicating

downstream replenishment needs. Working on jobs whose cards have been waiting

longest (provided there are appropriate materials in the incoming buffer) is a simple

way to force the shared resource to work on parts most likely to be needed soon. If a

machine setup is required to switch between families, then an additional rule about how

many parts of one family to run before switching may be required. This issue can be

addressed by establishing good process batch sizes during production planning, which

should be done before execution.

Shared resources also complicate prediction. While the conveyor model can be

quite accurate for estimating the exit times of jobs from a single CONWIP line, it is not

nearly as accurate for a line with resources shared by other lines. The reason is that the

outputs from one line can strongly depend on what is in the other lines. A simple way

to adapt the conveyor model to approximate this situation is to preallocate capacity. For

example, suppose two CONWIP lines, for product families A and B, share a common

resource, where on average family A utilizes 60 percent of the time of this resource

and family B utilizes 40 percent. Then we can roughly treat the line for family A by

inflating the process times on the shared resource by dividing them by 0.6 to account

for the fact that the resource devotes only 60 percent of its time to family A. Likewise,

we treat the line for family B by dividing processing times on the shared resource

by 0.4.

To illustrate this analysis in a little greater detail, suppose that the shared resource

in Figure 14.12 requires 1 hour per job on routing A and 2 hours per job on routing B.

If 60 percent of the jobs processed by this resource are from routing A and 40 percent

are from B, then the fraction of processing hours (hours spent running product) that are

devoted to A is given by

1 × 0.6

1 × 0.6 + 2 × 0.4
= 0.4286

Therefore, the fraction of processing hours devoted to B is 1 − 0.4286 = 0.5714. The

42.86 percent number is very much like an availability caused by machine outages. In

effect, the resource is available to A only 42.86 percent of the time. Thus, while the rate

of the shared resource would be 1 job per hour if only A parts were run, it is reduced

to 1 × 0.4286 job per hour as a result of the sharing with B. The average processing
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time is the inverse of this rate, or 1/0.4286 = 2.33 hours per job. Similarly, the average

processing of a B job is

2

0.5714
= 3.50 hours per job

Using these inflated processing times for the shared resource, we can now treat

routings A and B as entirely separate CONWIP lines for the purposes of analysis. Of

course, if the volumes on the two routings fluctuate greatly, then the output times will

vary substantially above and below those predicted by the conveyor model. The effect

will be very much the same as having highly variable (e.g., long infrequent, as opposed

to short frequent) outage times on a resource in a CONWIP line. Therefore, if we use

such a model to quote due dates, we have to add a larger inflation factor to compensate

for this extra variability.

14.3.5 Multiple-Product Families

We now begin relaxing the assumptions of basic CONWIP by considering the situation

where the line has multiple-product families. We still assume a simple flow line with

constant routings and no assemblies, but now we allow different product families to have

substantially different processing times and possibly sequence-dependent setups. Under

these conditions, it may no longer be reasonable to fix the WIP level in a CONWIP loop

by holding the number of units in the line constant. The reason is that the total workload

in the line may vary greatly because of the difference in processing times across products.

It may make more sense to adjust the WIP count for capacity.

One plausible measure of the work in the system would be hours of processing time

at the bottleneck machine. Under this approach, if a unit of product A requires 1 hour on

the bottleneck and B requires 2 hours, then when one unit of B departs the line, we allow

two units of product A to enter (provided that it is next on the release list). As long as the

location of the bottleneck is relatively insensitive to product mix, this mechanism will

tend to maintain a stable workload at the bottleneck. If the bottleneck changes with mix

(i.e., different products have different machines as their slowest resource), then comput-

ing a capacity-adjusted WIP level is more difficult. We could use total hours of processing

time on all machines. However, we will probably need a higher WIP level than would be

required for a system with a stable bottleneck, to compensate for the variability caused

by the moving bottleneck. Furthermore, if the total processing times of different products

do not vary much, this approach will not be much different from the simpler approach

of counting WIP in physical units. Of course, if we have characteristic curves (such as

the one in Figure 14.7) for the current product mix, we need only count WIP in units.

If we count WIP in capacity-adjusted standard units, it becomes more difficult to

control the WIP level with a simple mechanism like cards. Instead of trying to attach

multiple cards to jobs to reflect their differing complexity, it probably makes sense to

use an electronic system for monitoring WIP level. Figure 14.6 illustrates an electronic

CONWIP controller, which consists of a WIP tracking system (e.g., a manufacturing

execution system or MES) with counters at the front and end of the line. The MES

monitors the adjusted WIP level and indicates when it falls below the target level (e.g.,

by changing the status of the next job on the CONWIP release list). When this happens,

the operator of the first workstation selects the next job on the release list for which the

necessary materials are available (using the display of due date, part number, and quantity

to be released as well as any other relevant information such as predicted completion
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Figure 14.13

Output of a CONWIP

controller.

date, etc., as illustrated in Figure 14.13) and releases it into the line. This release is

recorded by keyboard or optical scanner and is added to the capacity-adjusted WIP

level. At the end of the line, job outputs are also recorded and subtracted from the WIP

level. Exceptions, such as fallout due to yield loss, may also need to be recorded on one

of the terminals.

14.3.6 CONWIP Assembly Lines

We now further extend the CONWIP concept to systems with assembly operations.

Figure 14.14 illustrates the simple situation in which an assembly operation is fed by

two fabrication lines. Each assembly requires one subcomponent from family A and

one subcomponent from family B. The assembly operation cannot begin until both

subcomponents are available. The two fabrication lines are controlled as CONWIP loops

with fixed, but not necessarily identical, WIP levels. Each time an assembly operation is

completed, a signal (e.g., CONWIP card or electronic signal) triggers a new release in

each fabrication line. As long as a FISFO protocol is maintained in the fabrication lines,

the final assembly sequence will be the same as the release sequence.

Notice that assembly completions need not trigger releases of subcomponents des-

tined for the same assembly. If line A has a WIP level of 9 jobs and line B has a WIP

level of 18 jobs, then the release authorized by the next completion into line A will be

used 9 assemblies from now, while the release into line B will be used 18 assemblies

from now. If the total process time for line B is longer than that for line A, this type of

imbalance makes sense. In general, the longer line will require a larger WIP level (Little’s

law again). Determining precise WIP levels is a bit trickier. Fortunately, performance

1

Assembly

2 1 4
Processing times
for line A (hours)

Processing times
for line B (hours) 3 3 2 3

Buffer Card flow Material flow

Figure 14.14

CONWIP control of an

assembly process.
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is robust in WIP level, provided that the lines have sufficient WIP to prevent excessive

starvation of the bottleneck.

To illustrate a mechanism for setting ballpark WIP levels in an assembly system,

consider the data given in Figure 14.14. Notice that the systemwide bottleneck is machine

3 of line A. Hence, the bottleneck rate is rb = 0.25 job per hour. If we look at the two

lines, including assembly, as separate fabrication lines, we can use the critical WIP

formula from Chapter 7 on each line. This shows that the WIP levels under ideal (i.e.,

perfectly deterministic) conditions need to be

W A
0 = rbT A

0 = 1
4
(2 + 1 + 4 + 1) = 8

4
= 2

W B
0 = rbT B

0 = 1
4
(3 + 3 + 2 + 3 + 1) = 12

4
= 3

to achieve full throughput. Of course, in reality, there will be variability in the line, so

the WIP levels will need to be larger than this. How much larger depends on how much

variability there is in the line.

For a line corresponding to the practical worst case discussed in Chapter 7, we

can compute the WIP level required to achieve throughput equal to 90 percent of

the bottleneck rate by setting the throughput expression equal to 0.9rb and solving for

the WIP level w :

w

W0 + w − 1
rb = 0.9rb

w

W0 + w − 1
= 0.9

w = 0.9(W0 + w − 1)

w = 9W0 − 9 = 9(W0 − 1)

Inflating W A
0 and W B

0 according to this formula yields

w A = 9(2 − 1) = 9

w B = 9(3 − 1) = 18

If we want to be more precise, we would use characteristic curves for each of the lines

and set the CONWIP level accordingly. This must be done either by performing a number

of Monte Carlo simulations or using a tool like the Flow Optimizer.

14.4 Other Pull Mechanisms

We look upon CONWIP as the first option to be considered as an SFC platform. It

is simple, predictable, and robust. Therefore, unless the manufacturing environment is

such that it is inapplicable, or another approach is likely to produce substantially better

performance, CONWIP is a good, safe choice. By using the flexibility we discussed

above to split physical lines into multiple CONWIP loops, we can tailor CONWIP to

the needs of a wide variety of environments. But there are situations in which a suitable

SFC module, while still a pull system, is not what we would term CONWIP. We discuss

some possibilities below.
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14.4.1 Kanban

As we noted earlier, kanban can be viewed as tandem CONWIP loops carried to the

extreme of having only a single machine in each loop. So from a CONWIP enthusiast’s

perspective, kanban is just a special case of CONWIP. Moreover, Ohno’s The Toyota
Production System contains a diagram of a kanban system that looks very much like a

set of CONWIP loops feeding an assembly line. Therefore, the developers of kanban

may well have considered CONWIP a form of kanban. As far as we are concerned, this

distinction is a matter of semantics; kanban and CONWIP are obviously closely related.

The important question concerns when to use kanban (single-station loops) instead of

CONWIP (multistation loops).

Kanban offers two potential advantages over CONWIP:

1. By causing each station to pull from the upstream station, kanban may force

better interstation communication. Although there may be other ways to

promote the same communication, kanban makes it almost automatic.

2. By breaking the line at every station, kanban naturally provides a mechanism

like that illustrated in Figure 14.12, for sharing a resource among different

routings.

However, kanban also has the following potential disadvantages:

1. It is more complex than CONWIP, requiring specification of many more WIP

levels. (The number of WIP levels to be set is roughly the product of the

number of parts times the number of stations in the line.)

2. It induces a tighter pacing of the line, giving operators less flexibility for

working ahead and placing considerable pressure on them to replenish buffers

quickly.

3. The use of product-specific cards means that at least one standard container of

each part number must be maintained at each station, to allow the downstream

stations to pull what they need. This makes it impractical for systems with

numerous part numbers.

4. It cannot accommodate a changing product mix (unless a great deal of WIP is

loaded into the system) because the product-specific card counts rigidly govern

the mix of WIP in the system.

5. It is impractical for small, infrequent jobs (“onesies” and “twosies”). Either

WIP would have to be left unused on the floor for long spans of time (i.e.,

between jobs), or the system would be unresponsive to such jobs because

authorizations signaled by the kanban cards would have to propagate all the

way to the beginning of the line to trigger new releases of WIP.

There is little one can do to alleviate the first two disadvantages; complexity and

pressure are the price one pays for the additional local control of kanban. However,

the remaining disadvantages are a function of product-specific cards and therefore can

be mitigated by using routing-specific cards and a release list similar to that used by

CONWIP. Figure 14.15 shows a kanban system with different-color cards for different

routings. When a standard container is removed from the outbound stock point, the

card authorizes production to replace it. The identity of the part that will be produced

is determined by the release list, which must be established by the sequencing and

scheduling module. If a part does not appear on the release list for an extended period,

then it will not be present in the line. The modification of route-specific (as opposed to
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Kanban with

route-specific cards and a

release list.

part-specific) cards enables this approach to kanban to be used in systems with many

part numbers.

On the basis of this discussion, it would appear that kanban is best suited to systems

with many routings that share resources, especially if the product mix is fairly small and

stable. If we are going to break the line into many CONWIP loops to make control of the

shared resources easier, then moving all the way to kanban will not significantly change

performance. Moreover, if a new routing converts a previously unshared resource to a

shared resource, then a kanban configuration will already provide the desired break in

the line.

On the other hand, if the various routings have few shared resources and new products

tend to follow established routings, there would seem to be little incentive to incur

the additional complexity of kanban. The system will probably function more simply

and effectively under CONWIP, possibly broken into separate loops for span-of-control

reasons, to give special treatment to a shared resource, or to feed buffers at assembly

points.

14.4.2 Pull-from-the-Bottleneck Methods

Two problems that can arise with CONWIP (or kanban) in certain environments are the

following:

1. Bottleneck starvation due to downstream machine failures. As we illustrated in

Figure 14.9, we may want to allow releases beyond those authorized by cards to

compensate for this situation.

2. Premature releases due to the requirement that the WIP level be held constant.

Even if a part will not be needed for months, a CONWIP system may trigger its

release because WIP in the loop has fallen below its target level. This can

reduce flexibility for no good reason (e.g., engineering changes or changes in

customer needs are much more difficult to accommodate once a job has been

released to the floor).

We can modify CONWIP to address these situations. The basic idea is to devise a

mechanism for enabling the bottleneck to work ahead, but at the same time provide a

means of preventing it from working too far ahead.
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Figure 14.16

A pull-from-bottleneck

system

We begin with the simplest version of the pull-from-bottleneck (PFB) strategy. Fig-

ure 14.16 shows such a system for a single line. This mechanism differs from CONWIP

in that the WIP level is held constant in the machines up to and including the bottleneck,

but is allowed to float freely past the bottleneck. Since machines downstream from the

bottleneck are faster on average than the bottleneck, WIP will not usually build up in

this portion of the line. However, if a failure in one of these machines causes a tempo-

rary buildup of WIP, it will not cause the bottleneck to shut down, as can occur under

CONWIP if card deficits are not used. Therefore, a PFB approach may make sense as

an alternative to card deficits in a line with a stable bottleneck. If the bottleneck shifts

depending on product mix, then it is not clear where the pulling point should be located,

and therefore one may be just as well off pulling from the end of the line (i.e., using

regular CONWIP), possibly with a card deficit policy.

The simple PFB approach of Figure 14.16 can mitigate the bottleneck starvation

problem associated with CONWIP, but does not address the issue of premature releases.

While this is not a common problem in lines operating close to capacity, it is a major

concern in low utilization routings. In plants with many routings (e.g., a plant tending

toward a “job shop” configuration), some routings may not be used for substantial periods

of time. For instance, we have seen plants with 5,000 distinct routings, only a relative

few of which contained WIP at any given time. Clearly, under these conditions we do

not want to maintain a constant WIP level along the routing, since this would result in

releasing jobs that are not needed until far in the future. A simple way to prevent this is

to establish an “earliest start date” for jobs in the release list as discussed above.

14.4.3 Shop Floor Control and Scheduling

This last point about holding parts out until they are within a window of their due date

makes it clear that there is potentially a strong link between the shop floor control module

and the sequencing and scheduling module. If we have generated a schedule by using the

sequencing and scheduling module, then we can control individual routings by releasing

jobs according to this schedule, subject to the WIP cap. That is, jobs will be released

whenever the (capacity-adjusted) WIP along the routing is below the target level and

a job is within a specified time window of its scheduled release date. If the schedule

contains enough work to keep the routing fully loaded, this approach is equivalent to

CONWIP. If there are gaps in the schedule for products along a routing, then the WIP

level along that routing may fall below the target level, or even to zero.

A variety of scheduling systems could be used in conjunction with a WIP cap

mechanism in this manner. We will discuss scheduling approaches based on the conveyor

model that are particularly well suited to this purpose in Chapter 15. But one could also

use something less ideal, such as MRP. The planned order releases generated by MRP

represent a schedule. Instead of following these releases independently of what is going

on in the factory, one could block releases along routings whose WIP levels are too high,

and move up releases (up to a specified amount) along routings whose WIP levels are

too low. The fixed-lead-time assumption of MRP will still tend to make the schedule
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inaccurate. But by forcing compliance with a WIP cap, this SFC approach will at least

prevent the dreaded WIP explosion. The benefits of capping WIP in an MRP system were

pointed out long ago in the MRP literature (Wight 1970), but the controls and feedback

were reversed (i.e., MRP controls releases and would measure WIP whereas CONWIP

controls WIP and measures completions).

14.5 Production Tracking

As we mentioned, the SFC module is the point of contact with the real-time evolution of

the plant. Therefore, it is the natural place to monitor plant behavior. We are interested

in both the short term, where the concern is making schedule, and the long term, where

the concern is collecting accurate data for planning purposes. Although individual plants

may have a wide range of specific data requirements, we will restrict our attention to two

generic issues: monitoring progress toward meeting our schedule in the short term, and

tracking key capacity parameters for use in other planning modules in the long term.

14.5.1 Statistical Throughput Control

In the short term, the primary question concerns whether we are on track to make our

scheduled commitments. If the line is running as a CONWIP loop with a specified pro-

duction quota, then the question concerns whether we will make the quota by the end

of the period (e.g., by the end of the day or week). If we are following a schedule for

the routing, then this depends on whether we will be on schedule at the next overtime

opportunity. If there is a good chance that we will be behind schedule, we may want

to prepare for overtime (notify workers). Alternatively, if the SFC module can provide

early enough warning that we are seriously behind schedule, we may be able to reallo-

cate resources or take other corrective action to remedy the problem. Moreover, simply

providing a visual pacing mechanism can often increase throughput and keep the line on

schedule. We have seen as much as a 25 percent increase in throughput accomplished

by doing nothing more than implementing the methods described below to provide a

“pacer” for the line.

We can use techniques similar to those used in statistical process control (SPC) to

answer the basic short-term production tracking questions. Because of the analogy with

SPC, we refer to this function of the SFC module as statistical throughput control

(STC). To see how STC works, we consider production in a CONWIP loop during a

single production period. Common examples of periods are (1) an 8-hour shift (with a

4-hour preventive maintenance period available for overtime), (2) first and second shifts

(with third shift available for overtime), and (3) regular time on Monday through Friday

(with Saturday and Sunday available for overtime).

We denote the beginning of the period as time 0 and the end of the regular time period

as time R. At any intermediate point in time t, where 0 ≤ t ≤ R, we must compare two

pieces of information:

nt = actual cumulative production by line, possibly in capacity-adjusted

units, in time interval [0, t]

St = scheduled cumulative production for line for time interval [0, t]

First, note that since St represents cumulative scheduled production, it is always

increasing in t . However, if we are measuring actual production at a point in the routing

prior to an inspection point, at which yield fallout is possible, then nt could potentially



506 Part III Principles in Practice

Hours

P
ro

d
u

ct
io

n
 (

u
n

it
s)

0 5 10 15 20

2,000

0

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Quota

Schedule

Figure 14.17

Scheduled cumulative

production functions St .

decrease. Second, note that if the line uses a detailed schedule, St may increase unevenly.

However, if it uses a periodic production quota, without a detailed schedule, so that the

target is to complete Q units of production by time R, then we assume that St is linear

(i.e., constant) on the interval, so that

St = Q
t

R
and hence SR = Q. Figure 14.17 illustrates two possibilities for St .

Ideally, we would like actual production nt to equal scheduled production St at every

point in time between 0 and R. Of course, because of random variations in the plant,

this will virtually never happen. Therefore, we are interested in characterizing how far

ahead of or behind schedule we are. We could plot nt − St as a function of time t , to

show this in units of production. When nt − St > 0, we are ahead of schedule; when

nt − St < 0, we are behind it. However, the difference between nt and St does not give

direct information on how difficult it will be to make up a shortage or how much cushion

is provided by an overage. Therefore, a more illuminating piece of information is the

probability of being on schedule by the end of the regular time period, given how far we

are ahead or behind now.

In Appendix 14A we derive an expression for this probability under the assumption

that we can approximate the distribution of production during any interval of time by

using the normal distribution. From a practical implementation standpoint, however, it

is convenient to use the formula from Appendix 14A to precompute the overage levels

(that is, nt − St ) that cause the probability of missing the quota to be any specified level

α. If we know the mean and standard deviation of production during regular time (in

capacity-adjusted units), denoted by μ and σ , this can be accomplished as follows.

Define x to be

x = − (μ − Q)(R − t)

R
− zασ

√

R − t

R
(14.1)

where zα is found from a standard normal table such that �(zα) = α. We show in

Appendix 14A that if the overage level at time t is equal to x (that is, nt − St = x), then

the probability of missing the quota is exactly α. If nt − St > (<) x, then the probability

of missing quota is less than (greater than) α.

We can display this information in simple graphical form. Figure 14.18 plots the x
values for specific probabilities of missing the quota. We have chosen to display these
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An STC chart when quota

is equal to capacity.

curves for probabilities of 5, 25, 50, 75, and 95 percent. In this example we are assuming

a production quota, where regular time consists of two shifts, for a total of 16 hours,

and historical data show that average production during 16 hours is 15,000 units and

σ = 2,000 units. Quota is set equal to average capacity. That is, St = Qt/R, where Q =
μ = 15,000. The curves in Figure 14.18 give an at-a-glance indication of how we stand

relative to making the quota. For instance, if the overage level at time t (that is, nt − St )

lies exactly on the 75 percent curve, then the probability of missing the quota is 75 percent.

On the basis of this information, the line manager may take action (e.g., shift workers) to

speed things up. If nt − St rises above the 50 percent mark, this indicates that the action

was successful. If it falls, say, below the 95 percent mark at time t = 12, then making

the quota is getting increasingly improbable and perhaps it is time to announce overtime.

Notice that in Figure 14.18 the critical value (that is, x) for α = 0.5 is always zero.

The reason for this is that since the quota is set exactly equal to mean production, we

always have a 50–50 chance of making it when we are exactly on time. The other critical

values follow curved lines. For instance, the curve for α = 0.25 indicates that we must

be quite far ahead of scheduled production early in the regular time period to have only

a 25 percent chance of missing the quota, but we must be only a little ahead of schedule

near the end to have this same chance of missing the quota. The reason, of course, is that

near the end of the period we do not have much of the quota remaining, and therefore

less of a cushion is required to improve our chances of making it.

The Chapter 13 discussion on setting production quotas in pull systems pointed out

that it may well be economically attractive to set the quota below mean regular time.

When this is the case, we can still use equation (14.1) to precompute the critical values

for various probabilities of missing the quota.

While plots like Figure 14.18 provide valuable feedback, we have found that many

people working on the line prefer a cumulative plot of actual production versus scheduled

production to one that shows the “overage.” Moreover, production people are accustomed

to using control charts with control limits set at ±3 standard deviations. Since we are

concerned only with missing production quotas, it makes sense to display the critical

values in an alternative form (as shown in Figure 14.19) with three cumulative plots

displaying: (1) actual production (triangles) and anticipated future production (circles),

(2) the schedule (dashed line), and (3) a “three sigma below” plot (solid line). The

example illustrated in Figure 14.19 shows a case where the average capacity exceeds

demand. Thus, if the actual is above the schedule, all is well. If the actual is between the

schedule and the three sigma below, then we need to speed up if we are going to make
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An STC chart when the

quota is less than capacity.

the quota. If actual is below the three sigma line, some significant event has occurred

and there is almost no chance (0.00135 probability) of making the production quota.

STC charts like those illustrated in Figures 14.18 and 14.19 can be generated by using

equation (14.1) and data on actual production (that is, nt ). The cumulative plot can be

easily computed using the relation x = nt − St .
6 The monitors displaying the CONWIP

controller (see Figure 14.6) are a natural place to display these charts for CONWIP lines.

STC charts can also be maintained and displayed at any critical resource in the plant.

STC charts can be useful even if nt is not tracked in real time. For instance, if regular

time consists of Monday through Friday and we only get readings on actual throughput

at the end of each shift, we could update the STC chart to indicate our chances for

achieving the quota.

Finally, STC charts can be particularly useful at a critical resource that is shared

by more than one routing. For instance, a system with two different circuit board lines

running through a copper plating process could maintain separate STC charts for the

two routings. Line managers could make decisions about which routing to work on from

information about the quota status of the two routings. If line 1 is safely ahead of the

quota, while line 2 is behind, then it makes sense to work on line 2 if incoming parts are

available. Of course, we may need to use the information from the STC charts judiciously,

to avoid frequent switches between lines if switching requires a significant setup.

14.5.2 Long-Range Capacity Tracking

In addition to providing short-term information to workers and managers, a production

tracking system should provide input to other planning functions, such as aggregate

and workforce planning and quota setting. The key data needed by these functions are

the mean and standard deviation of regular time production of the plant in standard

units of work. Since we are continually monitoring output via the SFC module, this is a

reasonable place to collect this information.

6Note that this may yield a three sigma below limit that is less than zero, in which case we set it equal to

zero.
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In the following discussion, we assume that we can observe directly the amount of

work completed during regular time. In a rigid quota system, in which work is stopped

when the quota is achieved, even if this happens before the end of regular time, this

procedure should not be used, since it will underestimate true regular time capacity.

Instead, data should be collected on the mean and standard deviation of the time-to-make
quota, which could be shorter or longer than the regular time period, and convert these

to the mean and standard deviation of regular time production. The formulas for making

this conversion are given in Spearman et al. (1989).

Since actual production during regular time is apt to fluctuate up and down due

to random disturbances, it makes sense to smooth past data to produce estimates of

the capacity parameters that are not inordinately sensitive to noise. The technique of

exponential smoothing, described in Chapter 13 for forecasting, is well suited to this task.

We can use this method to take past observations of output to predict future capacity.

To track mean capacity it makes sense to use “exponential smoothing with a linear

trend” (see Appendix 13A). This gives us a smoothed track of not only the production

but also the “trend” of the production. If the trend is increasing it means that capacity is

increasing.

To track the variance of production we can use simple exponential smoothing (i.e.,

without a trend). The quantity to smooth is given by the definition of variance,

σ 2 = E[(Xt − μ)2]

where Xt is the actual production and μ is the mean production. We estimate the mean

using the value of the smoothed mean, μ̂t , and compute the quantity,

σ̂ 2
t = (Xt − μ̂t )

2

We then smooth σ̂ 2
t using simple exponential smoothing. Finally, we get the smoothed

standard deviation by taking the square root of the smoothed variance. Figures 14.20

and 14.21 present typical plots of smoothed mean and standard deviation of capacity.

Note that mean capacity is trending up, while standard deviation of capacity is trending

down. This may indicate that improvement efforts are having a positive effect on system

capabilities. If the trends were in the opposite direction, it would indicate a problem that

management would clearly want to diagnose and correct.
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14.6 Conclusions

In this chapter, we have spent a good deal of time discussing the shop floor control (SFC)

module of a production planning and control (PPC) system. We have stressed that a good

SFC module can do a great deal more than simply govern the movement of material into

and through the factory. As the lowest-level point of contact with the manufacturing

process, SFC plays an important role in shaping the management problems that must

be faced. A well-designed SFC module will establish a predictable, robust system with

controls whose complexity is appropriate for the system’s needs.

Because manufacturing systems are different, a uniform SFC module for all appli-

cations is impractical, if not impossible. A module that is sufficiently general to handle

a broad range of situations is apt to be cumbersome for simple systems and ill suited for

specific complex systems. More than any other module in the PPC hierarchy, the SFC

module is a candidate for customization. It may make sense to make use of commercial

bar coding, optical scanning, local area networks, statistical process control, and other

technologies as components of an SFC module. However, there is no substitute for care-

ful integration done with the capabilities and needs of the system in mind. It is our hope

that the manufacturing professionals reading this book will provide such integration,

using the basics, intuition, and synthesis skills they have acquired here and elsewhere.

Since we do not believe it is possible to provide a cookbook scheme for devising

a suitable SFC module, we have taken the approach of starting with simple systems,

highlighting key issues, and extending our approach to various more complex issues.

Our basic scheme is to start with a simple set of CONWIP lines as the incumbent and

ask why such a scheme would not work. If it does work, as we believe it can in relatively

complicated flow shops, then this is the simplest, most robust solution. If not, then more

complex schemes, such as that of pull from bottleneck (PFB), may be necessary. We

hope that the variations on CONWIP we have offered are sufficient to spur the reader to

think creatively of options for specific situations beyond those discussed here.

One last issue we have emphasized is that feedback is an essential feature of an

effective production planning and control system. Unfortunately, many PPC systems

evolve in a distributed fashion, with different groups responsible for different facets

of the planning process. The result is that inconsistent data are used, communication
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between decision makers breaks down, and factionalism and finger pointing, instead of

cooperation and coordination, become the standard response to problems. Furthermore,

without a feedback mechanism, overly optimistic data (e.g., unrealistically high estimates

of capacity) can persist in planning systems, causing them to be untrustworthy at best and

downright humorous at worst. Statistical throughput control is one explicit mechanism

for forcing needed feedback with regard to capacity data. Similar approaches can be

devised to promote feedback on other key data, such as process yields, rework frequency,

and learning curves for new products. The key is for management to be sensitive to the

potential for inconsistency and to strive to make feedback systemic to the PPC hierarchy.

Furthermore, to be effective, feedback mechanisms must be used in a spirit of problem

solving, not one of blame fixing.

Although the SFC module performs some of the most lowly and mundane tasks in a

manufacturing plant, it can play a critical role in the overall effectiveness of the system.

A well-designed SFC module establishes a predictable environment upon which to build

the rest of the planning hierarchy. Appropriate feedback mechanisms can collect useful

data for such planning and can promote an environment of ongoing improvement. To

recall our quote from the beginning of this chapter,

Even a journey of one thousand li begins with a single step. Lao Tzu

The SFC module is not only the first step toward an effective production planning and

control system, it is a very important step indeed.
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Statistical Throughput Control

The basic quantity needed to address several short-term production tracking questions is the

probability of making the quota by the end of regular time production, given that we know how

much has been produced thus far. Since output from each line must be recorded in order to maintain

a constant WIP level in the line, a CONWIP line will have the requisite data on hand to make this

calculation.

To do this, we define the length of regular time production as R. We assume that production

during this time, denoted by NR, is normally distributed, with mean μ and standard deviation

σ . We let Nt represent production, in standard units, during [0, t], where t ≤ R. We model Nt

as continuous and normally distributed with mean μt/R and variance σ 2t/R. In general, the

assumption that production is normal will often be good for all but small values of t . The assumption

that the mean and variance of Nt are as given here is equivalent to assuming that production during

nonoverlapping intervals is independent. Again, this is probably a good assumption except for

very short intervals.

We are interested primarily in the process Nt − St , where St is the cumulative scheduled

production up to time t. If we are using a periodic production quota, then St = Qt/R. The quantity

Nt − St represents the overage, or amount by which we are ahead of schedule, at time t . If this

quantity is positive, we are ahead; if negative, we are behind. In an ideal system with constant

production rates, this quantity would always be zero. In a real system, it will fluctuate, becoming

positive and/or negative.

From our assumptions, it follows that Nt − Qt/R is normally distributed with mean

(μ − Q)t/R and variance σ 2t/R. Likewise, NR−t is normally distributed, with mean μ(R − t)/R
and variance σ 2(R − t)/R. Hence, if at time t, Nt = nt , where nt − Qt/R = x (we are x units

ahead of schedule), then we will miss the quota by time R only if NR−t < Q − nt . Thus, the

probability of missing the quota by time R given a current overage of x is given by

P(NR−t ≤ Q − nt ) = P

(

NR−t ≤ Q − x − Qt

R

)

= P

(

NR−t ≤ Q(R − t)

R
− x

)

= �

[

(Q − μ)(R − t)/R − x

σ
√

(R − t)/R

]

where �(·) represents the standard normal distribution.

From a practical implementation standpoint, it is more convenient to precompute the overage

levels that cause the probability of missing the quota to be any specified level α. These can be

computed as follows:

�

[

(Q − μ)(R − t)/R − x

σ
√

(R − t)/R

]

= α

which yields

x = − (μ − Q)(R − t)

R
− zασ

√

R − t

R

where zα is chosen such that �(zα) = α. This x is the overage at time t that results in a probability

of missing the quota exactly equal to α, and is equation (14.1), upon which our STC charts are

based.
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Study Questions

1. What is the motivation for limiting the span of control of a manager to a specified number of

subordinates or manufacturing processes? What problems might this cause in coordinating

the plant?

2. We have repeatedly mentioned that throughput is an increasing function of WIP. Therefore,

we could conceivably vary the WIP level as a way of matching production to the demand

rate. Why might this be a poor strategy in practice?

3. What factors might make kanban inappropriate for controlling material flow through a job

shop, that is, a system with many, possibly changing, routings with fluctuating volumes?

4. Why might we want to violate the WIP cap imposed by CONWIP and run a card deficit

when a machine downstream from the bottleneck fails? If we allow this, what additional

discipline might we want to impose to prevent WIP explosions?

5. What are the advantages of breaking a long production line into tandem CONWIP loops?

What are the disadvantages?

6. For each of the following situations, indicate whether you would be inclined to use

CONWIP (C), kanban (K), PFB (P), or an individual system (I) for shop floor control.

(a) A flow line with a single-product family.

(b) A paced assembly line fed from inventory storage.

(c) A steel mill where casters feed hot strip mills (with slab storage in between), which feed

cold rolling mills (with coil storage in between).

(d) A plant with several routings sharing some resources with significant setup times, and

all routings are steadily loaded over time.

(e) A plant with many routings sharing some resources but where some routings are

sporadically used.

7. What is meant by statistical throughput control, and how does it differ from statistical

process control? Could you use SPC tools (i.e., control charts) for throughput tracking?

8. Why is the STC chart in Figure 14.18 symmetric? What would it look like if capacity were

greater than the quota? If it were less? What does this indicate about the effect of setting

production quotas at or near average capacity?

9. Why might it make sense to use exponential smoothing with a linear trend to track mean

capacity of a line? How could we judge whether exponential smoothing without a linear

trend might work as well or better?

10. What uses are there for tracking the standard deviation of periodic output from a production

line?

Problems

1. A circuit board manufacturing line contains an expose operation consisting of five parallel

machines inside a clean room. Because of limited space, there is only room for five carts of

WIP (boards) to buffer expose against upstream variability. Expose is fed by a coater line,

which consists of a conveyor that loads boards at a rate of 3 per minute and requires roughly

1 hour to traverse (i.e., a job of 60 boards will require 20 minutes to load plus 1 hour for the

last loaded board to arrive in the clean room at expose). Expose machines take roughly 2 hours

to process jobs of 60 boards each. Current policy is that whenever the WIP inside the clean

room reaches five jobs (in addition to the five jobs being worked on at the expose machines),

the coater line is shut down for 3 hours. Both expose and the coater are subject to variability

from machine failures, materials shortages, operator unavailability, and so forth. When all this

is factored into a capacity analysis, expose seems to be the bottleneck of the entire line.

(a) What problem might the current policy for controlling the coater present?
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Pull-from-bottleneck

production system.

(b) What alternative would you suggest? Remember that expose is isolated from the rest of

the line by virtue of being in a clean room and that because of this, the expose operators

cannot see the beginning of the coater; nor can the coater loader easily see what is going

on inside the clean room.

(c) How would your recommendation change if the capacity of expose were increased (say,

by using floating labor to work through lunches) so that it was no longer the long-term

bottleneck?

2. Consider a five-station line that processes two products, A and B. Station 3 is the bottleneck

for both products. However, product A requires 1 hour per unit at the bottleneck, while

product B requires 1

2
hour. A modified CONWIP control policy is used under which the

complexity-adjusted WIP is measured as the number of hours of work at the bottleneck.

Hence, one unit of A counts as one unit of complexity-adjusted WIP, while one unit of B

counts as one-half unit of complexity-adjusted WIP. The policy is to release the next job in

the sequence whenever the complexity-adjusted WIP level falls to 10 or less.

(a) Suppose the release sequence alternates between product A and B (that is,

A-B-A-B-A-B- · · ·). What will happen to the numbers of type A and type B jobs in the

system over time?

(b) Suppose the release sequence alternates between 10 units of A and 10 units of B. Now

what happens to the numbers of type A and type B jobs in the system over time?

(c) The lean literature advocates a sequence like the one in (a). Why? Why might some lines

need to make use of a sequence like the one in (b)?

3. Consider the two-product system illustrated in Figure 14.22. Product A and component 1 of

product B pass through the bottleneck operation. Components 1 and 2 of product B are

assembled at the assembly operation. Type A jobs require 1 hour of processing at the

bottleneck, while type B jobs require 1 1

2
hours. The lead time for type A jobs to reach the

bottleneck from their release point is 2 hours. Component 1 of type B jobs takes 4 1

2
hours to

react the bottleneck. The sequence of the next eight jobs to be processed at the bottleneck is as

follows:

Job index 1 2 3 4 5 6 7 8

Job type A A B B B B A B

Jobs 1 through 6 have already been released but have not yet been completed at the

bottleneck. Suppose that the system is controlled using the pull-from-the-bottleneck method

described in Section 14.4.2, where the planned time at the bottleneck is L = 4 hours.

(a) When should job 7 be released (i.e., now or after the completion of that job currently in

the system)?

(b) When should job 8 be released (i.e., now or after the completion of that job currently in

the system)? Are jobs necessarily released in the order they will be processed at the

bottleneck? Why or why not?

(c) If we only check to see whether new jobs should be released when jobs are completed at

the bottleneck, will jobs wait at the bottleneck more than, less than, or equal to the target

time L? (Hint: What is the expected waiting time of job 8 at the bottleneck?) Could these
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be cases in which we would want to update the current workload at the bottleneck more

frequently than at completion times of jobs?

(d) Suppose that the lead time for component 2 of product B to reach assembly is 1 hour. If

we want component 2 to wait for 1 1

2
hours on average at assembly, when should it be

released relative to its corresponding component 1?

4. Consider a line that builds toasters and runs 5 days per week, 1 shift per day (or 40 hours per

week). A periodic quota of 2,500 toasters has been set. If this quota is not met by the end of

work on Friday, overtime on the weekend is run to make up the difference. Historical data

indicate that the capacity of the line is 2,800 toasters per week, with a standard deviation of

300 toasters.

(a) Suppose at hour 20 we have completed 1,000 toasters. Using the STC model, estimate the

probability that the line will be able to make the quota by the end of the week.

(b) How many toasters must be completed by hour 20 to ensure a probability of 0.9 of

making the quota?

(c) If the weekly quota is increased to 2,800 toasters per week, how does the answer to (b)

change?

5. Output from the assembly line of a farm machinery manufacturer that produces combines has

been as follows for the past 20 weeks:

Week 1 2 3 4 5 6 7 8 9 10

Output 22 21 24 30 25 25 33 40 36 39

Week 11 12 13 14 15 16 17 18 19 20

Output 50 55 44 48 55 47 61 58 55 60

(a) Use exponential smoothing with a linear trend and smoothing constants α = 0.4 and

β = 0.2 to track weekly output for weeks 2 to 20. Does there appear to be a positive trend

to the data?

(b) Using mean square deviation (MSD) as your accuracy measure, can you find values of α

and β that fit these data better than those given in (a)?

(c) Use exponential smoothing (without a linear trend) and a smoothing constant γ = 0.2 to

track variance of weekly output for weeks 2 to 20. Does the variance seem to be

increasing, decreasing, or constant?



C H A P T E R

15 Production Scheduling

Let all things be done decently and in order.
I Corinthians

15.1 Goals of Production Scheduling

Virtually all manufacturing managers want on-time delivery, minimal work in process,

short customer lead times, and maximum utilization of resources. Unfortunately, these

goals conflict. For example, it is much easier to finish jobs on time if resource utilization is

low. Similarly, customer lead times can be made essentially zero if an enormous inventory

is maintained. The goal of production scheduling is to strike a profitable balance among

these conflicting objectives.

In this chapter we discuss various approaches to the scheduling problem. We begin

with the standard measures used in scheduling and a review of traditional scheduling

approaches. We then discuss why scheduling problems are so hard to solve and what

implications this has for real-world systems. Next, we develop practical scheduling

approaches, first for the bottleneck resource and then for the entire plant. Finally, we

discuss how to interface scheduling—which is push in concept—with a pull environment

such as CONWIP.

15.1.1 Meeting Due Dates

A basic goal of production scheduling is to meet due dates. These typically come from

one of two sources: directly from the customer or in the form of material requirements

for other production processes.

In a make-to-order environment, customer due dates drive all other due dates. As

we saw in Chapter 3, a set of customer requirements can be exploded according to the

associated bills of material to generate the requirements for all lower-level parts and

components.

In a make-to-stock environment there are no customer due dates, since customer

orders are expected to be filled immediately upon demand. These orders cause stock levels

to decline until they reach a reorder point that triggers a demand on the manufacturing

system. Demands generated in this fashion are just as real as actual customer orders

516
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since, if they are not met, customer demands will eventually go unfilled. These stock

replenishment demands are exploded into demands for lower-level components in the

same fashion as customer demands.

Several measures can be used to gauge due date performance, including the

following:

Service level (also known as simply service), typically used in make-to-order

systems, is the fraction of orders filled on or before their due dates. Equivalently, it

is the fraction of jobs whose cycle time is less than or equal to the planned lead time.

Fill rate is the make-to-stock equivalent of service level and is defined as the

fraction of demands that are met from inventory, that is, without a backorder delay.

Lateness is the difference between the order due date and the completion date. If

we define d j as the due date and c j as the completion time of job j , the lateness of

job j is given by L j = c j − d j . Notice that lateness can be positive (indicating a

late job) or negative (indicating an early job). Consequently, small average lateness

has little meaning. It could mean that all jobs finished near their due dates, which

is good; or it could mean that for every job that was very late there was one that

was very early, which is bad. For lateness to be a useful measure, we must consider

its variance as well as its mean. A small mean and variance of lateness indicates

that most jobs finish on or near their due dates.

Tardiness is defined as the lateness of a job if it is late and zero otherwise. Thus,

early jobs have zero tardiness. Consequently, average tardiness is a meaningful

measure of customer due date performance.

These measures suggest several objectives that can be used to formulate scheduling

problems. One that has become classic is to “minimize average tardiness.” Of course, it

is classic only in the production scheduling research literature, not in industry. As one

might expect, “minimize lateness variance” has also seen very little use in industry.

Service level and fill rate are used in industry. This is probably because tardiness is

difficult to track and because the measures of average tardiness and lateness variance are

not intuitive. The percentage of on-time jobs is simpler to state than something like “the

average number of days late, with early jobs counting as zero” or “the standard deviation

of the difference between job due date and job completion date.” However, service level

and fill rate have an obvious problem. Once a job is late, it counts against service no
matter how late it is. Naive approaches based on these metrics can thus lead to ridiculous

schedules that call for such things as never finishing late jobs or lying to customers. We

present a due date quoting procedure in Section 15.3.2 that avoids these difficulties.

15.1.2 Maximizing Utilization

In industry, cost accounting encourages high machine utilization. Higher utilization of

capital equipment means higher return on investment, provided of course that the equip-

ment is utilized to increase revenue (i.e., to create products that are in demand). Other-

wise, high utilization merely serves to increase inventory, not profits. High utilization

makes the most sense in producing a commodity item to stock.

Factory Physics also promotes high utilization, provided cycle times, quality, and

service are not degraded excessively. However, recall that the capacity law implies that

100 percent utilization is impossible. How close to full utilization a line can run and

still have reasonable WIP and cycle time depends on the level of variability. The more

variability a line has, the lower utilization must be to compensate. Furthermore, as the
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practical worst case in Chapter 7 illustrated, balanced lines have more congestion than

unbalanced ones, especially when variability is high. This implies that it may well be

attractive not to have near 100 percent utilization of all resources in the line.

A measure that is closely related to utilization is makespan, which is defined as the

time it takes to finish a fixed number of jobs. For this set of jobs, the production rate is

the number of jobs divided by the makespan, and the utilization is the production rate

divided by the capacity. Although makespan is not widely used in industry, it has seen

frequent use in the theoretical scheduling research.

The decision of what target to use for utilization is a strategic one that belongs at

the top of the in-plant planning hierarchy (see Chapter 13). Because high-level decisions

are made less frequently than low-level ones, utilization cannot be adjusted to facili-

tate production scheduling. Similarly, the level of variability in the line is a consequence

of high-level decisions (e.g., capacity and process design decisions) that are also made

much less frequently than are scheduling decisions. Thus, for the purposes of scheduling

we can assume that utilization targets and variability levels are given. In most cases, the

target utilization of the bottleneck resource will be high. The one important exception to

this is a highly variable and customized demand process requiring an extremely quick

response time (e.g., ambulances and fire engines). Such systems typically have very

low utilization and are not well suited to scheduling. To be applicable to most industry

settings, we will assume throughout that a fairly high bottleneck utilization is desirable.

15.1.3 Reducing WIP and Cycle Times

As we discussed in Part II, there are several motives for keeping cycle times short,

including:

1. Better responsiveness to the customer. If it takes less time to make a product,

the lead time to the customer can be shortened.

2. Maintaining flexibility. Changing the “release list” of jobs that have yet to be

started is less disruptive than trying to change the set of jobs already in process.

Since shorter cycle times allow for later releases, they enhance this type of

flexibility.

3. Improving quality. Long cycle times typically imply long queues in the system,

which in turn imply long delays between defect creation and defect detection.

For this reason, short cycle times support good quality.

4. Relying less on forecasts. If cycle times are longer than customers are willing to

wait, production must be done in anticipation of demand rather than in response

to it. Given the lack of accuracy of most demand forecasts, it is extremely

important to keep cycle times shorter than quoted lead times, whenever possible.

5. Making better forecasts. The more cycle times exceed customer lead times, the

farther out the forecast must extend. Hence, even if cycle times cannot be

reduced to the point where dependence on forecasting is eliminated, cycle time

reduction can shorten the forecasting time horizon. This can greatly reduce

forecasting errors.

Little’s law (CT = WIP/TH) implies that reducing cycle time and reducing WIP are

equivalent, provided that throughput remains constant. However, the variability buffering

law implies that reducing WIP without reducing variability will cause throughput to

decrease. Thus variability reduction is generally an important component of WIP and

cycle time reduction programs.
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Although WIP and cycle time may be virtually equivalent from a reduction policy

standpoint, they are not equivalent from a measurement standpoint. WIP is often easier

to measure, since one can count jobs, while cycle times require clocking jobs in and

out of the system. Cycle times become even harder to measure in assembly operations.

Consider an automobile, for instance. Does the cycle time start with the ordering of the

components such as spark plugs and steel, or when the chassis starts down the assembly

line? In such cases, it is more practical to use Little’s law to obtain an indirect measure

of cycle time by measuring WIP (in dollars) over the system under consideration and

dividing by throughput (in dollars per day).

15.2 Review of Scheduling Research

Scheduling as a practice is as old as manufacturing itself. Scheduling as a research

discipline dates back to the scientific management movement in the early 1900s. But

serious analysis of scheduling problems did not begin until the advent of the computer in

the 1950s and 1960s. In this section, we review key results from the theory of scheduling.

15.2.1 MRP, MRP II, and ERP

As we discussed in Chapter 3, MRP was one of the earliest applications of computers

to scheduling. However, the simplistic model of MRP undermines its effectiveness. The

reasons, which we noted in Chapter 5, are as follows:

1. MRP assumes that lead times are attributes of parts, independent of the status of

the shop. In essence, MRP assumes infinite capacity.

2. Since MRP uses only one lead time for offsetting and since late jobs are

typically worse than excess inventory, there is strong incentive to inflate lead

times in the system. This results in earlier releases, larger queues, and hence

longer cycle times.

As we discussed in Part II, these problems prompted some scheduling researchers

and practitioners to turn to enhancements in the form of MRP II and, more recently, ERP.

Others rejected MRP altogether in favor of JIT. However, the majority of scheduling

researchers focused on mathematical formulations in the field of operations research, as

we discuss next.

15.2.2 Classic Machine Scheduling

We refer to the set of problems in this section as classic scheduling problems because of

their traditional role as targets of study in the operations research literature. For the most

part, these problems are highly simplified and generic, which has limited their direct

applicability to real situations. However, despite the fact that they are not classic from

an applications perspective, they still offer some useful insights.

Most classical scheduling problems address one, two, or possibly three machines.

Other common simplifying assumptions include these:

1. All jobs are available at the start of the problem (i.e., no jobs arrive after

processing begins).

2. Process times are deterministic.

3. Process times do not depend on the schedule (i.e., there are no setups).
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4. Machines never break down.

5. There is no preemption (i.e., once a job starts processing, it must finish).

6. There is no cancellation of jobs.

These assumptions serve to reduce the scheduling problem to manageable propor-

tions, in some cases. One reason is that they allow us to restrict attention to simplified

schedules, called sequences. In general, a schedule gives the anticipated start times of

each job on each resource, while a sequence gives only the order in which the jobs are to

be done. In some cases, such as the single-machine problem with all jobs available when

processing begins, a simple sequence is sufficient. In more complex problems, separate

sequences for different resources may be required. And in some problems a full-blown

schedule is necessary to impart the needed instructions to the system. Not surprisingly,

the more complex the form of the schedule, the more difficult it is to find it.

Some of the best-known problems that have been studied in the context of the

assumptions discussed in the operations research literature are the following.

Minimizing average cycle time on a single machine. First, note that for the

single-machine problem, the total time to complete all the jobs does not depend on

the ordering—it is given by the sum of the processing times for the jobs. Hence an

alternative criterion is needed. One candidate is the average cycle time (called flow

time in the production scheduling literature), which can be shown to be minimized

by processing jobs in order of their processing times, with the shortest job first and

longest job last. This is called the shortest process time (SPT) sequencing rule.

The primary insight from this result is that short jobs move through the shop more

quickly than long jobs and therefore tend to reduce congestion.

Minimizing maximum lateness on a single machine. Another possible criterion

is the maximum lateness that any job is late, which can be shown to be minimized

by ordering the jobs according to their due dates, with the earliest due date first

and the latest due date last. This is called the earliest due date (EDD) sequencing

rule. The intuition behind this approach is that if it is possible to finish all the jobs

on time, EDD sequencing will do so.

Minimizing average tardiness on a single machine. A third criterion for the

single-machine problem is average tardiness. (Note that this is equivalent to total

tardiness, since average tardiness is simply total tardiness divided by the number

of jobs.) Unfortunately, there is no sequencing rule that is guaranteed to minimize

this measure. Often EDD is a good heuristic, but its performance cannot be

ensured, as we demonstrate in one of the exercises at the end of the chapter.

Likewise, there is no sequencing rule that minimizes the variance of lateness. We

will discuss the reasons why this scheduling problem and many others like it are

particularly hard to solve.

Minimizing makespan on two machines. When the production process consists

of two machines, the total time to finish all the jobs, the makespan, is no longer

fixed. This is because certain sequences might induce idle time on the second

machine as it waits for the first machine to finish a job. Johnson (1954) proposed

an intuitive algorithm for finding the sequence that minimizes makespan for this

problem, which can be stated as follows: Separate the jobs into two sets, A and B.

Jobs in set A are those whose process time on the first machine is less than or

equal to the process time on the second machine. Set B contains the remaining

jobs. Jobs in set A go first and in the order of the shortest process time (on the first

machine) first. Then jobs in set B are appended in order of the longest process time
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(on the second machine) first. The result is a sequence that minimizes the

makespan over the two machines.

The insight behind Johnson’s algorithm can be appreciated by noting that we

want a short job in the first position because the second machine is idle until the

first job finishes on the first machine. Similarly, we want a short job to be last since

the first machine is idle while the second machine is finishing the last job. Hence,

the algorithm implies that small jobs are better for reducing cycle times and

increasing utilization.

Minimizing makespan in job shops. The problem of minimizing the time to

complete n jobs with general routings through m machines (subject to all the

assumptions previously discussed) is a well-known hard problem in the operations

research literature. The reason for its difficulty is that the number of possible

schedules to consider is enormous. Even for a modestly sized (by industry

standards) 10-job, 10-machine problem there are almost 4 × 1065 possible

schedules (more atoms than there are in the earth). Because of this a 10-by-10

problem was not solved optimally until 1988 by using a mainframe computer and

5 hours of computing time (Carlier and Pinson 1988).

A standard approach to this type of problem is known as branch and bound.

The basic idea is to define a branch by selecting a partial schedule and define

bounds by computing a lower limit on the makespan that can be achieved with a

schedule that includes this partial schedule. If the bound on a branch exceeds the

makespan of the best (complete) schedule found so far, it is no longer considered.

This is a method of implicit enumeration, which allows the algorithm to consider

only a small subset of the possible schedules. Unfortunately, even a very small

fraction of these can be an incredibly large number, and so branch and bound can

be tediously slow. Indeed, as we will discuss, there is a body of theory that

indicates that any exact algorithm for hard problems, like the job shop scheduling

problem, will be slow. This makes nonexact heuristic approaches a virtual

necessity. We will list a few of the many possible approaches in our discussion of

the complexity of scheduling problems.

15.2.3 Dispatching

Scheduling is hard, both theoretically (as we will see) and practically. A traditional

alternative to scheduling all the jobs on all the machines is to simply dispatch (i.e.,

sort according to a specified order) the jobs as they arrive at machines. The simplest

dispatching rule (and also the one that seems fairest when dealing with customers) is

first-in, first-out (FIFO). The FIFO rule simply processes jobs in the order in which

they arrive at a machine. However, simulation studies have shown that this rule tends

not to work well in complex job shops. Alternatives that can work better are the SPT or

EDD rules, which we discussed previously. In fact, these are often used in practice, as

we noted in Chapter 3 in our discussion of shop floor control in ERP. Literally hundreds

of different dispatching rules have been proposed by researchers as well as practitioners

(see Blackstone 1982 for a survey).

All dispatching rules, however, are myopic in nature. By their very definition they

consider only local and current conditions. Since the best choice of what to work on now

at a given machine depends on future jobs as well as other machines, we cannot expect

dispatching rules to work well all the time, and, in fact, they do not. But because the

options for scheduling realistic systems are still very limited, dispatching continues to

find extensive use in industry.
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15.2.4 Why Scheduling Is Hard

We have noted several times that scheduling problems are hard. A branch of mathematics

known as computational complexity analysis gives a formal means for evaluating just

how hard they are. Although the mathematics of computational complexity is beyond

our scope, we give a qualitative treatment of this topic in order to develop an appreciation

of why some scheduling problems cannot be solved optimally. In these cases, we are

forced to go from seeking the best solution to finding a good solution.

Problem Classes. Mathematical problems can be divided into the following two

classes according to their complexity:

1. Class P problems are problems that can be solved by algorithms whose

computational time grows as a polynomial function of problem size.

2. NP-hard problems are problems for which there is no known polynomial

algorithm, so that the time to find a solution grows exponentially (i.e., much

more rapidly than a polynomial function) in problem size. Although it has not

been definitively proved that there are no clever polynomial algorithms for

solving NP-hard problems, many eminent mathematicians have tried and failed.

At present, the preponderance of evidence indicates that efficient (polynomial)

algorithms cannot be found for these problems.

Roughly speaking, class P problems are easy, while NP-hard problems are hard.

Moreover, some NP-hard problems appear to be harder than others. For some, efficient

algorithms have been shown empirically to produce good approximate solutions. Other

NP-hard problems, including many scheduling problems, are even difficult to solve

approximately with efficient algorithms.

To get a feel for what the technical terms polynomial and exponential mean, con-

sider the single-machine sequencing problem with three jobs. How many ways are there

to sequence the three jobs? Any one of the three could be in the first position, which

leaves two candidates for the second position, and only one for the last position. There-

fore, the number of sequences or permutations is 3 × 2 × 1 = 6. We write this as 3!

and say “3 factorial.” If we were looking for the best sequence with regard to some

objective function for this problem, we would have to consider (explicitly or implicitly)

six alternatives. Since the factorial function exhibits exponential growth, the number of

alternatives we must search through, and therefore the amount of time required to find

the optimal solution, also grows exponentially in problem size.

The reason this is important is that any polynomial function will eventually become

dominated by any exponential function. For instance, the function 10,000n10 is a big

polynomial, while the function en/10,000 is small for small values of n. Indeed, for

n less than 60 the polynomial function dominates the exponential. But at n = 60 the

exponential begins to dominate and by n = 80 it is 50 million times larger than the

polynomial function.

Returning to the single-machine problem with three jobs, we note that 3! = 6 does

not seem very large. However, observe how quickly this function blows up: 4! = 24,

5! = 120, 6! = 720, and so on. As the number of jobs to be sequenced becomes large, the

number of possible sequences becomes truly daunting; for example, 10! = 3,628,800,

13! = 6,227,020,800, and

25! = 15,511,210,043,330,985,984,000,000

To get an idea of how big this number is, we compare it to the national debt, which at the

time of this writing was still under $10 trillion. Nonetheless, suppose it were $10 trillion
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Table 15.1 Computer Times for
Job Sequencing on a
Slow Computer

Number of Jobs Computer Time

5 0.12 millisecond

6 0.72 millisecond

7 5.04 milliseconds

8 40.32 milliseconds

9 0.36 seccond

10 3.63 seconds

11 39.92 seconds

12 7.98 minutes

13 1.73 hours

14 24.22 hours

15 15.14 days

.

.

.
.
.
.

20 77,147 years

Table 15.2 Computer Times for Job
Sequencing on a Computer
1,000 Times Faster

Number of Jobs Computer Time

5 0.12 microsecond

6 0.72 microsecond

7 5.04 microseconds

8 40.32 microseconds

9 362.88 microseconds

10 3.63 milliseconds

11 39.92 milliseconds

12 479.00 millseconds

13 6.23 seconds

14 87.18 seconds

15 21.79 minutes

.

.

.
.
.
.

20 77.147 years

and we wanted to pay it in pennies. The 1,000 trillion pennies would cover almost half of

the state of Texas. In comparison, 25! pennies would cover the entire state of Texas—to

a height of over 6,000 miles! Now that’s big. (Perhaps this is why mathematicians use

the exclamation point to indicate the factorial function.)

Now let us relate these big numbers to computation times. Suppose we have a

“slow” computer that can examine 1,000,000 sequences per second and we wish to build

a scheduling system that has a response time of no longer than 1 minute. Assuming

we must examine every possible sequence to find the optimum, how many jobs can we

sequence optimally? Table 15.1 shows the computation times for various numbers of

jobs and indicates that 11 jobs is the maximum we can sequence in less than 1 minute.

Now suppose we purchase a computer that runs 1,000 times faster than our old

“slow” one (i.e., it can examine 1 billion sequences per second). Now how many jobs

can be examined in less than 1 minute? From Table 15.2 we see that the maximum

problem size we can solve increases to only 13 jobs (or 14 if we allow the maximum

time to increase to 1 1
2

minutes). A 1,000-fold increase in computer speed results in

only an 18 percent increase in size of the largest problem that can be solved in the

specified time. The basic conclusion is that even big increases in computer speed do not

dramatically increase our power to solve nonpolynomial problems.

For comparison, we now consider problems that do not grow exponentially. These

are called polynomial problems because the time to solve them can be bounded by a

polynomial function of problem size (for example, n2, n3, etc., where n is a measure of

problem size).

As a specific example, consider the job dispatching problem described in Sec-

tion 15.2.3 and suppose we wish to dispatch jobs according to the SPT rule. This re-

quires us to sort the jobs in front of the workstation according to process time.1 There

are well-known algorithms for sorting a list of elements whose computation time (i.e.,

number of steps) is proportional to n log n, where n is the number of elements being

sorted. This function is clearly bounded by n2, a polynomial. Therefore, dispatching has

polynomial complexity.

1Actually, in practice we would probably maintain the queue in sorted order, so we would not have to

re-sort it each time a job arrived. This would make the problem even simpler than we indicate here.
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Table 15.3 Computer Times
for Job Sorting on
the Slow Computer

Number of Jobs Computer Time

10 3.6 seconds

11 4.1 seconds

12 4.7 seconds
.
.
.

.

.

.

20 9.4 seconds

30 16.1 seconds
.
.
.

.

.

.

80 55.2 seconds

85 59.5 seconds

90 63.8 seconds
.
.
.

.

.

.

100 72.6 seconds

200 167.0 seconds

Table 15.4 Computer Times for Job
Sorting on a Computer
1,000 Times Faster

Number of Jobs Computer Time

1,000 1.1 seconds

2,000 2.4 seconds

3,000 3.8 seconds
.
.
.

.

.

.

10,000 14.5 seconds

20,000 31.2 seconds

30,000 48.7 seconds

35,000 57.7 seconds

36,000 59.5 seconds
.
.
.

.

.

.

50,000 85.3 seconds

100,000 181.4 seconds

200,000 384.7 seconds

Suppose, just for the sake of comparison, that on the slow computer of the previous

example it takes the same amount of time to sort 10 jobs as it does to examine 10!

sequences (that is, 3.6 seconds). Table 15.3 reveals how the sorting times grow for lists

of jobs longer than 10. Notice that we can sort 85 jobs and still remain below one minute

(as compared to 11 jobs for the sequencing problem).

Even more interesting is what happens when we purchase the computer that works

1,000 times faster. Table 15.4 shows the computation times and reveals that we can go

from sorting 85 jobs on the slow computer to sorting around 36,000 on the fast one. This

represents an increase of over 400 percent, as compared to the 18 percent increase we

observed for the sequencing problem. Evidently, we gain a lot from a faster computer

for the “easy” (polynomial) sorting problem, but not much for the “hard” (exponential)

sequencing problem.

Implications for Real Problems. Because most real-world scheduling problems fall

into the NP-hard category and tend to be large (e.g., involving hundreds of jobs and

tens of machines), the above results have important consequences for manufacturing

practice. Quite literally, they mean that it is impossible to solve many realistically sized

scheduling problems optimally.2

Fortunately, the practical consequences are not quite so severe. Just because we

cannot find the best solution does not mean that we cannot find a good one. In some ways,

the nonpolynomial nature of the problem may even help, since it implies that there may

be many candidates for a good solution. Reconsider the 25-job sequencing problem. If

“good” solutions were extremely rare to the point that only one in a trillion of the possible

solutions was good, there would still be more than 15 trillion good solutions. We can

apply an approximate algorithm, called a heuristic, that has polynomial performance to

2A computer with as many bits as there are protons in the universe, running at the speed of light, for the

age of the universe, would not have enough time to solve some of these problems. Therefore the word

impossible is not an exaggeration.
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search for one of these solutions. There are many types of heuristics, as we discuss in

Section 15.2.6.

15.2.5 Good News and Bad News

We can draw a number of insights from this review of scheduling research that are useful

to the design of a practical scheduling system.

The Bad News. We begin with the negatives. First, unfortunately, most real-world

problems violate the assumptions made in the classic scheduling theory literature in at

least the following ways:

1. There are always more than two machines. Thus Johnson’s algorithm for

minimizing makespan and its many variants are not directly useful.

2. Process times and demand are not deterministic. In Part II we learned that

randomness and variability contribute greatly to congestion in manufacturing

systems. By ignoring this, scheduling theory is based on an unrealistic model of

system behavior.

3. All jobs are not ready at the beginning of the problem. New jobs do arrive

and continue arriving during the entire life of the plant. To pretend that this does

not happen or to assume that we “clear out” the plant before starting new work

is to deny a fundamental aspect of plant behavior.

4. Process times are frequently sequence-dependent. Often the number of

setups performed depends on the sequence of the jobs. Jobs of like or similar

parts can usually share a setup while dissimilar jobs cannot. This can be an

important concern in scheduling the bottleneck process.

Furthermore, real-world production scheduling problems are hard (in the NP-hard

sense), which means

1. We cannot hope to find optimal solutions of many realistic-size scheduling

problems.

2. Polynomial approaches, like dispatching, may not work well.

The Good News. Fortunately, there are also positives, especially when we realize that

much of the scheduling research suffers from type III error: solving the wrong problem.

The formalized scheduling problems addressed in the operations research literature are

models, not reality. The constraints assumed in these models are not necessarily fixed

in the real world since, to some extent, we can control the problem by controlling the

environment. This is precisely what the Japanese did when they made a hard scheduling

problem much easier by reducing setup times. When we think along these lines, the

failures, as well as the successes, of the scheduling research literature can lead us to

useful insights, including the following:

Due dates: We do have some control over due dates; after all, someone in the

company sets or negotiates them. We do not have to take them as given, although

this is exactly what some companies and most scheduling problem formulations

do. Section 15.3.2 presents a procedure for quoting due dates that are both

achievable and competitive.

Job splitting: The SPT results for a single machine suggest that small jobs clear

out more quickly than large jobs. Similarly, the mechanics of Johnson’s algorithm
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call for a sequence that has a small job at both the beginning and the end. Thus, it

appears that small jobs will generally improve performance with regard to average

cycle time and machine utilization. However, in Part II we also saw that small

batches result in lost capacity due to an increased number of setups. Thus, if we

can somehow have large process batches (i.e., many units processed between

setups) and small move batches (i.e., the number accumulated before moving to

the next process), we can have both short cycle times and high throughput. This

concept of lot splitting, which was illustrated in Chapter 9, thus serves to make the

system less sensitive to scheduling errors.

Feasible schedules: An optimal schedule is really only meaningful in a

mathematical model. In practice what we need is a good, feasible one. This makes

the scheduling problem much easier because there are so many more candidates

for a good schedule than for an optimal schedule. Indeed, as current research is

beginning to show, various heuristic procedures can be quite effective in

generating reasonable schedules.

Focus on bottlenecks: Because bottleneck resources can dominate the behavior of

a manufacturing system, it is typically most critical to schedule these resources

well. Scheduling the bottleneck(s) separately and then propagating the schedule to

nonbottleneck resources can break up a complex large-scale scheduling problem

into simpler pieces. Moreover, by focusing on the bottleneck we can apply some of

the insights from the single-machine scheduling literature.

Capacity: As with due dates, we have some control over capacity. We can use

some capacity controls (e.g., overtime) on the same time frame as that used to

schedule production. Others (e.g., equipment or workforce changes) require longer

time horizons. Depending on how overtime is used, it can simplify the scheduling

procedure by providing more options for resolving infeasibilities. Also, if

longer-term capacity decisions are made with an eye toward their scheduling

implications, these, too, can make scheduling easier. Chapter 16 discusses

aggregate planning tools that can help facilitate this.

Dynamic Control: By exploiting the natural behavior of the system we can

establish dynamic controls that can respond to random changes in demand and

capacity without rescheduling. An example of dynamic controls is the use of

CONWIP with statistical throughput control (STC) and a flexible capacity buffer

(e.g., a makeup shift). We make no adjustments when there are small random

fluctuations that do not affect the long-term output of the line. However, significant

changes in either capacity or demand are detected by STC in time for us to make

appropriate changes in the capacity of the line. Additionally, such a system can

“work ahead” when capacity is greater than expected—something that is difficult

to accomplish with a detailed schedule.

With these insights in mind, we now examine some basic scheduling scenarios

in greater detail. The methods we offer are not meant as ready-to-use solutions—the

range of scheduling environments is simply too broad—but rather as building blocks for

constructing reasonable solutions to real problems.

15.2.6 Scheduling in Practice

In this section we discuss some representative scheduling approaches that are available

in commercial software systems. These are known variously as advanced planning

and optimization (APO), advanced planning and scheduling (APS), and the more
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classic finite-capacity scheduling. Since the problems they address are large and NP-

hard, all of these make use of heuristics and hence none produces an optimal schedule

(regardless of what the marketing materials might suggest). Moreover, these scheduling

applications are generally additions to the MRP (material requirements planning) module

within the ERP (enterprise resources planning) framework. As such, they attempt to take

the planned order releases of MRP and schedule them through the shop so as to meet

due dates, reduce the number of setups, increase utilization, decrease WIP, and so on.

Unfortunately, if the planned order releases generated by MRP represent an infeasible

plan, no amount of rescheduling can make it feasible. This is a major shortcoming of

such “bolt-on” applications.

Finite-capacity scheduling systems typically fall into two categories: simulation-

based and optimization-based. However, many of the optimization-based methods also

make use of simulation.

Simulation-Based Scheduling. One way to avoid the NP-hard optimization problem

is to simply ignore it. This can be done by developing a detailed and deterministic (i.e., no

unpredictable variation in process times, no unscheduled outages, etc.) simulation model

of the entire system that performs “what-if” analysis instead of optimization. The model

is then interfaced to the WIP tracking system of ERP to allow downloading of the current

status of active jobs. Demand information is obtained from either the master production

schedule module of ERP, the forecast, or another source. Many of these systems provide

the planner with a Gantt chart that can be used interactively. The only “optimization”

done in these systems occurs in the head of the planner. Obviously, with hundreds of

jobs to manage, using an interactive Gantt chart can be a tedious task.

Another way to generate schedule is to allow the simulation to run forward in time

using certain defined rules to release jobs, prioritize queues (dispatching rules), and de-

termine batch sizes. Different schedules are generated by applying different rules. These

are evaluated according to selected performance measures to find the “best” schedule.

Some systems use “penalties” having different weights for late jobs, idle machines, added

inventory, setups, and so on. Of course, given the ad hoc nature of the rules and penalties,

such a schedule can be far from “optimal.”

An advantage of the simulation approach is that it is easier to explain than most

optimization-based methods. Since a simulator mimics the behavior of the actual system

in an intuitive way, planners and operators alike can understand its logic. Another advan-

tage is that it can quickly generate a variety of different schedules by simply changing the

rules used and then reporting to the user measures such as machine idle time, inventory,

and the number of late jobs. The user can choose from these the schedule that best fits

his or her needs. For example, a custom job shop might be more interested in on-time

delivery than in utilization, whereas a production system that uses extremely expensive

equipment to make a commodity would be more interested in keeping utilization high.

However, there are also disadvantages. First, simulation requires an enormous

amount of data that must be constantly maintained. Second, because the model does

not account for variability, there can be large discrepancies between predicted and ac-

tual behavior.3 The consequence is that to prevent error from piling up and completely

invalidating the schedule over time it is important to regenerate the schedule frequently.

A third problem is that because there is no general understanding of when a given rule

works well, finding an effective schedule is a trial-and-error process. Also, because such

rules are inherently myopic, it may be that no available rule generates a good schedule.

3But, since virtually all finite-capacity scheduling procedures ignore variability, this problem is not

unique to the simulation approach.
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Finally, the simulation approach, like the optimization approach, is generally used

as an add-on to MRP. In a simulation-based scheduler, MRP release times are used to

define the work that will be input into the model. However, if the MRP release schedule

is inherently infeasible, simple dispatching cannot make it feasible. Something else—

either capacity or demand—must change. But simulation-based scheduling methods are

not well suited to suggesting ways to make an infeasible schedule feasible.

Optimization-Based Scheduling. Despite their name, optimization-based scheduling

techniques use heuristic procedures for which there are few guarantees of performance.

The difference between optimization-based and simulation-based scheduling techniques

is that the former uses some sort of algorithm to actively search for a good schedule. We

will provide a short overview of these techniques and refer the reader interested in more

details to a book devoted to the subject by Morton and Pentico (1993).

One approach is to reduce a line or shop scheduling problem to a single-machine

scheduling problem by focusing on the bottleneck. We refer to heuristics that do this

as “OPT-like” methods, since the package called “Optimized Production Technique”

developed in the early 1980s by Eliyahu Goldratt and others was the first to popularize

this approach. Although OPT was sold as a “black box” without specific details on the

solution approach, it involved four basic stages:

1. Determine the bottleneck for the shop.

2. Propagate the due date requirements from the end of the line back to the

bottleneck, using a fixed lead time with a time buffer.

3. Schedule the bottleneck.

4. Propagate material requirements from the bottleneck backward to the front of

the line, using a fixed lead time to determine a release schedule.

Simons and Simpson (1997) described this procedure in greater detail, extending it to

cases in which there are multiple bottlenecks and when parts visit a bottleneck more

than once. Because they use an objective function that weights due date performance

and utilization, OPT-like methods can be used to generate different types of schedules

by adjusting the weights.

An entirely different optimization-based heuristic is beam search, which is a deriva-

tive of the branch-and-bound technique mentioned earlier. However, instead of checking

each branch generated, beam search checks only relatively few branches that are selected

according to some sort of “intelligent” criteria. Consequently, it runs much faster than

branch-and-bound but cannot guarantee an optimal solution.

An entire class of optimization-based heuristics are those classed as local search

techniques, which start with a given schedule and then search in the “neighborhood” of

this schedule to find a better one. It turns out that “greedy” techniques, which always select

the best nearby schedule, do not work well. This is because there are many schedules

that are not very good overall but are best in a very small local neighborhood. A simple

greedy method will usually end up with one of these and then quit.

Several methods have been proposed to avoid this problem. One of these is called

tabu search because it makes the most recent schedules “taboo,” thereby preventing the

search from getting stuck with a locally good but globally poor schedule. Consequently,

the search will move away from a locally good schedule and, for a while, may even

get worse while searching for a better schedule. Another method for preventing local

optima is use of genetic algorithms that consider the characteristics of several “parent”

schedules to generate new ones and then allow only good “offspring” to survive and
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“reproduce” new schedules. Still another is simulated annealing, which selects can-

didate schedules in a manner that loosely mimics the gradual cooling of a metal to

minimize stress. In simulated annealing, wildly random changes to the schedule can

take place early in the process, where some improve the schedule and others make it

worse. However, as time goes on, the schedule becomes less volatile (i.e., is “cooled”)

and the approach becomes more and more greedy. Of course, all local search methods

“remember” the best schedule that has been found at any point, in case no better schedule

can be found. We will contrast one of these techniques (tabu search) with the greedy

method described in Section 15.4.

Optimization-based heuristics can be applied in many different ways to a variety

of scheduling problems. Within a factory, the most common problem formulations are

(1) minimizing some measure of tardiness, (2) maximizing resource utilization, (3)

minimizing inventory (built ahead), and (4) some combination of these. We have seen

that tardiness problems are extremely difficult even for one machine. Utilization (e.g.,

makespan) problems are a little easier. But they also become intractable when there are

more than two machines. So developing effective heuristics is not simple. Pinedo and

Chao (1999) give details on which methods work well in various settings and how they

can be implemented effectively.

One problem with optimization-based scheduling is that many practical scheduling

problems are not really optimization problems at all but, rather, are better characterized as

satisficing problems. Most scheduling professionals would not consider a schedule that

has several late jobs as optimal. This is because some constraints, such as due dates and

capacity, are not hard constraints but are more of a “wish list.” Although the scheduler

would rather not add capacity, it could be done if required to meet a set of demands.

Likewise, it might be possible to split jobs or postpone due dates if required to obtain

a feasible schedule. It is better to have a schedule that is implementable than one that

optimizes an abstract objective function but cannot possibly be accomplished.

Despite the problems, some companies have benefited using advanced planning

and optimization systems. Also, a number of firms have been successful in combin-

ing such software (some developed in-house) with MRP II systems to assist planners.

Arguello (1994) provides an excellent survey of finite-capacity scheduling software (both

optimization-based and simulation-based) used in the semiconductor industry. Since

most of this software has also been applied in other industries, the survey is relevant to

nonsemiconductor practitioners as well.

15.3 Linking Planning and Scheduling

Within an enterprise resources planning system, the MRP module generates planned

order releases based on fixed lead times and other simplifying assumptions. As we have

discussed, this often results in an infeasible schedule. This is a main reason why planners

frequently “massage” the output of MRP with some sort of ad hoc spreadsheet. In fact,

we have found this to be the case in all of the more than 100 different plants we have

visited during our careers!

These problems have led to the separation of material planning (e.g., MRP), capacity

planning [e.g., capacity requirements planning (CRP)], and production execution (e.g.,

order release and dispatching) in terms of time, software, and personnel. Typically,

material requirements planning determines what materials are needed and provides a

rudimentary schedule without considering capacity. Then the capacity planning function

performs a check to see if the needed capacity exists. If not, either the user (e.g., by
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iterating CRP) or the system (e.g., by using some kind of advanced planning system)

attempts to reschedule the releases. But because capacity was not considered when

material requirements were set, the capacity planning problem may have been made

unnecessarily difficult (indeed, impossible). The problem is further aggravated by the

common practice of having one department (production control) generate the production

plan (for both materials and capacity) which is then handed off to a different department

(manufacturing) to execute.

An important antidote to the planning/execution disconnect is cycle time reduction.

If cycle times are short (e.g., the result of variability reduction and/or use of some sort

of pull system), the short-term production planning function can provide the production

schedule.4 However, before that can be done, the production planning and scheduling

problem must be recast from one of optimization, subject to given constraints of ca-

pacity and demand, to one of feasibility analysis, to determine what must be done in

order to have a practical production plan. This requires a procedure that analyzes both

material and capacity requirements simultaneously. In theory, this can be done with a

large mathematical programming model. However, such formulations are usually slow

and therefore unsuited to making frequent feasibility checks as the situation evolves. We

present a practical heuristic method that provides a quick feasibility check in Section 15.5.

The remainder of this chapter focuses on issues central to the development of practi-

cal scheduling procedures. In this section we consider techniques for making scheduling

problems easier, namely, effective batching and due date quoting. Section 15.4 deals

with bottleneck scheduling in the context of CONWIP lines, while Section 15.6 shows

how to use scheduling (which is inherently “push” in nature) within a pull environment.

15.3.1 Optimal Batching

In Chapter 9 we observed that process batch sizes can have a tremendous impact on cycle

time. Batching can also have a major influence on scheduling. By choosing batch sizes

wisely, to keep cycle times short, we can make it easier for a schedule to meet due dates.

So we now develop methods for determining batch sizes that minimize cycle time.

Optimal Serial Batches. Figure 15.1 illustrates the relation between average cycle

time and the serial batch size. To find the optimal batch size, we could use the analysis

4Long-term production planning, also known as aggregate planning, is used to set capacity levels, plan

for workforce changes, etc. (see Chapter 16).
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shown in Section 9.4.2 to generate such a plot and find the batch size that minimizes

cycle time. However, this would be cumbersome and is of little value when we have

multiple parts that interact with one another. So instead we derive a simple procedure

that first finds the (approximately) optimal utilization of the station and then uses this

to compute the serial batch size. We do this first for the case of a single part and then

extend the approach to multiproduct systems.

Technical Note: Optimal Serial Process Batch Sizes

We first consider the case in which the product families are identical with respect to process

and setup times and arrivals are Poisson. The problem is to find the serial batch size that

minimizes total cycle time at a single station. This batch size will be suitable for the entire

line if only one station has significant setups and tends to be the bottleneck.

First define the “utilization without setups” as u0 = rat . The actual utilization will be

higher than this because of setups. To compute the actual utilization, we use the notation

from Chapter 9 to write the effective process time for a batch as te = s + kt, which implies

utilization is given by

u = ra

k
(s + kt)

A little algebra shows that the effective process time of a batch can be written

te = su

u − u0

Since we are assuming Poisson arrivals (a good assumption if products arrive from a variety

of sources), the arrival squared coefficient of variation (SCV) is c2
a = 1 and average cycle

time is

CT =
(

1 + c2
e

2

) (

u

1 − u

)

su

u − u0

+ su

u − u0

(15.1)

Written in this way, cycle time is a function of u only, instead of k and u. So minimizing cycle

time boils down to finding the optimal station utilization. We do this by taking the derivative

of (15.1) with respect to u, setting it equal to zero, and solving, which yields

u∗ = αu0 +
√

α2u2
0 + [α(1 + u0) + 1]u0

α(1 + u0) + 1
(15.2)

where α = (1 + c2
e )/2 − 1. Note that in the special case where c2

e = 1 we have α = 0 and

u∗ = √
u0 (15.3)

But even when c2
e is not equal to one, the value of u∗ generally remains close to

√
u0. For

example, when u0 = 0.5 and c2
e = 15, the difference is less than 5 percent. Moreover, the

closer u0 is to one (i.e., the higher the utilization of the system without setups), the smaller

the difference between u∗ and
√

u0 for all c2
e (see Spearman and Kröckel 1999).

To obtain the batch size (k) we use

u∗ = ra

k∗
(

s + k∗t
) = ras

k∗ + u0

and solve for k∗.
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The above analysis shows that a good approximation of the serial batch size that

minimizes cycle time at a station is

k∗ = ras

u∗ − u0

≈ ras√
u0 − u0

(15.4)

where u0 = rat . We illustrate this with the following example.

Example: Optimal Serial Batching (Single Product)

Consider the serial batching example in Section 9.4 and shown in Figure 15.1. The

utilization without considering setups u0 is

u0 = rat = (0.4 part/hour)(1 hour) = 0.4

So, by equation (15.3), optimal utilization is approximately

u∗ = √
u0 =

√
0.4 = 0.6325

and by equation (15.4) the optimal batch size is

k∗ = ras

u∗ − u0

= 0.4(5)

0.6325 − 0.4
= 8.6 ≈ 9

From Figure 15.1, we see that this is indeed very close to the true optimum of eight. The

difference in cycle time is less than one percent.

The recommendation that the optimal station utilization be set very near to the square

root of the utilization without setups is extremely robust. This allows it to be used as

the basis for a serial batch-setting procedure in more general multiple-product family

systems. We develop such an approach in the next technical note.

Technical Note: Optimal Serial Batches with Multiple Products

To model the multiproduct case we define the following:

n = number of products

i = index for products, i = 1, . . . , n
rai = demand rate for product i (parts per hour)

ti = mean time to process one part of product i (hours)

c2
ti = SCV of time to process one part of product i
si = mean time to perform setup when changing to product i (hours)

c2
si = SCV of time to perform setup when changing to product i
te = effective process time averaged over all products (hours)

c2
e = SCV of effective process time averaged over all products

u0 = ∑

i rai ti = station utilization without setups

u = station utilization

ki = lot size for product i

We can use the VUT equation to compute cycle time at the station as

CT =
(

V u

1 − u
+ 1

)

te (15.5)

where V = (1 + c2
e )/2. To use this, we must compute u, te and ce from the individual part

data. Utilization is given by

u =
n

∑

i=1

rai

ki
(si + ki ti )
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The effective process time is, in a sense, the “mean of the means.” In other words, if the mean

process time for a batch of i is si + ki ti and the probability that the batch is for product i is

πi , then the effective process time is

te =
n

∑

i=1

πi (si + ki ti ) (15.6)

The probability that the batch is of a given product type is the ratio of that type’s arrival rate

to the total arrival rate

πi = rai/ki
∑n

j=1(raj/k j )
(15.7)

Using standard stochastic analysis, we compute the variance of the effective run time σ 2
e as

σ 2
e =

n
∑

i=1

πi (ki c
2
ti t

2
i + c2

si s
2
i ) +

[

n
∑

i=1

πi (si + ki ti )
2 − t2

e

]

(15.8)

and hence the effective SCV is c2
e = σ 2

e /t2
e .

Now, assuming as we did in the single-product case that u∗ = √
u0 is a good approximation

of the optimal utilization, the batch-sizing problem reduces to finding a set of ki values that

achieve u∗ and keep c2
e and te small. From equation (15.5) it is clear that this will lead to a

small cycle time. Note that if all the values of si + ki ti , that is, all the average run lengths

were equal, the term in square brackets in equation (15.8) would be zero. Thus, one way to

keep both te and c2
e small is to minimize the average run length and to make all the run lengths

the same. We can express this as the following optimization problem.

Minimize L

Subject to: si + ki ti ≤ L for i = 1, . . . , n
n

∑

i=1

rai

ki
(si + ki ti ) = u∗

The solution can be obtained from

si + ki ti = L

ki = L − si

ti
(15.9)

Then solve for L , using the constraint

n
∑

i=1

rai

ki
(si + ki ti ) = u∗

n
∑

i=1

rai si

ki
= u∗ − u0

n
∑

i=1

rai si ti

L − si
= u∗ − u0

If the setup times are all close to the mean setup time, which we denote by s̄, then we can

solve for L as follows.

L =
∑n

i=1 rai si ti

u∗ − u0

+ s̄ (15.10)

Substituting this into equation (15.9) yields approximately optimal batch sizes.
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The above analysis shows that the serial batch size for product i that minimizes

cycle time at a station with multiple products and setups is

k∗
i = L − si

ti
(15.11)

where L is computed from equation (15.10).

Example: Optimal Serial Batching (Multiple Products)

Consider an industrial process in which a blender mixes three different products. Demand

for each product is 15 blends per month and is controlled by an MRP system that uses a

constant batch size for each product. Whenever the blender is switched from one product

to another, a cleanup is required. Products A and B take 4 hours per blend and 8 hours

for cleanup. Product C requires 8 hours per blend and 12 hours for cleanup. All process

and setup times have a coefficient of variation of 1
2
. The blender is run two shifts per

day, 5 days per week. With 1 hour lost for each shift and 52/12 weeks per month, this

averages out to 303.33 hours per month.

In keeping with conventional wisdom (e.g., the EOQ model) that products with

longer changeovers should have larger batch sizes, the firm is currently using batch sizes

of 20 blends for products A and B and 30 blends for product C. The average cycle time

through the process is currently around 44 shop days. But could they do better?

Converting demand to units of hours yields rai = 15/303.33 = 0.0495 blend per

hour for all three products. The utilization without setups is therefore

u0 = 0.0495(4 + 4 + 8) = 0.7912

Hence, the optimal utilization is u∗ = √
u0 = √

0.7912 = 0.8895.

The average setup time is s̄ = (8 + 8 + 12)/3 = 9.33 hours, so the sum needed in

equation (15.10) is

3
∑

i=1

rai si ti = 0.0495[8(4) + 8(4) + 12(8)] = 7.912

and hence

L = 7.912

0.8895 − 0.7912
+ 9.33 = 89.82

With this we can compute the approximately optimal batch sizes as follows.

kA = kB = L − sA

tA
= 89.82 − 8

4
= 20.46 ≈ 20

kC = L − sC

tC
= 89.82 − 12

8
= 9.73 ≈ 10

Using these batch sizes results in an average cycle time of 33.1 days, a decrease of 25

percent. Doing a complete search over all possible batch sizes shows that this is close to

the optimal solution of 17, 17, 11 with a cycle time of 32.6 days.

Note that the batch size for part C is smaller than that for A and B. EOQ logic,

which was developed assuming separable products, suggests that C should have a larger

batch size because it has a longer setup time. But to keep the run lengths equal across

products, we need to reduce the batch size of C.
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Optimal Simultaneous Batches. A machine with simultaneous batching is a true

batch machine, such as a heat treatment oven in a machine shop or a copper plater in a

circuit-board plant. In these cases, the process time is the same regardless of how many

parts are processed at once (the batch size).

In simultaneous batching situations, the basic trade-off is between effective capacity

utilization, for which we want large batches, and minimal wait-to-batch time, for which

we want small batches. If the machine is a bottleneck, it is often best to use the largest

batch possible (size of the batch operation). In nonbottlenecks, it can be best (in terms

of cycle time) to process a partial batch. As we discussed in Chapter 9, a simple policy

would be to load whatever is in queue (or the maximum size of machine, whichever is

smaller) when the previous batch completes. However, this may not be a good policy if

the job arrivals are “bursty.” In other words, jobs do not arrive smoothly but in bursts. In

such a situation, it may be better to wait for a larger batch to form than to start whatever is

waiting. Unfortunately, the mathematics of simultaneous batching with general arrivals

is quite complex and lies beyond the scope of this text.

15.3.2 Due Date Quoting

Variability reduction (Chapter 9), pull production (Chapter 10), and efficient batch-sizing

methods (previously described) all make a production system easier to schedule. Another

technique for simplifying scheduling is due date quoting. Since scheduling problems

involving due dates are extremely hard, while due date setting problems can be relatively

easy, this would seem worthwhile. Of course, in the real world, implementation is more

than a matter of mathematics. Developing a due date quoting system may involve a much

more difficult problem—getting manufacturing and salespeople to talk to one another.

In addition to personnel issues, the difficulty of the due date quoting problem depends

on the manufacturing environment. To be able to specify reasonable due dates, we must

be able to predict when jobs will be completed given a specified schedule of releases.

If the environment is so complex that this is difficult, then due date quoting will also be

difficult. However, if we simplify the environment in a way that makes it more predictable,

then due date quoting can be made straightforward.

Quoting Due Dates for a CONWIP Line. One of the most predictable manufactur-

ing systems is the CONWIP line. As we noted previously, CONWIP behavior can be

characterized via the conveyor model. This enables us to develop a simple procedure for

quoting due dates.

Consider a CONWIP line that maintains w standard units5 of WIP and whose output

in each period (e.g., shift, day) is steady with meanμ and variance σ 2. Suppose a customer

places an order that represents c standard units of work, and we are free to specify a

due date. To balance responsiveness with dependability, we want to quote the earliest

due date that ensures a service level (probability of on-time delivery) of s. Of course,

the due date that will achieve this depends on how much work is ahead of the new order.

This in turn depends on how customer orders are sequenced. One possibility is that jobs

are processed in first-come, first-serve order, in which case we let b represent the current

release list (i.e., number of standard jobs that have been accepted but not yet released

to the line). Alternatively, “emergency slots” for high-priority jobs could be maintained

(see Figure 15.2) by quoting due dates for some lower-priority jobs as if there were

5A standard unit of WIP is one that requires a certain amount of time at the bottleneck of the line. Thus,

CONWIP maintains a constant workload in the line, as measured by time on the bottleneck.
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quoting lead times.

“placeholder” jobs already ahead of them. In this case, we define b to represent the units

of work until the first emergency slot.

In either case, the customer order will be filled after m = w + b + c standard units

of work are completed by the line. Hence the problem of finding the earliest due date

that guarantees a service level of s is equivalent to finding the time within which we

are s percent certain of being able to complete m standard units of work. We derive an

expression for this time in the following technical note.

Technical Note: Due Date Quoting for a CONWIP Line

Let Xt be a random variable representing the amount of work (in standard units) completed in

period t . Assume that Xt , t = 1, 2, . . . , are independent and normally distributed with mean

μ and variance σ 2. To guarantee completion by time � with probability s, the following must

be true:

P

{

�
∑

t=1

Xt ≤ m

}

= 1 − s

Note that since the means and variances of independent random variables are additive, the

amount of work completed by time � is given by

�
∑

t=1

Xt ∼ N(�μ, �σ 2)

That is, it is normally distributed with mean �μ and variance �σ 2. Hence,

P

{

Z ≤ m − �μ√
�σ

}

= 1 − s

where Z is the standard 0–1 normal random variable.

Therefore,

m − �μ√
�σ

= z1−s (15.12)

where z1−s is obtained from a standard normal table.

We can rewrite equation (15.12) as

�2μ2 − (2μm + z2
1−sσ

2)� + m2 = 0 (15.13)

which can be solved by using the quadratic equation. There are two roots to this equation; as

long as s ≥ 0.5, the larger one should always be used. This yields equation (15.14).
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The minimum quoted lead time for a new job consisting of c standard units that is

sequenced behind a release list of b standard units in a CONWIP line with a WIP level

of w necessary to guarantee a service level of s is given by

� = m

μ
+

z2
1−sσ

2
[

1 +
√

4μm/(z2
1−sσ

2) + 1
]

2μ2
(15.14)

where m = w + b + c.

A possible criticism of the above method is that it is premised on service. Hence, a

job that is 1 day late is considered just as bad as one that is 1 year late. A measure that

better tracks performance from a customer perspective is tardiness. Fortunately, it turns

out that quoting each job with the same service level also yields the minimum expected

quoted lead time subject to a constraint on average tardiness (see Spearman and Zhang

1999).

Furthermore, to simplify implementation with little loss in performance, Equation

(15.14) can be replaced by

� = m

μ
+ planned inventory time (15.15)

where planned inventory time is a constant that can be adjusted by trial and error to

achieve acceptable service (see Hopp and Roof 1998).

Example: Due Date Quoting

Suppose we have a CONWIP line that maintains 320 standard units of WIP and has an

average output of 80 units per day with a standard deviation of 15 units. The line receives

a high-priority order representing 20 standard units, and the first available emergency

slot on the release list is 100 jobs from the start of the line. We want to quote a due date

with a service level of 99 percent.

To use equation (15.14), we observe that μ = 80, σ 2 = 225 (or, 152), w = 320,

b = 100, and c = 20, so that m = 440. The value for z1−s = z0.01 = −2.33 is found in

a standard normal table. Thus,

� = m

μ
+

z2
s σ

2
[

1 + √

4μm/(z2
s σ

2) + 1
]

2μ2

= 440

80
+

(−2.332)(225)
{

1 +
√

4(80)(440)/[(−2.33)2(225)] + 1
}

2(802)

= 6.62

and so we quote 7 days to the customer.

Notice that the mean time to complete the order is m/μ = 440/80 = 5.5 days. The

additional 1 1
2

days represent safety lead time used as a buffer against the variability in

the production process.

Figure 15.3 shows the lead time quotes as a function of total release list m. The

dashed line shows the mean completion time m/μ, which is what would be quoted if

there were no variance in the production rate. The difference between the solid and dotted

lines is the safety lead time. The reason is that the more work that must be completed to
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fill an order, the greater the variability in the completion time, and hence the higher the

required safety lead time.

In an environment with multiple CONWIP routings, a similar set of computations

would be performed for each routing in the plant. The only data needed are the first two

moments of the production rate for the routing, the current WIP level (a constant under

CONWIP), and the current status of the release list. These data should be maintained in a

central location accessible to both sales and manufacturing. Sales needs the information

to quote due dates; manufacturing needs it to determine what to start next. Manufacturing

can also track production against a release list established by sales (e.g., the statistical

throughput control procedure described in Chapter 14). The overall result will be due

dates that are competitive, achievable, and consistent with manufacturing parameters.

15.4 Bottleneck Scheduling

A main conclusion of the scheduling research literature is that scheduling problems,

particularly realistically sized ones, are very difficult. So it is common to simplify the

problem by breaking it down into smaller pieces. One way to do this is by scheduling the

bottleneck process by itself and then propagating that schedule to nonbottleneck stations.

This is particularly effective in simple flow lines. However, bottleneck scheduling can

also be an important component in more complex scheduling situations.

A major reason why restricting attention to the bottleneck can simplify the schedul-

ing problem is that it reduces a multimachine problem to a single-machine problem.

Recall from our discussion of scheduling research that simple sequences, as opposed to

detailed schedules, are often sufficient for single-machine problems. Since a schedule
presents information about when each job is to be run on each machine while a se-
quence presents only the order of processing the jobs, it is easier to compute a sequence.

Furthermore, because schedules become increasingly inaccurate with time, sequences

can be more robust in practice.

The scheduling problem can be further simplified if the manufacturing environment

is made up of CONWIP lines. As we know from Chapter 13, a CONWIP line can

be characterized as a conveyor with rate r P
b (the practical production rate) and transit

time T P
0 (minimum practical lead time). Since the parameters r P

0 and T P
0 are adjusted

to include variability effects such as failures, variable process times, and setups, and

because safety capacity (overtime) is used to ensure that the line achieves its target
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rate each period (day, week, or whatever), the deterministic conveyor model is a good

approximation of the stochastic production system. Thus, by focusing on the bottleneck

in a CONWIP line, we effectively reduce a very hard multistation stochastic scheduling

problem to a much easier single-station deterministic scheduling problem. Also, since we

use first-in-system, first-out (FISFO) dispatching at each station, it is a trivial matter to

propagate the bottleneck sequence to the other stations—simply use the same sequence

at all stations. This sequence is the CONWIP release list to which we have referred in

previous chapters. We now discuss how to generate this release list.

15.4.1 CONWIP Lines without Setups

We begin by considering the simplest case of CONWIP lines—those in which setups do

not play a role in capacity. This could be because there are no significant setups between

part changes. Alternatively, it could be because setups are done periodically (e.g., for

cleaning or maintenance) but do not depend on the work sequence. Sequencing a single

CONWIP line without setups is just like scheduling the single machine with due dates

that we discussed earlier. As we noted in our overview of scheduling theory, in this

environment the EDD sequence will finish all the jobs on time if it is possible to do so.

Of course, what this really means is that jobs will finish on time in the planned schedule.

We cannot know in advance if this will actually occur, since it depends on random events.

But starting with a feasible plan gives us a much better chance of meeting due dates in

practice than does starting with an infeasible plan.

A slightly more complex situation is one in which two or more CONWIP lines

share one or more workstations. Figure 15.4 shows such a situation in which (1) two

CONWIP lines share a machine that also happens to be the bottleneck and (2) the

lines produce components for an assembly operation. We consider this case because it

starkly illustrates the issues involved. However, scheduling is fundamentally the same

as scheduling a system with the lines feeding separate finished goods inventory (FGI)

buffers instead of assembly.

Since there are no setups in either case, we should sequence releases into the indi-

vidual lines according to the EDD rule and use this sequence at all nonshared stations,

just as we did for the separate CONWIP line case. Hence, to generate a complete plan

we need only determine a sequence to use at shared stations.

One might intuitively think that using first-in, first-out (FIFO) would work well.

However, if there is variability in the process times, then, for example, eventually a

string of A jobs will arrive at the shared resource before the matching B jobs. Using

FIFO will therefore only create a queue of unmatched parts at the assembly operation. In

1.0 1.0 1.0

Part A

1.0
Assembly

1.0

1.0

1.0 1.0

Part B

Figure 15.4

Two CONWIP lines

sharing a common process

center.
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extreme cases, this could actually cause the bottleneck to starve for work since so much

WIP is tied up at assembly.

A better alternative is first-in-system, first-out (FISFO) dispatching at the shared

resource. Under this rule, jobs are sequenced according to when they entered the system

(i.e., the times their CONWIP cards authorized their release). Since the CONWIP cards

authorize releases for matching parts (i.e., one A and one B) at assembly at the same

time, this rule serves to sequence the shared machine according to the assembly sequence.

Hence it serves to synchronize arrivals to assembly as closely as possible. Of course,

when there are no B jobs to work on at the shared machine (because of an unusually long

process time upstream, perhaps) it will process only A jobs. But as soon as it receives B

jobs to work on, it will.

15.4.2 Single CONWIP Lines with Setups

Scheduling becomes more difficult when the system involves setups because the sequence

affects capacity. To illustrate the issues and an approach for resolving them, we consider

a CONWIP line with setups at the bottleneck. Even this comparatively simple case is

surprisingly difficult. Indeed, even determining whether a sequence exists that will satisfy

all the due dates cannot be done with a polynomial algorithm.

To illustrate the difficulty of this problem and to suggest a solution approach, we

consider the set of 16 jobs shown in Table 15.5. Each job takes 1 hour to complete,

not including a setup. Setups take 4 hours and occur whenever we switch from any job

family to any other. The jobs in Table 15.5 are arranged in earliest due date order. As we

see, EDD is not very effective here, since it results in 10 setups and 12 tardy jobs for an

average tardiness of 10.4. To find a better solution, we clearly do not want to evaluate

every possibility, since there are 16! = 2 × 1013 possible sequences. Instead we seek a

heuristic that gives a good solution.

One possible approach is known as a greedy algorithm. Each step of a greedy

algorithm considers all simple alternatives (i.e., pairwise interchanges of jobs in the

Table 15.5 EDD Sequence

Job Due Completion

Number Family Date Time Lateness

1 1 5 5 0

2 1 6 6 0

3 1 10 7 −3

4 2 13 12 −1

5 1 15 17 2

6 2 15 22 7

7 1 22 27 5

8 2 22 32 10

9 1 23 37 14

10 3 29 42 13

11 2 30 47 17

12 2 31 48 17

13 3 32 53 21

14 3 32 54 22

15 3 33 55 22

16 3 40 56 16
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Table 15.6 Sequence after First Swap in Greedy
Algorithm

Job Due Completion

Number Family Date Time Lateness

1 1 5 5 0

2 1 6 6 0

3 1 10 7 −3

5 1 15 8 −7

4 2 13 13 0

6 2 15 14 −1

7 1 22 19 −3

8 2 22 24 2

9 1 23 29 6

10 3 29 34 5

11 2 30 39 9

12 2 31 40 9

13 3 32 45 13

14 3 32 46 14

15 3 33 47 14

16 3 40 48 8

sequence) and selects the one that improves the schedule the most. This is why it is

called greedy. The number of possible interchanges (120 in this case) is much smaller

than the total number of sequences, and hence this algorithm will find a solution quickly.

The question of course is, how good will the solution be? We consider this below.

Checking the total tardiness for every possible exchange between two jobs in the

sequence reveals that the biggest decrease is achieved by putting job 4 after job 5. As

shown in Table 15.6, this eliminates two setups (going from family 1 to family 2 and

back again). The average tardiness is now 5.0 with eight setups.

We repeat the procedure in the second step of the algorithm. This time, the biggest

reduction in total tardiness results from moving job 7 after job 8. Again, this eliminates

two setups by grouping like families together. The average tardiness falls to 1.2 with six

setups. The third step moves job 10 after job 12, which eliminates one setup and reduces

the average tardiness to 1
2
. The resulting sequence is shown in Table 15.7.

At this point, no further single exchanges can reduce total tardiness. Thus the greedy

algorithm terminates with a sequence that produces three tardy jobs. The question now

is, could we have done better?

The answer, as shown in Table 15.8, which gives a feasible sequence, is yes. But

must we evaluate all 16! possible sequences to find it? Mathematically speaking, we

must. However, practically speaking, we can often find a better (even feasible) sequence

by using a slightly more clever approach than the simple greedy algorithm.

To develop such a procedure, we observe that the problem with greedy algorithms

is that they can quickly converge to a local optimum—a solution that is better than any

other adjacent solutions, but not as good as a nonadjacent solution. Since the greedy

algorithm considered only adjacent moves (pairwise interchanges), it is vulnerable to

getting stuck at a local optimum. This is particularly likely because NP-hard problems

like this one tend to have many local optima. What we need, therefore, is a mechanism

that will force the algorithm away from a local optimum in order to see if there are better

sequences further away.
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Table 15.7 Final Configuration Produced by Greedy
Algorithm

Job Due Completion

Number Family Date Time Lateness

1 1 5 5 0

2 1 6 6 0

3 1 10 7 −3

5 1 15 8 −7

4 2 13 13 0

6 2 15 14 −1

8 2 22 15 −7

7 1 22 20 −2

9 1 23 21 −2

11 2 30 26 −4

12 2 31 27 −4

10 3 29 32 3

13 3 32 33 1

14 3 32 34 2

15 3 33 35 2

16 3 40 36 −4

One way to do this is to prohibit (make “taboo”) certain recently considered moves.

This approach is called tabu search (see Glover 1990), and the list of recent (and now

forbidden) moves is called a tabu list. In practice, there are many ways to characterize

moves. One obvious (albeit inefficient) choice is the entire sequence. In this case, certain

sequences would become tabu once they were evaluated. But because there are so many
sequences, the tabu list would need to be very long to be effective. Another, more efficient

but less precise, option is the location of the job in the sequence. Thus, the move placing

job 4 after job 5 (as we did in our first move) would become tabu once it was considered

Table 15.8 A Feasible Sequence

Job Due Completion

Number Family Date Time Lateness

1 1 5 5 0

2 1 6 6 0

3 1 10 7 −3

5 1 15 8 −7

4 2 13 13 0

6 2 15 14 −1

8 2 22 15 −7

11 2 30 16 −14

12 2 31 17 −14

7 1 22 22 0

9 1 23 23 0

10 3 29 28 −1

13 3 32 29 −3

14 3 32 30 −2

15 3 33 31 −2

16 3 40 32 −8
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the first time. But because we need only prohibit this move temporarily in order to

prevent the algorithm from settling into a local minimum, the length of the tabu list is

limited. Once a tabu move has been on the list long enough, it is discarded and can then

be considered again.

Tabu search can be further refined by not considering moves that we know cannot

make things better. For example, in the above problem we know that making the sequence

anything but EDD within a family (i.e., between setups) will only make things worse.

For example, we would never consider moving job 2 after job 1 since these are of the

same family and job 1 has a due date that is earlier than that for job 2. This type of

consideration can limit the number of moves that must be considered and therefore can

speed the algorithm.

Although tabu search is simple in principle, its implementation can become compli-

cated (see Woodruff and Spearman 1992 for a more detailed discussion). Also, there are

many other heuristic approaches that can be applied to sequencing and scheduling prob-

lems. Researchers are continuing to evolve new methods and evaluate which work best

for given problems. For more discussion on heuristic scheduling methods, see Morton

and Pentico (1993) and Pinedo (1995).

15.4.3 Bottleneck Scheduling Results

An important conclusion of this section is that scheduling need not be as hopeless as a

narrow interpretation of the complexity results from scheduling theory might suggest. By

simplifying the environment (e.g., with CONWIP lines) and using well-chosen heuristics,

managers can achieve reasonably effective scheduling procedures.

In pull systems, such as CONWIP lines, simple sequences are sufficient, since the

timing of releases is controlled by progress of the system. If there are no setups, an

EDD sequence is an appropriate choice for a single CONWIP line. It is also suitable for

systems of CONWIP lines with shared resources, as long as there are no significant setups

and the FISFO dispatching rule is used at the shared resources. If there are significant

setups, then a simple sequence is still sufficient for CONWIP lines, but not an EDD one.

However, practical heuristics, such as tabu search, can be used to find good solutions for

this case.

15.5 Diagnostic Scheduling

Unfortunately, not all scheduling situations are amenable to simple bottleneck sequenc-

ing. In some systems, the identity of the bottleneck shifts, due to changes in product mix

(e.g., due to demand shifts) or system capacity (e.g., due to a fluctuating labor force).

In some factories, extremely complicated routings do not allow use of CONWIP or any

other pull system. In still others, WIP in the system is reassigned to different customers

in response to a constantly changing demand profile.

A glib suggestion for dealing with these situations is to get rid of them. In some

systems where this is possible, it may be the most sensible course of action. However, in

others it may actually be infeasible physically or economically. So we need methods for

dealing with the scheduling problems of complex production environments. To derive

these, we need more than good solutions to mathematical problems. We must also address

the following considerations:

1. Models depend on data, which must be estimated. A common parameter

required by many scheduling models is a tardiness cost, which is used to make
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a trade-off between customer service and inventory costs. However, almost no

one we have encountered in industry is comfortable with specifying such a cost

in advance of seeing its effect on the schedule.

2. Many intangibles are not addressed by models. Special customer

considerations, changing shop floor conditions, evolving relationships with

suppliers and subcontractors, and so forth make completely automatic

scheduling all but impossible. Consequently, most scheduling professionals

with whom we have spoken feel that an effective scheduling system must allow

for human intervention. To make effective use of human intelligence, such a

system should evaluate the feasibility (not optimality) of a given schedule and,

if it is infeasible, suggest changes. Suggestions might include adding capacity

via overtime, temporary workers, or subcontracting; pushing out due dates of

certain jobs; and splitting large jobs. Human judgment is required to choose

wisely among these options, in order to address such questions as: Which

customers will tolerate a late or partial shipment? Which parts can be

subcontracted now? Which groups of workers can and cannot be asked to work

overtime?

Neither optimization-based nor simulation-based approaches are well suited to eval-

uating candidate schedules and offering improvement alternatives. Perhaps because of

this, a survey of scheduling software found no systems with more than trivial diagnostic

capability (Arguello 1994).

In contrast, the ERP paradigm is intended to develop and evaluate production sched-

ules. The master production schedule (MPS) provides the demand; material requirements

planning (MRP) nets demand, determines material requirements, and offsets them to

provide a release schedule; and capacity requirements planning checks the schedule

for feasibility. As a planning framework, this is ideally suited to real-world production

control. However, as we discussed earlier, the basic model in MRP is too simple to ac-

curately represent what happens in the plant. Similarly CRP is an inaccurate check on

MRP because it suffers from the same modeling flaw (fixed lead times) as MRP. Even if

CRP were an accurate check on schedule feasibility, it does not offer useful diagnostics

on how to correct infeasibilities.

To address this situation we now discuss a scheduling process that provides more

effective diagnostic functionality than the ERP framework but eliminates the modeling

flaws of MRP. To do this, we discuss how and why infeasibilities arise and then offer a

procedure for detecting them and suggesting corrective measures.

15.5.1 Types of Schedule Infeasibility

The conveyor model indicates that there are two basic types of schedule infeasibility.

WIP infeasibility is caused by inappropriate positioning of WIP. If there is insufficient

WIP in the system to facilitate fulfillment of near-term due dates, then the schedule will

be infeasible regardless of the capacity. The only way to remedy a WIP infeasibility is

to postpone (push out) demand. Capacity infeasibility is caused by having insufficient

capacity. Capacity infeasibilities can be remedied by either pushing out demand or adding

capacity.

Example:

We illustrate the types and effects of schedule infeasibility by considering a line with a

demonstrated capacity of r P
b = 100 units per day and a practical minimum process time
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Table 15.9 Demand for
Diagnostics
Example

Day from Amount

Start Due

1 90

2 100

3 90

4 80

5 70

6 130

7 120

8 110

9 110

10 110

11 100

12 90

13 90

14 90

15 90

of T P
0 = 3 days. By Little’s law, these values imply an average WIP level of 300 units.

Currently, there are 95 jobs that are expected to finish at the end of day 1; 90 that should

finish by the end of day 2; and 115 that have just started. Of these last 115 jobs, 100 will

finish at the end of day 3. The remaining 15 will finish on day 4 because of the capacity

constraint. The demands, which start out low but increase to the point where they exceed

capacity, are given in Table 15.9.

First observe that total demand for the first 3 days is 280 jobs, while there are 300

units of WIP and capacity (each job is one unit). Demand for the next 12 days is 1,190

units, while there is capacity to produce 1,200 over this interval plus 20 units of current

WIP leftover after filling demand for the first 3 days. Thus, from a quick aggregate

perspective, meeting demand appears feasible.

However, when we look more closely, a problem becomes apparent. At the end of

the first day the line will produce 95 units to meet a demand of 90 units, which leaves

five units of finished goods inventory (FGI). After the second day 90 additional units will

be completed, but demand for that day is 100. Even after the five units of FGI leftover

from day 1 are used, this results in a deficit of five units. At the end of the third day 100

units are produced to meet demand of 90 units, resulting in an excess of 10 units. This

can cover the deficit from day 2, but only if we are willing to be a day late on delivery.

The reason for the deficit in day 2 is that there is not enough WIP in the system

within 2 days of completion to cover demand during the first 2 days. While total demand

for days 1 and 2 is 90 + 100 = 190 units, there are only 95 + 90 = 185 units of WIP

that can be produced by the end of day 2. Hence, a five-unit deficit will occur no matter

how much capacity the line has. This is an example of a WIP infeasibility. Note that

because it does not involve capacity, MRP can detect this type of infeasibility.

Looking at the demands beyond day 3, we see that there are other problems as

well. Figure 15.5 shows the maximum cumulative production for the line relative to the

cumulative demand for the line. Whenever maximum cumulative production falls below

cumulative demand, the schedule is infeasible. The surplus line, whose scale is on the
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Figure 15.5

Demand versus available

production and WIP.

right, is the difference between the maximum cumulative production and the cumulative

demand. Negative values indicate infeasibility. This curve first becomes negative in day

2—the infeasibility caused by insufficient WIP in the line. After that, the line can produce

more than demand, and the surplus curve becomes positive. It becomes negative again

on day 8 when demand begins to exceed capacity and stays negative until day 14 when

the line finally catches back up.

The infeasibility in day 8 is different from that in day 2 because it is a function of

capacity. While no amount of extra capacity could enable the line to meet demand in day

2, production of an additional 25 units of output sometime before day 8 would allow it

to meet demand on that day. Hence the infeasibility that occurred on day 8 is an example

of a capacity infeasibility.

The two different types of infeasibilities require different remedies. Since adding

capacity will not help a WIP infeasibility, the only solution is to push out due dates. For

example, if five units of the 100 units due in day 2 could be pushed out to day 3, that

portion of the schedule would become feasible.

Capacity infeasibilities can be remedied in two ways: by adding capacity or by

pushing out due dates. For instance, if overtime were used on day 8 to produce 25 units

of output, the schedule would be feasible. However, this will also increase the surplus

by the end of the planning horizon (see Figure 15.6). Alternatively, if 30 units of the
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Figure 15.7

Demand versus available

production and WIP after

pushing out demand.

130 units demanded on day 6 are moved to days 12, 13, and 14 (10 each), the schedule

also becomes feasible (see Figure 15.7). This results in a smaller surplus at the end of

the planning horizon than occurs under the overtime alternative, since no capacity is

added.

Of course, in an actual scheduling situation things may be much more complex than

this simple example. Nonetheless, this procedure provides a simple way to evaluate an

existing set of demands considering WIP and capacity.

15.6 Production Scheduling in a Pull Environment

Most firms facing complex scheduling problems turn to MRP as the basis for their

scheduling system. Unfortunately, as we noted in Chapters 3 and 5, MRP is a push

system based on an unrealistic (infinite-capacity) model of the production system. As

a result, MRP systems tend to suffer from WIP explosions, long cycle times, and poor

customer service. Nevertheless, the general nature of MRP, coupled with widely available

commercial software, often makes MRP seem like the only option.

While we cannot entirely overcome the flaws of MRP, we can take steps to improve

its performance by combining it with elements of pull.

15.6.1 Schedule Planning, Pull Execution

Even the best schedule is only a plan of what should happen, not a guarantee of what will

happen. By necessity, schedules are prepared relatively infrequently compared to shop

floor activity; the schedule may be regenerated weekly, while material flow, machine

failures, and so forth happen in real time. Hence, they cannot help but become outdated,

sometimes very rapidly. Therefore we should treat the schedule as a set of suggestions,

not a set of requirements, concerning the order and timing of releases into the system.

A pull system is an ideal mechanism for linking releases to real-time status infor-

mation. When the line is already congested with WIP, so that further releases will only

increase congestion without making jobs finish sooner, a pull system will prevent re-

leases. When the line runs faster than expected and has capacity for more work, a pull

system will draw it in. Fortunately, using a pull system in concert with a schedule is not

at all difficult.
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To illustrate how this would work, suppose we have a CONWIP system in place for

each routing and make use of the conveyor model to generate a schedule for the overall

system. Thus, if the parameters are correct, the conveyor model will generate a set of

release times that are very close to the times that the CONWIP system generates autho-

rizations (pull signals) for the releases. Of course, variability will always prevent a perfect

match, but on average actual performance will be consistent with the planned schedule.

When production falls behind schedule, we can catch up if there is a capacity

cushion (e.g., a makeup time at the end of each shift or day) available. If no such cushion

is available, we must adjust the schedule at the next regeneration. When production

outpaces the schedule, we can allow it to work ahead, by allowing the line to pull in

more than was planned. A simple rule comparing the current date and time with the date

and time of the next release can keep the CONWIP line from working too far ahead. In

this way, the CONWIP system can take advantage of the “good” production days without

getting too far from schedule.

When we cannot rely on a capacity cushion to make up for lags in production (e.g.,

we are running the line as fast as we can), we can supplement the CONWIP control

system with the statistical throughput control (STC) procedure described in Chapter 13.

This provides a means for detecting when production is out of control relative to the

schedule. When this occurs, either the system or the conveyor model parameters need

adjustment. Which to adjust may pose an important management decision. Reducing

capacity parameters may be tantamount to admitting that corporate goals are not achiev-

able. However, increasing capacity may require investment in equipment, staff, increased

subcontracting costs, or consulting.

15.6.2 Using CONWIP with MRP

Nothing in the previous discussion about using CONWIP in conjunction with a schedule

absolutely requires that the schedule be generated by using the conveyor model. Indeed,

we can use CONWIP with any scheduling system, including MRP. We would do this

by using the MRP-generated list of planned order releases, sorted by release date and

organized by CONWIP loop to provide the CONWIP release list for each CONWIP loop.

The CONWIP system then determines when jobs actually get pulled into the system.

If the MRP system uses realistic lead times that consider queueing (as described in

Chapters 8 and 9) and batch sizes that consider capacity (as described in Section 15.3.1)

it can work pretty well. If we link this to a CONWIP system using a production quota

with a capacity cushion, that works ahead when appropriate and provides a signal when

deviating from schedule, we can get the best of both the push and pull worlds. We then

have the advantage of a hierarchical planning system that works in concert with a pull

system that will not release when production has fallen behind (there is no point) and

will release more when production gets a bit ahead. This makes for a smoother flow and,

with controls like STC and a capacity cushion, provides the planner with an alarm that

things are out of control in time to take the appropriate action.

15.7 Conclusions

Scheduling problems are notoriously difficult, both because they involve many conflict-

ing goals and because the underlying mathematics can get very complex. Considerable

scheduling research has produced formalized measures of the complexity of scheduling
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problems and has generated some helpful insights. However, it has not yielded good

solutions to practical scheduling situations.

Because scheduling is difficult, an important insight from our discussion is that it

is frequently possible to avoid hard problems by solving different ones. One example

is replacing a system of exogenously generated due dates with a systematic means for

quoting them. Another is separating the problem of keeping cycle times short (solved

by using small jobs) from the problem of keeping capacities high (solved by sequencing

like jobs together for fewer setups). Given an appropriately formulated problem, good

heuristics for identifying feasible (not optimal) schedules are becoming available.

A recent trend in scheduling research and software development is toward more

and more detailed finite-capacity scheduling systems. This is motivated by the desire

to overcome the fundamental flaw in MRP (i.e., assuming infinite capacity) to make

the ERP planning hierarchy more effective. Unfortunately, finite-capacity scheduling

presents some large problems. It ignores variability and randomness and is inherently

a push system. Moreover, systems based on large deterministic simulations of each job

going through each machine in the plant often provide an overwhelming number of

options to the planner with insufficient means for evaluation. Finally, because the system

assumes a particular set of process times and demands that practically never occur, the

entire undertaking can be extremely frustrating and unproductive.

What is needed is a way to:

1. Optimize planning parameters such as lead times, lot sizes, and maximum WIP

levels.

2. Use a time phase reorder point system (e.g., MRP) to generate new jobs for

future release.

3. Use a pull system (e.g., CONWIP) to actually perform the releases.

4. Monitor the output of the flow (with, e.g., statistical throughput control) to

make sure jobs are completed on time (i.e., the flow stays “in control”).

5. Take action (e.g., work a makeup shift) when an out-of-control signal is

received.

The Factory Physics framework and the CONWIP generalized pull system provide the

means to make such a system a reality. Such a system would offer the planning benefits

of a scheduling system along with the environmental benefits of a pull system thereby

resulting in better on-time delivery with greater utilization of expensive resources and

much less inventory.

Study Questions

1. What are some goals of production scheduling? How do these conflict?

2. How does reducing cycle time support several of the above goals?

3. What motivates maximizing utilization? What motivates not maximizing utilization?

4. Why is average tardiness a better measure than average lateness?

5. What are some drawbacks of using service level as the only measure of due date

performance?

6. For each of the assumptions of classic scheduling theory, give an example of when it might

be valid. Give an example of when each is not valid.

7. Why do people use dispatching rules instead of finding an optimal schedule?



Problems

1. Consider the following three jobs to be processed on a single machine:

Job Process Due

Number Time Date

1 4 2
2 2 3
3 1 4

Enumerate all possible sequences and compute the average cycle time, total tardiness, and
maximum lateness for each. Which sequence works best for each measure? Identify it as
EDD, SPT, or something else.

2. You are in charge of the shearing and pressing operations in a job shop. When you arrived this
morning, there were seven jobs with the following processing times.

Processing Time

Job Shear Press

1 6 3
2 2 9
3 5 3
4 1 8
5 7 1
6 4 5
7 9 6

(a) What is the makespan under the SPT dispatching rule?
(b) What sequence yields the minimum makespan?
(c) What is this makespan?

3. Your boss knows Factory Physics and insists on reducing average cycle time to help keep jobs
on time and reduce congestion. For this reason, your personal performance evaluation is
based on the average cycle time of the jobs through your process center. However, your boss

550 Part III Principles in Practice

8. What dispatching rule minimizes average cycle time for a deterministic single machine?
What rule minimizes maximum tardiness? How can one easily check to see if a schedule
exists for which there are no tardy jobs?

9. Provide an argument that no matter how sophisticated the dispatching rule, it cannot solve
the problem of minimizing average tardiness.

10. What is some evidence that there are some scheduling problems for which no polynomial
algorithm exists?

11. Address the following comment: “Well, maybe today’s computers are too slow to solve the
job shop scheduling problem, but new parallel processing technology will speed them up to
the point where computer time should not be an obstacle to solving it in the near future.”

12. What higher-level planning problems are related to the production scheduling problem?
What are the variables and constraints in the high-level problems? What are the variables
and constraints in the lower-level scheduling problem? How are the problems linked?
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also knows that late jobs are extremely bad, and she will fire you if you produce a schedule

that includes any late jobs. The jobs listed below are staged in your process center for the first

shift. Sequence them such that your evaluation will be the best it can be without getting you

fired.

Job

J1 J2 J3 J4 J5

Processing time 6 2 4 9 3

Due date 33 13 6 23 31

4. Suppose daily production of a CONWIP line is nearly normally distributed with a mean of

250 pieces and a standard deviation of 50 pieces. The WIP level of the CONWIP line is 1,250

pieces. Currently there is a release list of 1,400 pieces with an “emergency position” 150

pieces out. A new order for 100 pieces arrives.

(a) Quote a lead time with 95 percent confidence if the new order is placed at the end of the

release list and if it is placed in the emergency position.

(b) Quote a lead time with 99 percent confidence if the new order is placed at the end of the

release list and if it is placed in the emergency position.

5. Consider the jobs in the table below. Process times for all jobs are 1 hour. Changeovers

between families require 4 hours. Thus, the completion time for job 1 is 5, for job 2 is 6, for

job 3 is 11, and so on.

Family Due

Job Code Date

1 1 5

2 1 6

3 2 12

4 2 13

5 1 13

6 1 19

7 1 20

8 2 20

9 2 26

10 1 28

(a) Compute the total tardiness of the sequence.

(b) How many possible sequences are there?

(c) Find a sequence with no tardiness.

6. The Hickory Flat Sawmill (HFS) makes four kinds of lumber in one mill. Orders come from a

variety of lumber companies to a central warehouse. Whenever the warehouse hits the reorder

point, an order is placed to HFS. Pappy Red, the sawmill manager, has set the lot sizes to be

run on the mill on the basis of historical demands and common sense. The smallest amount

made is a lot of 1,000 board-feet (1 kbf ). The time it takes to process a lot depends on the

product, but the time does not vary more than 25 percent from the mean. The changeover time

can be quite long depending on how long it takes to get the mill producing good product

again. The shortest time that anyone can remember is 2 hours. Once it took all day (8 hours).

Most of the time it takes around 4 hours. Demand data and run rates are given in Table 15.10.

The mill runs productively 8 hours per day, 5 days per week (assume 4.33 weeks per month).

The lot sizes are 50 of the knotty 1 × 10, 34 for the clear 1 × 4, 45 for the clear 1 × 6,

and 40 for the rough plank. Lots are run on a first-come, first-served basis as they arrive from

the warehouse. Currently the average response time is nearly 3 weeks (14.3 working days).
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Table 15.10 Data for the Sawmill Problem

Parameter Knotty 1 × 10 Clear 1 × 4 Clear 1 × 6 Rough Plank

Demand (kbf/month) 50 170 45 80
One lot time (hour) 0.2000 0.4000 0.6000 0.1000

The distributor has told HFS that HFS needs to get this down to 2 weeks in order to continue
being a supplier.
(a) Compute the effective SCV c2

e for the mill. What portion of c2
e is due to the term in square

brackets in equation (15.8)? What can you do to reduce it?
(b) Verify the 14.3-working-day cycle time.
(c) What can you do to reduce cycle times without investing in any more equipment or

physical process improvements?

7. Single parts arrive to a furnace at a rate of 100 per hour with exponential times between
arrivals. The furnace time is 3 hours with essentially no variability. It can hold 500 parts. Find
the batch size that minimizes total cycle time at the furnace.

8. Consider a serial line composed of three workstations. The first workstation has a production
rate of 100 units per day and a minimum practical lead time T P

0 of 3 days. The second has a
rate of 90 units per day and T P

0 = 4 days, and the third has a rate of 100 and T P
0 = 3 days.

Lead time for raw material is 1 day, and there are currently 100 units on hand.
Currently there are 450 units of finished goods, 95 units ready to go into finished goods on

the first day, 95 on the second, and 100 on the third, all from the last station. The middle
station has 35 units completed and ready to move to the last station and 90 units ready to
come out in each of the next four days. The first station has no WIP completed, 95 units that
will finish on the first day, zero units that will finish the second day, and 100 units that will
finish the third day.

The demand for the line is given in the table below.

Day from Amount
Start Due

1 80
2 80
3 80
4 80
5 80
6 130
7 150
8 180
9 220

10 240
11 210
12 150
13 90
14 80
15 80

Develop a feasible schedule that minimizes the amount of inventory required. If it is infeasible,
adjust demands by moving them out. However, all demand must be met within 17 days.

Day from Amount
Start Due

1 80
2 80
3 80
4 80
5 80
6 130
7 150
8 180
9 220

10 240
11 210
12 150
13 90
14 80
15 80

80
80
80
80
80
90

145
170
180
190
190
150

90
80
80

Consider a CONWIP line composed of several workstations. The effective production rate 
for the line is 100 units per day and the minimum practical lead time is nine days. Currently 
there are 450 units of finished goods and 775 in WIP including 95 units ready to go into 
finished goods on the first day, 95 on the second, and 100 on the third, 35 on the forth, and 
90 units ready to come out in each of the next five days. The demand for the line is given in 
the table below.

(a) Can all of this demand be met on time assuming the given production rate and 
minimum practical lead time?

(b) How should the work be started to minimize inventory and make sure everything is on 
time? (Hint: work the problem from the last demand to the first keeping track of the 
minimum inventory needed to meet demand.)     
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16 Aggregate and

Workforce Planning

And I remember misinformation followed us like a plague,
Nobody knew from time to time if the plans were changed.

Paul Simon

16.1 Introduction

A variety of manufacturing management decisions require information about what a
plant will produce over the next year or beyond. Examples include the following:

1. Staffing. Recruiting and training new workers is a time-consuming process.
Management needs a long-term production plan to decide how many and what
type of workers to add and when to bring them online in order to meet
production needs. Conversely, eliminating workers is costly and painful, but
sometimes necessary. Anticipating reductions via a long-term plan makes it
possible to use natural attrition, or other gentler methods, in place of layoffs to
achieve at least part of the reductions.

2. Procurement. Contracts with suppliers are frequently set up well in advance of
placing actual orders. For example, a firm might need an opportunity to
“certify” the subcontractor for quality and other performance measures.
Additionally, some procurement lead times are long (e.g., for high-technology
components they may be 6 months or more). Therefore, decisions regarding
contracts and long-lead-time orders must be made on the basis of a long-term
production plan.

3. Subcontracting. Management must arrange contracts with subcontractors to
manufacture entire components or to perform specific operations well in
advance of actually sending out orders. Determining what types of
subcontracting to use requires long-term projections of production
requirements and a plan for in-house capacity modifications.

4. Marketing. Marketing personnel should make decisions on which products to
promote on the basis of both a demand forecast and knowledge of which
products have tight capacity and which do not. A long-term production plan
incorporating planned capacity changes is needed for this.

553
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The module in which we address the important question of what will be produced
and when it will be produced over the long range is the aggregate planning (AP) module.
As Figure 13.9 illustrated, the AP module occupies a central position in the production
planning and control (PPC) hierarchy. The reason, or course, is that so many important
decisions, such as those listed, depend on a long-term production plan.

Precisely because so many different decisions hinge on the long-range production
plan, many different formulations of the AP module are possible. Which formulation
is appropriate depends on what decision is being addressed. A model for determining
the time of staffing additions may be very different from a model for deciding which
products should be manufactured by outside subcontractors. Yet a different model might
make sense if we want to address both issues simultaneously.

The staffing problem is of sufficient importance to warrant its own module in the
hierarchy of Figure 13.9, the workforce planning (WP) module. Although high-level
workforce planning (projections of total staffing increases or decreases, institution of
training policies) can be done using only a rough estimate of future production based on
the demand forecast, low-level staffing decisions (timing of hires or layoffs, scheduling
usage of temporary hires, scheduling training) are often based on the more detailed pro-
duction information contained in the aggregate plan. In the context of the PPC hierarchy
in Figure 13.9, we can think of the AP module as either refining the output of the WP
module or working in concert with the WP module. In any case, they are closely related.
We highlight this relationship by treating aggregate planning and workforce planning
together in this chapter.

As we mentioned in Chapter 13, linear programming is a particularly useful tool
for formulating and solving many of the problems commonly faced in the aggregate
planning and workforce planning modules. In this chapter, we will formulate several
typical AP/WP problems as linear programs (LPs). We will also demonstrate the use
of linear programming (LP) as a solution tool in various examples. Our goal is not so
much to provide specific solutions to particular AP programs, but rather to illustrate
general problem-solving approaches. The reader should be able to combine and extend
our solutions to cover situations not directly addressed here.

Finally, while this chapter will not make an LP expert out of readers, we do hope
that they will become aware of how and where LP can be used in solving AP problems.
If managers can recognize that particular problems are well suited to LP, they can easily
obtain the technical support (consultants, internal experts) for carrying out the analysis
and implementation. Unfortunately, far too few practicing managers make this connec-
tion; as a result, many are hammering away at problems that are well suited to linear
programming with manual spreadsheets and other ad hoc approaches.

16.2 Basic Aggregate Planning

We start with a discussion of simple aggregate planning situations and work our way up to
more complex cases. Throughout the chapter, we assume that we have a demand forecast

available to us. This forecast is generated by the forecasting module and gives estimates
of periodic demand over the planning horizon. Typically, periods are given in months,
although further into the future they can represent longer intervals. For instance, periods
1 to 12 might represent the next 12 months, while periods 13 to 16 might represent the
four quarters following these 12 months. A typical planning horizon for an AP module
is 1 to 3 years.
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16.2.1 A Simple Model

Our first scenario represents the simplest possible AP module. We consider this case not
because it leads to a practical model, but because it illustrates the basic issues, provides a
basis for considering more realistic situations, and showcases how linear programming
can support the aggregate planning process. Although our discussion does not presume
any background in linear programming, the reader interested in how and why LP works
is advised to consult Appendix 16A, which provides an elementary overview of this
important technique.

For modeling purposes, we consider the situation where there is only a single prod-
uct, and the entire plant can be treated as a single resource. In every period, we have a
demand forecast and a capacity constraint. For simplicity, we assume that demands rep-
resent customer orders that are due at the end of the period, and we neglect randomness
and yield loss.

It is obvious under these simplifying assumptions that if demand is less than capacity
in every period, the optimal solution is to simply produce amounts equal to demand in
every period. This solution will meet all demand just-in-time and therefore will not build
up any inventory between periods. However, if demand exceeds capacity in some periods,
then we must work ahead (i.e., produce more than we need in some previous period).
If demand cannot be met even by working ahead, we want our model to tell us this. To
model this situation in the form of a linear program, we introduce the following notation:

t = an index of time periods, where t = 1, . . . , t̄ , so t̄ is planning horizon for
problem

dt = demand in period t , in physical units, standard containers, or some other
appropriate quantity (assumed due at end of period)

ct = capacity in period t , in same units used for dt

r = profit per unit of product sold (not including inventory carrying cost)

h = cost to hold one unit of inventory for one period

Xt = quantity produced during period t (assumed available to satisfy demand at
end of period t)

St = quantity sold during period t (we assume that units produced in t are
available for sale in t and thereafter)

It = inventory at end of period t (after demand has been met); we assume I0 is
given as data

In this notation, Xt , St , and It are decision variables. That is, the computer program
solving the LP is free to choose their values so as to minimize the objective, provided the
constraints are satisfied. The other variables—dt , ct , r , h—are constants, which must
be estimated for the actual system and supplied as data. Throughout this chapter, we use
the convention of representing variables with capital letters and constants with lowercase
letters.

We can represent the problem of maximizing net profit minus inventory carrying
cost subject to capacity and demand constraints as

Maximize
t̄

∑

t=1

r St − hIt (16.1)

Subject to:

St ≤ dt t = 1, . . . , t̄ (16.2)
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Xt ≤ ct t = 1, . . . , t̄ (16.3)

It = It−1 + Xt − St t = 1, . . . , t̄ (16.4)

Xt , St , It ≥ 0 t = 1, . . . , t̄ (16.5)

The objective function computes net profit by multiplying unit profit r by sales St in
each period t , and subtracting the inventory carrying cost h times remaining inventory It

at the end of period t , and summing over all periods in the planning horizon. Constraints
(16.2) limit sales to demand. If possible, the computer will make all these constraints
tight, since increasing the St values increases the objective function. The only reason
that these constraints will not be tight in the optimal solution is that capacity constraints
(16.3) will not permit it.1 Constraints (16.4), which are of a form common to almost all
multiperiod aggregate planning models, are known as balance constraints. Physically,
all they represent is conservation of material; the inventory at the end of period t(It ) is
equal to the inventory at the end of period t − 1(It−1) plus what was produced during
period t(Xt ) minus the amount sold in period t (St ). These constraints are what force the
computer to choose values for Xt , St , and It that are consistent with our verbal definitions
of them. Constraints (16.5) are simple non-negativity constraints, which rule out negative
production or inventory levels. Many, but not all (e.g., not Solver in Excel), computer
packages for solving LPs automatically force decision variables to be non-negative unless
the user specifies otherwise.

16.2.2 An LP Example

To make the above formulation concrete and to illustrate the mechanics of solving it via
linear programming, we now consider a simple example. The Excel spreadsheet shown
in Figure 16.1 contains the unit profit r of $10, the one-period unit holding cost h of
$1, the initial inventory I0 of 0, and capacity and demand data ct and dt for the next
6 months. We will make use of the rest of the spreadsheet in Figure 16.1 momentarily.
For now, we can express LP (16.1)–(16.5) for this specific case as

Maximize 10(S1 + S2 + S3 + S4 + S5 + S6) − 1(I1 + I2 + I3 + I4 + I5 + I6) (16.6)

Subject to:

Demand constraints

S1 ≤ 80 (16.7)

S2 ≤ 100 (16.8)

S3 ≤ 120 (16.9)

S4 ≤ 140 (16.10)

S5 ≤ 90 (16.11)

S6 ≤ 140 (16.12)

1If we want to consider demand as inviolable, we could remove constraints (16.2) and replace St with dt

in the objective and constraints (16.4). The problem with this, however, is that if demand is capacity-
infeasible, the computer will just come back with a message saying “infeasible,” which doesn’t tell us why.
The formulation here will be feasible regardless of demand; it simply won’t make sales equal to demand if
there is not enough capacity, and thus we will know what demand we are incapable of meeting from the
solution.
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0

0

0

6
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0
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Total

0

0
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Note: X_t, S_t and I_t must be >= 0

Figure 16.1

Input spreadsheet for
linear programming
example.

Capacity constraints

X1 ≤ 100 (16.13)

X2 ≤ 100 (16.14)

X3 ≤ 100 (16.15)

X4 ≤ 120 (16.16)

X5 ≤ 120 (16.17)

X6 ≤ 120 (16.18)

Inventory balance constraints

I1 − X1 + S1 = 0 (16.19)

I2 − I1 − X2 + S2 = 0 (16.20)

I3 − I2 − X3 + S3 = 0 (16.21)

I4 − I3 − X4 + S4 = 0 (16.22)

I5 − I4 − X5 + S5 = 0 (16.23)

I6 − I5 − X6 + S6 = 0 (16.24)

Non-negativity constraints

X1, X2, X3, X4, X5, X6 ≥ 0 (16.25)

S1, S2, S3, S4, S5, S6 ≥ 0 (16.26)

I1, I2, I3, I4, I5, I6 ≥ 0 (16.27)



558 Part III Principles in Practice

Some linear programming packages allow entry of a problem formulation in a format
almost identical to (16.6) to (16.27) via a text editor. While this is certainly convenient
for very small problems, it can become prohibitively tedious for large ones. Because
of this, the OM research community has done considerable work to develop modeling

languages that provide user-friendly interfaces for describing large-scale optimization
problems (see Fourer, Gay, and Kernighan 1993 for an excellent example of a model-
ing language). Conveniently for us, LP is becoming so prevalent that our spreadsheet
package, Microsoft Excel, has an LP tool, called the Solver, built right into it. We can
represent and solve formulations (16.6) to (16.27) right in the spreadsheet shown in
Figure 16.1. The following technical note provides details on how to do this.

Technical Note: Using the Excel LP Solver

Although the reader should consult the Excel documentation for details about the release in
use, we will provide a brief overview of the LP solver in Excel 2007. The first step is to
establish cells for the decision variables (B11:G13 in Figure 16.1). We have initially entered
zeros for these, but we can set them to be anything we like; thus, we could start by setting
Xt = dt , which would be closer to an optimal solution than zeros. The spreadsheet is a
good place to play what-if games with the data. However, eventually we will turn over the
problem of finding optimal values for the decision variables to the LP solver. Notice that for
convenience we have also entered a column that totals Xt , St , and It . For example, cell H11
contains a formula to sum cells B11:G11. This allows us to write the objective function more
compactly.

Once we have specified decision variables, we construct an objective function in cell B16.
We do this by writing a formula that multiplies r (cell B2) by total sales (cell H12) and then
subtracts the product of h (cell B3) and total inventory (cell H13). Since all the decision
variables are zero at present, this formula also returns a zero; that is, the net profit on no
production with no initial inventory is zero.

Next we need to specify the constraints (16.7) to (16.27). To do this, we need to develop
formulas that compute the left-hand side of each constraint. For constraints (16.7) to (16.18)
we really do not need to do this, since the left-hand sides are only Xt and St and we already
have cells for these in the variables portion of the spreadsheet. However, for clarity, we will
copy them to cells B19:B30. We will not do the same for the non-negativity constraints (16.25)
to (16.27), since it is a simple matter to choose all the decision variables and force them to be
greater than or equal to zero in the Excel Solver menu. Constraints (16.19) to (16.24) require
us to do work, since the left-hand sides are formulas of multiple variables. For instance, cell
B31 contains a formula to compute I1 − I0 − X1 + S1 (that is, B13 − B4 − B11 + B12). We
have given these cells names to remind us of what they represent, although any names could
be used, since they are not necessary for the computation. We have also copied the values

Solver Parameters

Equal To: 0

$B$16

$B$11:$G$13

$B$11:$G$13 >= 0
$B$19:$B$30 <= $D$19:$D$30
$B$31:$B$36 = 0

Set Target Cell:

Max Min Value of:
By Changing Cells:

Subject to the Constraints:

Guess

Add

Change

Delete

Close

Options

Reset All

Help

Solve

Figure 16.2

Specification of objectives
and constraints in Excel.
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Add Constraint

$B$19:$B$30 <= =D$19:$D$30

Cell Reference: Constraint:

AddCancelOK Help

Figure 16.3

Add Constraint dialog box
in Excel.

Solver Options

100 secondsMax Time:
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0.000001
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0.001

Iterations:

Precision:
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Convergence:

Cancel

OK

Help

Save Model...

Load Model...

Assume Linear Model

Assume Non-Negative

Use Automatic Scaling

Show Iteration Results
Estimates Derivatives Search

Tangent

Quadratic

Forward

Central

Newton

Conjugate

Figure 16.4

Setting Excel to use linear
programming.

of the right-hand sides of the constraints into cells D19:D36 and labeled them in column E
for clarity. This is not strictly necessary, but does make it easier to specify constraints in the
Excel Solver, since whole blocks of constraints can be specified (for example, B19:B30 ≤
D19:D30). The equality and inequality symbols in column C are also unnecessary, but make
the formulation easier to read.

To use the Excel LP Solver, we choose Formula/Solver from the menu. In the dialog
box that comes up (see Figure 16.2), we specify the cells containing the objective, choose to
maximize or minimize, and specify the cells containing decision variables (this can be done
by pointing with the mouse). Then we add constraints by choosing Add from the constraints
section of the form. Another dialog box (see Figure 16.3) comes up in which we fill in the
cell containing the left-hand side of the constraint, choose the relationship (≥, ≤, or =), and
fill in the right-hand side.

Note that the actual constraint is not shown explicitly in the spreadsheet; it is entered only
in the Solver menu. However, the right-hand side of the constraint can be another cell in the
spreadsheet or a constant. By specifying a range of cells for the right-hand side and a constant
for the left-hand side, we can add a whole set of constraints in a single command. For instance,
the range B11:G13 represents all the decision variables, so if we use this range as the left-hand
side, a ≥ symbol, and a zero for the right-hand side, we will represent all the non-negativity
constraints (16.25) to (16.27). By choosing the Add button after each constraint we enter,
we can add all the model constraints. When we are done, we choose the OK button, which
returns us to the original form. We have the option to edit or delete constraints at any time.

Finally, before running the model, we must tell Excel that we want it to use the LP
solution algorithm.2 We do this by choosing the Options button to bring up another dialog
box (see Figure 16.4) and choosing the Assume Linear Model option. This form also allows

2Excel can also solve nonlinear optimization problems and will apply the nonlinear algorithm as a
default. Since LP is much more efficient, we definitely want to choose it as long as our model meets the
requirements. All the formulations in this chapter are linear and therefore can use LP.
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us to limit the time the model will run and to specify certain tolerances. If the model does
not converge to an answer, the most likely reason is an error in one of the constraints.
However, sometimes increasing the search time or reducing tolerances will fix the problem
when the solver cannot find a solution. The reader should consult the Excel manual for more
detailed documentation on this and other features, as well as information on upgrades that
may have occurred since this writing. Choosing the OK button returns us to the original
form.

Once we have done all this, we are ready to run the model by choosing the Solve button.
The program will pause to set up the problem in the proper format and then will go through
a sequence of trial solutions (although not for long in such a small problem as this).

Basically, LP works by first finding a feasible solution—one that satisfies all the
constraints—and then generating a succession of new solutions, each better than the
last. When no further improvement is possible, it stops and the solution is optimal: It
maximizes or minimizes the objective function. Appendix 16A provides background on
how this process works.

The algorithm will stop with one of three answers:

1. Could not find a feasible solution. This probably means that the problem is
infeasible; that is, there is no solution that satisfies all the constraints. This
could be due to a typing error (e.g., a plus sign was incorrectly typed as a minus
sign) or a real infeasibility (e.g., it is not possible to meet demand with
capacity). Notice that by clever formulation, one can avoid having the algorithm
terminate with this depressing message when real infeasibilities exist. For
instance, in formulation (16.6) to (16.27), we did not force sales to be equal to
demand. Since cumulative demand exceeds cumulative capacity, it is obvious
that this would not have been feasible. By setting separate sales and production
variables, we let the computer tell us where demand cannot be met. Many
variations on this trick are possible.

2. Does not converge. This means either that the algorithm could not find an
optimal solution within the allotted time (so increasing the time or decreasing
the tolerances under the Options menu might help) or that the algorithm is able
to continue finding better and better solutions indefinitely. This second
possibility can occur when the problem is unbounded: The objective can be
driven to infinity by letting some variables grow positive or negative without
bound. Usually this is the result of a failure to properly constrain a decision
variable. For instance, in the above model, if we forgot to specify that all
decision variables must be non-negative, then the model will be able to make
the objective arbitrarily large by choosing negative values of It , t = 1, . . . , 6.
Of course, we do not generate revenue via negative inventory levels, so it is
important that non-negativity constraints be included to rule out this
nonsensical behavior.3

3. Found a solution. This is the outcome we want. When it occurs, the program
will write the optimal values of the decision variables, objective value, and
constraints into the spreadsheet. Figure 16.5 shows the spreadsheet as modified
by the LP algorithm. The program also offers three reports—Answer,

3We will show how to modify the formulation to allow for backordering, which is like allowing negative
inventory positions, without this inappropriately affecting the objective function, later in this chapter.
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Figure 16.5

Output spreadsheet for LP
example.

Sensitivity, and Limits—which write information about the solution into other
spreadsheets. For instance, highlighting the Answer report generates a
spreadsheet with the information shown in Figures 16.6 and 16.7. Figure 16.8
contains some of the information contained in the report generated by choosing
Sensitivity.

Now that we have generated a solution, let us interpret it. Both Figure 16.5—the
final spreadsheet—and Figure 16.6 show the optimal decision variables. From these we
see that it is not optimal to produce at full capacity in every period. Specifically, the
solution calls for producing only 110 units in month 5 when capacity is 120. This might
seem odd given that demand exceeds capacity. However, if we look more carefully, we
see that cumulative demand for periods 1 to 4 is 440 units, while cumulative capacity for
those periods is only 420 units. Thus, even when we run flat out for the first 4 months,
we will fall short of meeting demand by 20 units. Demand in the final 2 months is only
230 units, while capacity is 240 units. Since our model does not permit backordering, it
does not make sense to produce more than 230 units in months 5 and 6. Any extra units
cannot be used to make up a previous shortfall.

Figure 16.7 gives more details on the constraints by showing which ones are binding

or tight (i.e., equal to the right-hand side) and which ones are nonbinding or slack, and
by how much. Most interesting are the constraints on sales, given in (16.7) to (16.12),
and capacity, in (16.13) to (16.18). As we have already noted, the capacity constraint on
X5 is nonbinding. Since we produce only 110 units in month 5 and have capacity for
120, this constraint is slack by 10 units. This means that if we changed this constraint
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Figure 16.6
Optimal values report for LP example.

Microsoft Excel 12.0 Answer Report
Worksheet: [BasicCap.xls]Figure 16.6
Report Created: 8/29/2007 3:11:48 PM

Target Cell (Max)
Cell Name Original Value Final Value

$B$16 Net_Profit $0.00 $6,440.00

Adjustable Cells
Cell Name Original Value Final Value

$B$11  X_1
$C$11  X_2
$D$11  X_3
$E$11  X_4
$F$11  X_5
$G$11  X_6
$B$12  S_1
$C$12  S_2
$D$12  S_3
$E$12  S_4
$F$12  S_5
$G$12  S_6
$B$13  I_1
$C$13  I_2
$D$13  I_3
$E$13  I_4
$F$13  I_5
$G$13  I_6

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

100
100
100
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120

80
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120
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90
140

20
20
0
0

20
0

Figure 16.7
Optimal constraint status for LP example.

Microsoft Excel 12.0 Answer Report
Worksheet: [BasicCap.xls]Figure 16.7
Report Created: 8/29/2007 3:11:48 PM

Constraints
Cell Name Cell Value Formula SlackStatus

$B$31  I_1-I_0-X_1+S_1
$B$32  I_2-I_1-X_2+S_2
$B$33  I_3-I_2-X_3+S_3
$B$34  I_4-I_3-X_4+S_4
$B$35  I_5-I_4-X_5+S_5
$B$36  I_6-I_5-X_6+S_6
$B$19  S_1
$B$20  S_2
$B$21  S_3
$B$22  S_4
$B$23  S_5
$B$24  S_6
$B$25  X_1
$B$26  X_2
$B$27  X_3
$B$28  X_4
$B$29  X_5
$B$30  X_6
$B$11  X_1
$C$11  X_2
$D$11  X_3
$E$11  X_4
$F$11  X_5
$G$11  X_6
$B$12  S_1
$C$12  S_2
$D$12  S_3
$E$12  S_4
$F$12  S_5
$G$12  S_6
$B$13  I_1
$C$13  I_2
$D$13  I_3
$E$13  I_4
$F$13  I_5
$G$13  I_6

$B$31=0
$B$32=0
$B$33=0
$B$34=0
$B$35=0
$B$36=0
$B$19<=$D$19
$B$20<=$D$20
$B$21<=$D$21
$B$22<=$D$22
$B$23<=$D$23
$B$24<=$D$24
$B$25<=$D$25
$B$26<=$D$26
$B$27<=$D$27
$B$28<=$D$28
$B$29<=$D$29
$B$30<=$D$30
$B$11>=0
$C$11>=0
$D$11>=0
$E$11>=0
$F$11>=0
$G$11>=0
$B$12>=0
$C$12>=0
$D$12>=0
$E$12>=0
$F$12>=0
$G$12>=0
$B$13>=0
$C$13>=0
$D$13>=0
$E$13>=0
$F$13>=0
$G$13>=0

Not Binding
Not Binding
Not Binding
Not Binding
Not Binding
Not Binding
Binding
Binding
Binding
Not Binding
Binding
Binding
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by a little (e.g., reduced capacity in month 5 from 120 to 119 units), it would not change
the optimal solution at all.

In this same vein, all sales constraints are tight except that for S4. Since sales are
limited to 140, but optimal sales are 120, this constraint has slackness of 20 units. Again,
if we were to change this sales constraint by a little (e.g., limit sales to 141 units), the
optimal solution would remain the same.

In contrast with these slack constraints, consider a binding constraint. For instance,
consider the capacity constraint on X1, which is the seventh one shown in Figure 16.7.
Since the model chooses production equal to capacity in month 1, this constraint is tight.
If we were to change this constraint by increasing or decreasing capacity, the solution
would change. If we relax the constraint by increasing capacity, say, to 101 units, then
we will be able to satisfy an additional unit of demand and therefore the net profit will
increase. Since we will produce the extra item in month 1, hold it for 3 months to month
4 at a cost of $1 per month, and then sell it for $10, the overall increase in the objective
from this change will be $10 − 3 = $7. Conversely, if we tighten the constraint by
decreasing capacity, say to 99 units, then we will be able to carry only 19 units from
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Microsoft Excel 12.0 Sensitivity Report
Worksheet: [BasicCap.xls]Figure 16.8
Report Created: 8/29/2007 3:11:48 PM
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Sensitivity analysis for LP
example.

month 1 to month 3 and will therefore lose one unit of demand in month 3. The loss in
net profit from this unit will be $8 ($10 − $2 for 2 months’ holding).

The sensitivity data generated by the LP algorithm shown in Figure 16.8 gives
us more direct information on the sensitivity of the final solution to changes in the
constraints. This report has a line for every constraint in the model and reports three
important pieces of information:4

1. The shadow price represents the amount the optimal objective will be
increased by a unit increase in the right-hand side of the constraint.

2. The allowable increase represents the amount by which the right-hand side can
be increased before the shadow price no longer applies.

3. The allowable decrease represents the amount by which the right-hand side
can be decreased before the shadow price no longer applies.

Appendix 16A gives a geometric explanation of how these numbers are computed.

4The report also contains sensitivity information about the coefficients in the objective function. See
Appendix 16A for a discussion of this.
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To see how these data are interpreted, consider the information in Figure 16.8 on the
seventh line of the constraint section for the capacity constraint X1 ≤ 100. The shadow
price is $7, which means that if the constraint is changed to X1 ≤ 101, net profit will
increase by $7, precisely as we computed above. The allowable increase is 20 units, which
means that each unit capacity increase in period 1 up to a total of 20 units increases net
profit by $7. Therefore, an increase in capacity from 100 to 120 will increase net profit
by 20 × 7 = $140. Above 20 units, we will have satisfied all the lost demand in month 4,
and therefore further increases will not improve profit. Thus, this constraint will become
nonbinding once the right-hand side exceeds 120. Notice that the allowable decrease is
zero for this constraint. What this means is that the shadow price of $7 is not valid for
decreases in the right-hand side. As we computed above, the decrease in net profit from
a unit decrease in the capacity in month 1 is $8. In general, we can determine only the
effect of changes outside the allowable increase or decrease range by actually changing
the constraints and rerunning the LP solver.

The above examples are illustrative of the following general behavior of linear
programming models:

1. Changing the right-hand sides of nonbinding constraints by a small amount
does not affect the optimal solution. The shadow price of a nonbinding
constraint is always zero.

2. Increasing the right-hand side of a binding constraint will increase the objective
by an amount equal to the shadow price times the size of the increase, provided
that the increase is smaller than the allowable increase.

3. Decreasing the right-hand side of a binding constraint will decrease the
objective by an amount equal to the shadow price times the size of the decrease,
provided that the decrease is smaller than the allowable decrease.

4. Changes in the right-hand sides beyond the allowable increase or decrease
range have an indeterminate effect and must be evaluated by resolving the
modified model.

5. All these sensitivity results apply to changes in one right-hand side variable at
a time. If multiple changes are made, the effects are not necessarily additive.
Generally, multiple-variable sensitivity analysis must be done by resolving the
model under the multiple changes.

16.3 Product Mix Planning

Now that we have set up the basic framework for formulating and solving aggregate
planning problems, we can examine some commonly encountered situations. The first
realistic aggregate planning issue we will consider is that of product mix planning. To do
this, we need to extend the model of the previous section to consider multiple products
explicitly. As mentioned previously, allowing multiple products raises the possibility of
a “floating bottleneck.” That is, if the different products require different amounts of
processing time on the various workstations, then the workstation that is most heavily
loaded during a period may well depend on the mix of products run during that period.
If flexibility in the mix is possible, we can use the AP module to adjust the mix in
accordance with available capacity. And if the mix is essentially fixed, we can use the
AP module to identify bottlenecks.
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16.3.1 Basic Model

We start with a direct extension of the previous single-product model in which demands
are assumed fixed and the objective is to minimize the inventory carrying cost of meeting
these demands. To do this, we introduce the following notation:

i = an index of product, i = 1, . . . , m, so m represents total number of products
j = an index of workstation, j = 1, . . . , n, so n represents total number of

workstations
t = an index of period, t = 1, . . . , t̄ , so t̄ represents planning horizon

d̄i t = maximum demand for product i in period t
dit = minimum sales5 allowed of product i in period t
ai j = time required on workstation j to produce one unit of product i
c jt = capacity of workstation j in period t in units consistent with those used to

define ai j

ri = net profit from one unit of product i
hi = cost6 to hold one unit of product i for one period t
Xit = amount of product i produced in period t
Sit = amount of product i sold in period t
Ii t = inventory of product i at end of period t (Ii0 is given as data)

Again, Xit , Sit , and Iit are decision variables, while the other symbols are constants
representing input data. We can give a linear program formulation of the problem to
maximize net profit minus inventory carrying cost subject to upper and lower bounds on
sales and capacity constraints as

Maximize
∑t̄

t=1

∑m
i=1 ri Sit − hi Iit (16.28)

Subject to:

dit ≤ Sit ≤ d̄i t for all i, t (16.29)
∑m

i=1 ai j Xit ≤ c jt for all j, t (16.30)

Iit = Iit−1 + Xit − Sit for all i, t (16.31)

Xit , Sit , Iit ≥ 0 for all i, t (16.32)

In comparison to the previous single-product model, we have adjusted constraints
(16.29) to include lower, as well as upper, bounds on sales. For instance, the firm may
have long-term contracts that obligate it to produce certain minimum amounts of certain
products. Conversely, the market for some products may be limited. To maximize profit,
the computer has incentive to set production so that all these constraints will be tight at
their upper limits. However, this may not be possible due to capacity constraints (16.30).
Notice that unlike in the previous formulation, we now have capacity constraints for each
workstation in each period. By noting which of these constraints are tight, we can identify
those resources that limit production. Constraints (16.31) are the multiproduct version of
the balance equations, and constraints (16.32) are the usual non-negativity constraints.

5This might represent firm commitments that we do not want the computer program to violate.
6It is common to set hi equal to the raw materials cost of product i times a one-period interest rate to

represent the opportunity cost of the money tied up in inventory; but it may make sense to use higher values
to penalize inventory that causes long, uncompetitive cycle times.
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We can use LP (16.28)–(16.32) to obtain several pieces of information, including

1. Demand feasibility. We can determine whether a set of demands is
capacity-feasible. If the constraint Sit ≤ d̄i t is tight, then the upper bound on
demand d̄i t is feasible. If not, then it is capacity-infeasible. If demands given by
the lower bounds on demand dit are capacity-infeasible, then the computer
program will return a “could not find a feasible solution” message and the user
must make changes (e.g., reduce demands or increase capacity) in order to get a
solution.

2. Bottleneck locations. Constraints (16.30) restrict production on each
workstation in each period. By noting which of these constraints are binding,
we can determine which workstations limit capacity in which periods. A
workstation that is consistently binding in many periods is a clear bottleneck
and requires close management attention.

3. Product mix. If we are unable, for capacity reasons, to attain all the upper
bounds on demand, then the computer will reduce sales below their maximum
for some products. It will try to maximize revenue by producing those products
with high net profit, but because of the capacity constraints, this is not a simple
matter, as we will see in the following example.

16.3.2 A Simple Example

Let us consider a simple product mix example that shows why one needs a formal opti-
mization method instead of a simpler ad hoc approach for these problems. We simplify
matters by assuming a planning horizon of only one period. While this is certainly not
a realistic assumption in general, in situations where we know in advance that we will
never carry inventory from one period to the next, solving separate one-period problems
for each period will yield the optimal solution. For example, if demands and cost coeffi-
cients are constant from period to period, then there is no incentive to build up inventory
and therefore this will be the case.

Consider a situation in which a firm produces two products, which we will call
products 1 and 2. Table 16.1 gives descriptive data for these two products. In addition to
the direct raw material costs associated with each product, we assume a $5,000 per week
fixed cost for labor and capital. Furthermore, there are 2,400 minutes (5 days per week,
8 hours per day) of time available on workstations A to D. We assume that all these data
are identical from week to week. Therefore, there is no reason to build inventory in one
week to sell in a subsequent week. (If we can meet maximum demand this week with this
week’s production, then the same thing is possible next week.) Thus, we can restrict our

Table 16.1 Input Data for Single-Period AP
Example

Product 1 2

Selling price $90 $100
Raw material cost $45 $40
Maximum weekly sales 100 50
Minutes per unit on workstation A 15 10
Minutes per unit on workstation B 15 30
Minutes per unit on workstation C 15 5
Minutes per unit on workstation D 15 5
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attention to a single week, and the only issue is the appropriate amount of each product
to produce.

A Cost Approach. Let us begin by looking at this problem from a simple cost stand-
point. Net profit per unit of product 1 sold is $45 ($90 − 45), while net profit per unit of
product 2 sold is $60 ($100 − 40). This would seem to indicate that we should emphasize
production of product 2. Ideally, we would like to produce 50 units of product 2 to meet
maximum demand, but we must check the capacity of the four workstations to make sure
this is possible. Since workstation B requires the most time to make a unit of product 2
(30 minutes) among the four workstations, this is the potential constraint. Producing 50
units of product 2 on workstation B will require

30 minutes per unit × 50 units = 1,500 minutes

This is less than the available 2,400 minutes on workstation B, so producing 50 units of
product 2 is feasible.

Now we need to determine how many units of product 1 we can produce with the
leftover capacity. The unused time on workstations A to D after subtracting the time to
make 50 units of product 2 we compute as

2,400 − 10(50) = 1,900 minutes on workstation A

2,400 − 30(50) = 900 minutes on workstation B

2,400 − 5(50) = 2,150 minutes on workstation C

2,400 − 5(50) = 2,150 minutes on workstation D

Since one unit of product 1 requires 15 minutes of time on each of the four workstations,
we can compute the maximum possible production of product 1 at each workstation by
dividing the unused time by 15. Since workstation B has the least remaining time, it is
the potential bottleneck. The maximum production of product 1 on workstation B (after
subtracting the time to produce 50 units of product 2) is

900

15
= 60

Thus, even though we can sell 100 units of product 1, we have capacity for only 60.
The weekly profit from making 60 units of product 1 and 50 units of product 2 is

$45 × 60 + $60 × 50 − $5,000 = $700

Is this the best we can do?

A Bottleneck Approach. The preceding analysis is entirely premised on costs and
considers capacity only as an afterthought. A better method might be to look at cost and
capacity, by computing a ratio representing profit per minute of bottleneck time used
for each product. This requires that we first identify the bottleneck, which we do by
computing the minutes required on each workstation to satisfy maximum demand and
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seeing which machine is most overloaded.7 This yields

15(100) + 10(50) = 2,000 minutes on workstation A

15(100) + 30(50) = 3,000 minutes on workstation B

15(100) + 5(50) = 1,750 minutes on workstation C

15(100) + 5(50) = 1,750 minutes on workstation D

Only workstation B requires more than the available 2,400 minutes, so we designate
it the bottleneck. Hence, we would like to make the most profitable use of our time on
workstation B. To determine which of the two products does this, we compute the ratio
of net profit to minutes on workstation B as

$45

15
= $3 per minute spent processing product 1

$60

30
= $2 per minute spent processing product 2

This calculation indicates the reverse of our previous cost analysis. Each minute
spent processing product 1 on workstation B nets us $3, as opposed to only $2 per
minute spent on product 2. Therefore, we should emphasize production of product 1, not
product 2. If we produce 100 units of product 1 (the maximum amount allowed by the
demand constraint), then since all workstations require 15 minutes per unit of one, the
unused time on each workstation is

2,400 − 15(100) = 900 minutes

Then since workstation B is the slowest operation for producing product 2, this is what
limits the amount we can produce. Each unit of product 2 requires 30 minutes on B;
thus, we can produce

900

30
= 30

units of product 2. The net profit from producing 100 units of product 1 and 30 units of
product 2 is

$45 × 100 + $60 × 30 − $5,000 = $1,300

This is clearly better than the $700 we got from using our original analysis and, it turns
out, is the best we can do. But will this method always work?

A Linear Programming Approach. To answer the question of whether the previous
“bottleneck ratio” method will always determine the optimal product mix, we consider
a slightly modified version of the previous example, with data shown in Table 16.2. The
only changes in these data relative to the previous example are that the processing time of
product 2 on workstation B has been increased from 30 to 35 minutes and the processing
times for products 1 and 2 on workstation D have been increased from 15 and 5 to 25
and 14, respectively.

7The alert reader should be suspicious at this point, since we know that the identity of the “bottleneck”
can depend on the product mix in a multiproduct case.
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Table 16.2 Input Data for Modified
Single-Period AP Example

Product 1 2

Selling price $90 $100
Raw material cost $45 $40
Maximum weekly sales 100 50
Minutes per unit on workstation A 15 10
Minutes per unit on workstation B 15 35
Minutes per unit on workstation C 15 5
Minutes per unit on workstation D 25 14

To execute our ratio-based approach on this modified problem, we first check for the
bottleneck by computing the minutes required on each workstation to meet maximum
demand levels:

15(100) + 10(50) = 2,000 minutes on workstation A

15(100) + 35(50) = 3,250 minutes on workstation B

15(100) + 5(50) = 1,750 minutes on workstation C

25(100) + 14(50) = 3,200 minutes on workstation D

Workstation B is still the most heavily loaded resource, but now workstation D also
exceeds the available 2,400 minutes.

If we designate workstation B as the bottleneck, then the ratio of net profit to minute
of time on the bottleneck is

$45

15
= $3.00 per minute spent processing product 1

$60

35
= $1.71 per minute spent processing product 2

which, as before, indicates that we should produce as much product 1 as possible.
However, now it is workstation D that is slowest for product 1. The maximum amount
that can be produced on D in 2,400 minutes is

2,400

25
= 96

Since 96 units of product 1 use up all available time on workstation D, we cannot produce
any product 2. The net profit from this mix, therefore, is

$45 × 96 − $5,000 = −$680

This doesn’t look very good—we are losing money. Moreover, while we used work-
station B as our bottleneck for the purpose of computing our ratios, it was workstation
D that determined how much product we could produce. Therefore, perhaps we should
have designated workstation D as our bottleneck. If we do this, the ratio of net profit to
minute of time on the bottleneck is

$45

25
= $1.80 per minute spent processing product 1

$60

14
= $4.29 per minute spent processing product 2
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This indicates that it is more profitable to emphasize production of product 2. Since
workstation B is slowest for product 2, we check its capacity to see how much product
2 we can produce, and we find

2,400

35
= 68.57

Since this is greater than maximum demand, we should produce the maximum amount
of product 2, which is 50 units. Now we compute the unused time on each machine as

2,400 − 10(50) = 1,900 minutes on workstation A

2,400 − 35(50) = 650 minutes on workstation B

2,400 − 5(50) = 2,150 minutes on workstation C

2,400 − 14(50) = 1,700 minutes on workstation D

Dividing the unused time by the minutes required to produce one unit of product 1 on
each workstation gives us the maximum production of product 1 on each to be

1,900

15
= 126.67 units on workstation A

650

15
= 43.33 units on workstation B

2,150

15
= 143.33 units on workstation C

1,700

25
= 68 units on workstation D

Thus, workstation B limits production of product 1 to 43 units, so total net profit for this
solution is

$45 × 43 + $60 × 50 − $5,000 = −$65

This is better, but we are still losing money. Is this the best we can do?
Finally, let’s bring out our big gun (not really that big, since it is included in pop-

ular spreadsheet programs) and solve the problem with a linear programming package.
Letting X1 (X2) represent the quantity of product 1 (2) produced, we formulate a linear
programming model to maximize profit subject to the demand and capacity constraints as

Maximize 45X1 + 60X2 − 5,000 (16.33)

Subject to:

X1 ≤ 100 (16.34)

X2 ≤ 50 (16.35)

15X1 + 10X2 ≤ 2,400 (16.36)

15X1 + 35X2 ≤ 2,400 (16.37)

15X1 + 5X2 ≤ 2,400 (16.38)

25X1 + 14X2 ≤ 2,400 (16.39)
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Problem (16.33)–16.39) is trivial for any LP package. Ours (Excel) reports the
solution to this problem to be

Optimal objective = $557.94

X∗
1 = 75.79

X∗
2 = 36.09

Even if we round this solution down (which will certainly still be capacity-feasible, since
we are reducing production amounts) to integer values

X∗
1 = 75

X∗
2 = 36

we get an objective of

$45 × 75 + $60 × 36 − $5,000 = $535

So making as much product 1 as possible and making as much product 2 as possible
both result in negative profit. But making a mix of the two products generates positive
profit!

The moral of this exercise is that even simple product mix problems can be subtle.
No trick that chooses a dominant product or identifies the bottleneck before knowing
the product mix can find the optimal solution in general. While such tricks can work for
specific problems, they can result in extremely bad solutions in others. The only method
guaranteed to solve these problems optimally is an exact algorithm such as those used in
linear programming packages. Given the speed, power, and user-friendliness of modern
LP packages, one should have a very good reason to forsake LP for an approximate
method.

16.3.3 Extensions to the Basic Model

A host of variations on the basic problem given in formulation (16.28)–(16.32) are
possible. We discuss a few of these next; the reader is asked to think of others in the
problems at chapter’s end.

Other Resource Constraints. Formulation (16.28)–(16.32) contains capacity con-
straints for the workstations, but not for other resources, such as people, raw materials,
and transport devices. In some systems, these may be important determinants of overall
capacity and therefore should be included in the AP module.

Generically, if we let

bi j = units of resource j required per unit of product i

k jt = number of units of resource j available in period t

Xit = amount of product i produced in period t

we can express the capacity constraint on resource j in period t as

m
∑

i=1

bi j Xit ≤ k jt (16.40)
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Notice that bi j and k jt are the nonworkstation analogs to ai j and c jt in formulation
(16.28)–(16.32).

As a specific example, suppose an inspector must check products 1, 2, and 3, which
require 1, 2, and 1.5 hours, respectively, per unit to inspect. If the inspector is available
a total of 160 hours per month, then the constraint on this person’s time in month t can
be represented as

X1t + 2X2t + 1.5X3t ≤ 160

If this constraint is binding in the optimal solution, it means that inspector time is a
bottleneck and perhaps something should be reorganized to remove this bottleneck. (The
plant could provide help for the inspector, simplify the inspection procedure to speed
it up, or use quality-at-the-source inspections by the workstation operators to eliminate
the need for the extra inspection step.)

As a second example, suppose a firm makes four different models of circuit board,
all of which require one unit of a particular component. The component contains leading-
edge technology and is in short supply. If kt represents the total number of these compo-
nents that can be made available in period t , then the constraint represented by component
availability in each period t can be expressed as

X1t + X2t + X3t + X4t ≤ kt

Many other resource constraints can be represented in analogous fashion.

Utilization Matching. As our discussion so far shows, it is straightforward to model
capacity constraints in LP formulations of AP problems. However, we must be careful
about how we use these constraints in actual practice, for two reasons.

1. Low-level complexity. An AP module will necessarily gloss over details that
can cause inefficiency in the short term. For instance, in the product mix
example of the previous section, we assumed that it was possible to run the four
machines 2,400 minutes per week. However, from our Factory Physics
discussions of Part II, we know that it is virtually impossible to avoid some idle
time on machines. Any source of randomness (machine failures, setups, errors
in the scheduling process, etc.) can diminish utilization. While we cannot
incorporate these directly in the AP model, we can account for their aggregate
effect on utilization.

2. Production control decisions. As we noted in Chapter 13, it may be
economically attractive to set the production quota below full average capacity,
in order to achieve predictable customer service without excessive overtime
costs. If the quota-setting module indicates that we should run at less than full
utilization, we should include this fact in the aggregate planning module in
order to maintain consistency.

These considerations may make it attractive to plan for production levels below full
capacity. Although the decision of how close to capacity to run can be tricky, the mechan-
ics of reducing capacity in the AP model are simple. If the c jt parameters represent prac-
tical estimates of realistic full capacity of workstation j in period t , adjusted for setups,
worker breaks, machine failures, and other reasonable detractors, then we can simply
deflate capacity by multiplying these by a constant factor. For instance, if either historical
experience or the quote-setting module indicates that it is reasonable to run at a fraction
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q of full capacity, then we can replace constraints (16.30) in LP (16.28)–(16.32) by

m
∑

i=t

ai j Xit ≤ qc jt for all j, t

The result will be that a binding capacity constraint will occur whenever a work-
station is loaded to 100q percent of capacity in a period.

Backorders. In LP (16.28)–(16.32), we forced inventory to remain positive at all
times. Implicitly, we were assuming that demands had to be met from inventory or lost;
no backlogging of unmet demand was allowed. However, in many realistic situations,
demand is not lost when not met on time. Customers expect to receive their orders even
if they are late. Moreover, it is important to remember that aggregate planning is a long-
term planning function. Just because the model says a particular order will be late, that
does not mean that this must be so in practice. If the model predicts that an order due
9 months from now will be backlogged, there may be ample time to renegotiate the due
date. For that matter, the demand may really be only a forecast, to which a firm customer
due date has not yet been attached. With this in mind, it makes sense to think of the
aggregate planning module as a tool for reconciling projected demands with available
capacity. By using it to identify problems that are far in the future, we can address them
while there is still time to do something about them.

We can easily modify LP (16.28)–(16.32) to permit backordering as follows:

Maximize
t̄

∑

t=1

ri Sit − hi I +
i t − π−

i t (16.41)

Subject to:

dit ≤ Sit ≤ d̄i t for all i, t (16.42)

m
∑

i=1

ai j Xit ≤ c jt for all j, t (16.43)

Iit = Iit−1 + Xit − Sit for all i, t (16.44)

Iit = I +
i t − I −

i t for all i, t (16.45)

Xit , Sit , I +
i t , I −

i t ≥ 0 for all i, t (16.46)

The main change was to redefine the inventory variable Iit as the difference I +
i t − I −

i t ,
where I +

i t represents the inventory of product i carried from period t to t + 1 and I −
i t

represents the number of backorders carried from period t to t + 1. Both I +
i t and I −

i t must
be non-negative. However, Iit can be either positive or negative, and so we refer to it as
the inventory position of product i in period t . A positive inventory position indicates
on-hand inventory, while a negative inventory position indicates outstanding backorders.
The coefficient πi is the backorder analog to the holding cost hi and represents the penalty
to carry one unit of product i on backorder for one period of time. Because both I −

i t and
I +
i t appear in the objective with negative coefficients, the LP solver will never make

both of them positive for the same period. This simply means that we won’t both carry
inventory and incur a backorder penalty in the same period.

In terms of modeling, the most troublesome parameters in this formulation are the
backorder penalty coefficients πi . What is the cost of being late by one period on one unit
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of product i? For that matter, why should the lateness penalty be linear in the number
of periods late or the number of units that are late? Clearly, asking someone in the
organization for these numbers is out of the question. Therefore, one should view this
type of model as a tool for generating various long-term production plans. By increasing
or decreasing the πi coefficients relative to the hi coefficients, the analyst can increase or
decrease the relative penalty associated with backlogging. High πi values tend to force
the model to build up inventory to meet surges in demand, while low πi values tend to
allow the model to be late on satisfying some demands that occur during peak periods.
By generating both types of plans, the user can get an idea of what options are feasible
and select among them.

To accomplish this, we need not get overly fine with the selection of cost coefficients.
We could set them with the simple equations

hi = αpi (16.47)

πi = β (16.48)

where α represents the one-period interest rate, suitably inflated to penalize uncompet-
itive cycle times caused by excess inventory, and pi represents the raw materials cost of
one unit of product i , so that αpi represents the interest lost on the money tied up by hold-
ing one unit of product i in inventory. Analogously, β represents a (somewhat artificial)
cost per period of delay on any product. The assumption here is that the true cost of being
late (expediting costs, lost customer goodwill, lost future orders, etc.) is independent of
the cost or price of the product. If equations (16.47) and (16.48) are valid, then the user
can fix α and generate many different production plans by varying the single parameter β.

Overtime. The previous representations of capacity assume each workstation is avail-
able a fixed amount of time in each period. Of course, in many systems there is the
possibility of increasing the time via the use of overtime. Although we will treat over-
time in greater detail in our upcoming discussion of workforce planning, it makes sense
to note quickly that it is a simple matter to represent the option of overtime in a product
mix model, even when labor is not being considered explicitly.

To do this, let

l ′j = cost of 1 hour of overtime at workstation j ; a cost parameter

O jt = overtime at workstation j in period t in hours; a decision variable

We can modify LP (16.41)–(16.46) to allow overtime at each workstation as follows:

Maximize
t̄

∑

t=1

{ri Sit − hi I +
i t − πi I −

i t −
n

∑

j=1

l ′j O jt } (16.49)

Subject to:

dit ≤ Sit ≤ d̄i t for all i, t (16.50)

m
∑

i=1

ai j Xit ≤ c jt + O jt for all j, t (16.51)

Iit = Iit−1 + Xit − Sit for all i, t (16.52)

Iit = I +
i t − I −

i t for all i, t (16.53)

Xit , Sit , I +
i t , I −

i t O jt ≥ 0 for all i, j, t (16.54)
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The two changes we have made to LP (16.41)–(16.46) were to

1. Subtract the cost of overtime at stations 1, . . . , n, which is
∑t̄

t=1

∑n
j=1 l ′j O jt ,

from the objective function.

2. Add the hours of overtime scheduled at station j in period t , denoted by O jt , to
the capacity of this resource c jt in constraints (16.51).

It is natural to include both backlogging and overtime in the same model, since these
are both ways of addressing capacity problems. In LP (16.49)–(16.54), the computer has
the option of being late in meeting demand (backlogging) or increasing capacity via
overtime. The specific combination it chooses depends on the relative cost of backorder-
ing (πi ) and overtime (l ′j ). By varying these cost coefficients, the user can generate a
range of production plans.

Yield Loss. In systems where product is scrapped at various points in the line due
to quality problems, we must release extra material into the system to compensate for
these losses. The result is that workstations upstream from points of yield loss are more
heavily utilized than if there were no yield loss (because they must produce the extra
material that will ultimately be scrapped). Therefore, to assess accurately the feasibility
of a particular demand profile relative to capacity, we must consider yield loss in the
aggregate planning module in systems where scrap is an issue.

We illustrate the basic effect of yield loss in Figure 16.9. In this simple line, α, β,
and γ represent the fraction of product that is lost to scrap at workstations A, B, and C,
respectively. If we require d units of product to come out of station C, then, on average, we
will have to release d/(1 − γ ) units into station C. To get d/(1 − γ ) units out of station
B, we will have to release d/[(1 − β)(1 − γ )] units into B on average. Finally, to get the
needed d/[(1 − β)(1 − γ )] out of B, we will have to release d/[(1 − α)(1 − β)(1 − γ )]
units into A.

We can generalize the specific example of Figure 16.9 by defining

yi j = cumulative yield from station j onward (including station j) for product i

If we want to get d units of product i out of the end of the line on average, then we
must release

d

yi j
(16.55)

units of i into station j . These values can easily be computed in the manner used for
the example in Figure 16.9 and updated in a spreadsheet or database as a function of the
estimated yield loss at each station.

Using equation (16.55) to adjust the production amounts Xit in the manner illustrated
in Figure 16.9, we can modify the LP formulation (16.28)–(16.32) to consider yield loss

A B C
1 – � 1 – � 1 – �

� � �

Figure 16.9

Yield loss in a
three-station line.
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as follows:

Maximize
t̄

∑

t=1

ri Sit − hi Iit (16.56)

Subject to:

dit ≤ Sit ≤ d̄i t for all i, t (16.57)

m
∑

i=1

ai j Xit

yi j
≤ c jt for all j, t (16.58)

Iit = Iit−1 + Xit − Sit for all i, t (16.59)

Xit , Sit , Iit ≥ 0 for all i, t (16.60)

As one would expect, the net effect of this change is to reduce the effective capacity
of workstations, particularly those at the beginning of the line. By altering the yi j values
(or better yet, the individual yields that make up the yi j values), the planner can get a
feel for the sensitivity of the system to improvements in yields. Again as one would
intuitively expect, the impact of reducing the scrap rate toward the end of the line is
frequently much larger than that of reducing scrap toward the beginning of the line.
Obviously, scrapping product late in the process is very costly and should be avoided
wherever possible. If better process control and quality assurance in the front of the line
can reduce scrap later, this is probably a sound policy. An aggregate planning module
like that given in LP (16.56)–(16.60) is one way to get a sense of the economic and
logistic impact of such a policy.

16.4 Workforce Planning

In systems where the workload is subject to variation, because of either a changing
workforce size or overtime load, it may make sense to consider the aggregate planning
(AP) and workforce planning (WP) modules in tandem. Questions of how and when to
resize the labor pool or whether to use overtime instead of workforce additions can be
posed in the context of a linear programming formulation to support both modules.

16.4.1 An LP Model

To illustrate how an LP model can help address the workforce-resizing and overtime
allocation questions, we will consider a simple single-product model. In systems where
product routings and processing times are either almost identical, so that products can
be aggregated into a single product, or entirely separate, so that routings can be analyzed
separately, the single-product model can be reasonable. In a system where bottleneck
identification is complicated by different processing times and interconnected routings, a
planner would most likely need an explicit multiproduct model. This involves a straight-
forward integration of a product mix model, like those we discussed earlier, with a
workforce-planning model like that presented next.
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We introduce the following notation, paralleling that which we have used up to now,
with a few additions to address the workforce issues.

j = an index of workstation, j = 1, . . . , n, so n represents total
number of workstations

t = an index of period, t = 1, . . . , t̄ , so t̄ represents planning horizon

d̄t = maximum demand in period t

dt = minimum sales allowed in period t

a j = time required on workstation j to produce one unit of product

b = number of worker-hours required to produce one unit of product

c jt = capacity of workstation j in period t

r = net profit per unit of product sold

h = cost to hold one unit of product for one period

l = cost of regular time in dollars per worker-hour

l ′ = cost of overtime in dollars per worker-hour

e = cost to increase workforce by one worker-hour per period

e′ = cost to decrease workforce by one worker-hour per period

Xt = amount produced in period t

St = amount sold in period t

It = inventory at end of t (I0 is given as data)

Wt = workforce in period t in worker-hours of regular time
(W0 is given as data)

Ht = increase (hires) in workforce from period t − 1 to t in worker-hours

Ft = decrease (fires) in workforce from period t − 1 to t in worker-hours

Ot = overtime in period t in hours

We now have several new parameters and decision variables for representing the
workforce considerations. First, we need b, the labor content of one unit of product, in
order to relate workforce requirements to production needs. Once the model has used this
parameter to determine the number of labor hours required in a given month, it has two
options for meeting this requirement. Either it can schedule overtime, using the variable
Ot and incurring cost at rate l ′t , or it can resize the workforce, using variables Ht and Ft

and incurring a cost of e (e′) for every worker added (laid off).
To model this planning problem as an LP, we will need to make the assumption that

the cost of worker additions or deletions is linear in the number of workers added or
deleted; that is, it costs twice as much to add (delete) two workers as it does to add (delete)
one. Here we are assuming that e is an estimate of the hiring, training, outfitting, and lost
productivity costs associated with bringing on a new worker. Similarly, e′ represents the
severance pay, unemployment costs, and so on associated with letting a worker go.

Of course, in reality, these workforce-related costs may not be linear. The training
cost per worker may be less for a group than for an individual, since a single instructor
can train many workers for roughly the same cost as a single one. On the other hand,
the plant disruption and productivity falloff from introducing many new workers may
be much more severe than those from introducing a single worker. Although one can
use more sophisticated models to consider such sources of nonlinearity, we will stick
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with an LP model, keeping in mind that we are capturing general effects rather than
elaborate details. Given that the AP and WP modules are used for long-term general
planning purposes and rely on speculative forecasted data (e.g., of future demand), this
is probably a reasonable choice for most applications.

We can write the LP formulation of the problem to maximize net profit, includ-
ing labor, overtime, holding, and hiring/firing costs, subject to constraints on sales and
capacity, as

Maximize
t̄

∑

t=1

{r St − hIt − lWt − l ′Ot − eHt − e′Ft } (16.61)

Subject to:

dt ≤ St ≤ d̄t for all t (16.62)

a j Xt ≤ c jt for all j, t (16.63)

It = It−1 + Xt − St for all t (16.64)

Wt = Wt−1 + Ht − Ft for all t (16.65)

bXt ≤ Wt + Ot for all t (16.66)

Xt , St , It , Ot , Wt , Ht , Ft ≥ 0 for all t (16.67)

The objective function in formulation (16.61) computes profit as the difference
between net revenue and inventory carrying costs, wages (regular and overtime), and
workforce increase/decrease costs. Constraints (16.62) are the usual bounds on sales.
Constraints (16.63) are capacity constraints for each workstation. Constraints (16.64)
are the usual inventory balance equations. Constraints (16.65) and (16.66) are new to this
formulation. Constraints (16.65) define the variables Wt , t = 1, . . . , t̄ , to represent the
size of the workforce in period t in units of worker-hours. Constraints (16.66) constrain
the worker-hours required to produce Xt , given by bXt , to be less than or equal to the sum
of regular time plus overtime, namely, Wt + Ot . Finally, constraints (16.67) ensure that
production, sales, inventory, overtime, workforce size, and labor increases/decreases are
all non-negative. The fact that It ≥ 0 implies no backlogging, but we could easily modify
this model to account for backlogging in a manner like that used in LP(16.41)–(16.46).

16.4.2 A Combined AP/WP Example

To make LP (16.61)–(16.67) concrete and to give a flavor for the manner in which
modeling, analysis, and decision making interact, we consider the example presented
in the spreadsheet of Figure 16.10. This represents an AP problem for a single product
with unit net revenue of $1,000 over a 12-month planning horizon. We assume that each
worker works 168 hours per month and that there are 15 workers in the system at the
beginning of the planning horizon. Hence, the total number of labor hours available at
the start of the problem is

W0 = 15 × 168 = 2,520

There is no inventory in the system at the start, so I0 = 0.
The cost parameters are estimated as follows. Monthly holding cost is $10 per unit.

Regular-time labor (with benefits) costs $35 per hour. Overtime is paid at time-and-a-half,
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Figure 16.10 Initial spreadsheet for workforce planning example.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
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22
23
24
25
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Parameters:

r

h

l

l′
e

e′
b

l_0

W_0

t

d_t

Decision Variables:

t

Xt

Wt

Ht

Ft

It

Ot

Objective:

Profit:

Constraints:

I1-I0-X1

I2-I1-X2

I3-I2-X3

I4-I3-X4

I5-I4-X5

I6-I5-X6

I7-I6-X7

I8-I7-X8

I9-I8-X9

I10-I9-X10

I11-I10-X11

I12-I11-X12

W1-W0-H1+F1

W2-W1-H2+F2

W3-W2-H3+F3

W4-W3-H4+F4

W5-W4-H5+F5

W6-W5-H6+F6

W7-W6-H7+F7

W8-W7-H8+F8

W9-W8-H9+F9

W10-W9-H10+F10

W11-W10-H11+F11

W12-W11-H12+F12

bX1-W1-O1

bX2-W2-O2

bX3-W3-O3

bX4-W4-O4

bX5-W5-O5

bX6-W6-O6

bX7-W7-O7

bX8-W8-O8

bX9-W9-O9

bX10-W10-O10

bX11-W11-O11

bX12-W12-O12

1000

10

35

52.5

15

9

12

0

2520

1

200

1

0.00

0.00

0.00

0.00

0.00

0.00

$2,980,600.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-2520.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

2

220

2

0.00

0.00

0.00

0.00

0.00

0.00

3

230

3

0.00

0.00

0.00

0.00

0.00

0.00

-200

-220

-230

-300

-400

-450

-320

-180

-170

-170

-160

-180

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

4

300

4

0.00

0.00

0.00

0.00

0.00

0.00

-d_1

-d_2

-d_3

-d_4

-d_5

-d_6

-d_7

-d_8

-d_9

-d_10

-d_11

-d_12

5

400

5

0.00

0.00

0.00

0.00

0.00

0.00

6

450

6

0.00

0.00

0.00

0.00

0.00

0.00

7

320

7

0.00

0.00

0.00

0.00

0.00

0.00

8

180

8

0.00

0.00

0.00

0.00

0.00

0.00

9

170

9

0.00

0.00

0.00

0.00

0.00

0.00

10

170

10

0.00

0.00

0.00

0.00

0.00

0.00

11

160

11

0.00

0.00

0.00

0.00

0.00

0.00

12

180

12

0.00

0.00

0.00

0.00

0.00

0.00

A B C D E F G H I J K L M

Note: All decision variables must be >= 0
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which is equal to $52.50 per hour. It costs roughly $2,500 to hire and train a new worker.
Since this worker will account for 168 hours per month, the cost in terms of dollars per
worker-hour is

$2,500

168
= $14.88 ≈ $15 per hour

Since this number is only a rough approximation, we will round to an even $15. Similarly,
we estimate the cost to lay off a worker to be about $1,500, so the cost per hour of reduction
in the monthly workforce is

$1,500

168
= $8.93 ≈ $9 per hour

Again, we will use the rounded value of $9, since data are rough.
Notice that the projected demands (dt ) in the spreadsheet have a seasonal pattern to

them, building to a peak in months 5 and 6, and tapering off thereafter. We will assume
that backordering is not an option and that demands must be met, so the main issue will
be how to do this.

Let us begin by expressing LP (16.61)–(16.67) in concrete terms for this problem.
Because we are assuming that demands are met, we set St = dt , which eliminates the
need for separate sales variables St and sales constraints (16.62). Furthermore, to keep
things simple, we will assume that the only capacity constraints are those posed by labor
(i.e., it requires 12 hours of labor to produce each unit of product). No other machine or
resource constraints need be considered. Thus we can omit constraints (16.63). Under
these assumptions, the resulting LP formulation is

Maximize 1,000(d1 + · · · + d12) − 10(I1 + · · · + I12)

−35(W1 + · · · + W12) − 52.5(O1 + · · · + O12)

−15(H1 + · · · + H12) − 9(F1 + · · · + F12) (16.68)

Subject to:

I1 − I0 − X1 = −d1 (16.69)

I2 − I1 − X2 = −d2 (16.70)

I3 − I2 − X3 = −d3 (16.71)

I4 − I3 − X4 = −d4 (16.72)

I5 − I4 − X5 = −d5 (16.73)

I6 − I5 − X6 = −d6 (16.74)

I7 − I6 − X7 = −d7 (16.75)

I8 − I7 − X8 = −d8 (16.76)

I9 − I8 − X9 = −d9 (16.77)

I10 − I9 − X10 = −d10 (16.78)

I11 − I10 − X11 = −d11 (16.79)

I12 − I11 − X12 = −d12 (16.80)
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W1 − H1 + F1 = 2,520 (16.81)

W2 − W1 − H2 + F2 = 0 (16.82)

W3 − W2 − H3 + F3 = 0 (16.83)

W4 − W3 − H4 + F4 = 0 (16.84)

W5 − W4 − H5 + F5 = 0 (16.85)

W6 − W5 − H6 + F6 = 0 (16.86)

W7 − W6 − H7 + F7 = 0 (16.87)

W8 − W7 − H8 + F8 = 0 (16.88)

W9 − W8 − H9 + F9 = 0 (16.89)

W10 − W9 − H10 + F10 = 0 (16.90)

W11 − W10 − H11 + F11 = 0 (16.91)

W12 − W11 − H12 + F12 = 0 (16.92)

12X1 − W1 − O1 ≤ 0 (16.93)

12X2 − W2 − O2 ≤ 0 (16.94)

12X3 − W3 − O3 ≤ 0 (16.95)

12X4 − W4 − O4 ≤ 0 (16.96)

12X5 − W5 − O5 ≤ 0 (16.97)

12X6 − W6 − O6 ≤ 0 (16.98)

12X7 − W7 − O7 ≤ 0 (16.99)

12X8 − W8 − O8 ≤ 0 (16.100)

12X9 − W9 − O9 ≤ 0 (16.101)

12X10 − W10 − O10 ≤ 0 (16.102)

12X11 − W11 − O11 ≤ 0 (16.103)

12X12 − W12 − O12 ≤ 0 (16.104)

Xt , It , Ot , Wt , Ht , Ft ≥ 0 t = 1, . . . , 12 (16.105)

Objective (16.68) is identical to objective (16.61), except that the St variables have
been replaced with dt constants.8 Constraints (16.69)–(16.80) are the usual balance
constraints. For instance, constraint (16.69) simply states that

I1 = I0 + X1 − d1

That is, inventory at the end of month 1 equals inventory at the end of month 0 (i.e.,
the beginning of the problem) plus production during month 1, minus sales (demand)
in month 1. We have arranged these constraints so that all decision variables are on the

8Since the dt values are fixed, the first term in the objective function is not a function of our decision
variables and could be left out without affecting the solution. We have kept it in so that our model reports a
sensible profit function.
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left-hand side of the equality and constants (dt ) are on the right-hand side. This is often
a convenient modeling convention, as we will see in our analysis.

Constraints (16.81) to (16.92) are the labor balance equations given in constraints
(16.65) of our general formulation. For instance, constraint (16.81) represents the relation

W1 = W0 + H1 − F1

so that the workforce at the end of month 1 (in units of worker-hours) is equal to the
workforce at the end of month 0, plus any additions in month 1, minus any subtractions
in month 1.

Constraints (16.93) to (16.104) ensure that the labor content of the production plan
does not exceed available labor, which can include overtime. For instance, constraint
(16.93) can be written as

12X1 ≤ W1 + O1

In the spreadsheet shown in Figure 16.10, we have entered the decision variables
Xt , Wt , Ht , Ft , It , and Ot into cells B16:M21. Using these variables and the various
coefficients from the top of the spreadsheet, we express objective (16.68) as a formula
in cell B24. Notice that this formula reports a value equal to the unit profit times total
demand, or

1,000(200 + 220 + 230 + 300 + 400 + 450 + 320

+ 180 + 170 + 170 + 160 + 180) = $2,980,000

because all other terms in the objective are zero when the decision variables are set at
zero.

We enter formulas for the left-hand sides of constraints (16.69) to (16.80) in cells
B27:B38, the left-hand sides of constraints (16.81) to (16.92) in cells B39:B50, and the
left-hand sides of constraints (16.93) to (16.104) in cells B51:B62. Notice that many of
these constraints are not satisfied when all decision variables are equal to zero. This is
hardly surprising, since we cannot expect to earn revenues from sales of product we have
not made.

A convenient aspect of using a spreadsheet for solving LP models is that it provides
us with a mechanism for playing with the model to gain insight into its behavior. For
instance, in the spreadsheet of Figure 16.11 we try a chase solution where we set
production equal to demand (Xt = dt ) and leave Wt = W0 in every period. Although this
satisfies the inventory balance constraints in cells B27:B38, and the workforce balance
constraints in cells B39:B50, it violates the labor content constraints in cells B52:B57.
The reason, of course, is that the current workforce is not sufficient to meet demand
without using overtime. We could try adding overtime by adjusting the Ot variables
in cells B21:M21. However, searching around for an optimal solution can be difficult,
particularly in large models. Therefore, we will let the LP solver in the software do the
work for us.

Using the procedure we described earlier, we specify constraints (16.69) to (16.105)
in our model and turn it loose. The result is the spreadsheet in Figure 16.12. Based on
the costs we chose, it turns out to be optimal not to use any overtime. (Overtime costs
$52.5 − 35 = 15.50 per hour each month, while hiring a new worker costs only $15 per
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Figure 16.11 Infeasible “chase” solution.
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Parameters:

r

h

l

l′
e

e′
b

l_0

W_0

t

d_t

Decision Variables:

t

Xt

Wt

Ht

Ft

It

Ot

Objective:

Profit:

Constraints:

I1-I0-X1

I2-I1-X2

I3-I2-X3

I4-I3-X4

I5-I4-X5

I6-I5-X6

I7-I6-X7

I8-I7-X8

I9-I8-X9

I10-I9-X10

I11-I10-X11

I12-I11-X12

W1-W0-H1+F1

W2-W1-H2+F2

W3-W2-H3+F3

W4-W3-H4+F4

W5-W4-H5+F5

W6-W5-H6+F6

W7-W6-H7+F7

W8-W7-H8+F8

W9-W8-H9+F9

W10-W9-H10+F10

W11-W10-H11+F11

W12-W11-H12+F12
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Figure 16.12 LP optimal solution.
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hour as a one-time cost.) Instead, the model adds 1,114.29 hours to the workforce, which
represents

1,114.29

168
= 6.6

new workers. After the peak season of months 4 to 7, the solution calls for a reduction
of 1,474.29 + 120 = 1,594.29 hours, which implies laying off

1,594.29

168
= 9.5

workers. Additionally, the solution involves building in excess of demand in months 1 to
4 and using this inventory to meet peak demand in months 5 to 7. The net profit resulting
from this solution is $1,687,337.14.

From a management standpoint, the planned layoffs in months 8 and 9 might be
a problem. Although we have specified penalties for these layoffs, these penalties are
highly speculative and may not accurately consider the long-term effects of hiring and
firing on worker morale, productivity, and the firm’s ability to recruit good people. Thus,
it is worthwhile to carry our analysis further.

One approach we might consider would be to allow the model to hire but not fire
workers. We can easily do this by eliminating the Ft variables or, since this requires
fairly extensive changes in the spreadsheet, specifying additional constraints of the form

Ft = 0 t = 1, . . . , 12

Rerunning the model with these additional constraints produces the spreadsheet in Figure
16.13. As we expect, this solution does not include any layoffs. Somewhat surprising,
however, is the fact that it does not involve any new hires either (that is, Ht = 0 for every
period). Instead of increasing the workforce size, the model has chosen to use overtime in
months 3 to 7. Evidently, if we cannot fire workers, it is uneconomical to hire additional
people.

However, when one looks more closely at the solution in Figure 16.13, a problem
becomes evident. Overtime is too high. For instance, month 6 has more hours of overtime
than hours of regular time! This means that our workforce of 15 people has 2,880/15
= 192 hours of overtime in the month, or about 48 hours per week per worker. This is
obviously excessive.

One way to eliminate this overtime problem is to add some more constraints. For
instance, we might specify that overtime is not to exceed 20 percent of regular time.
This would correspond to the entire workforce working an average of one full day of
overtime per week in addition to the normal 5-day workweek. We could do this by adding
constraints of the form

Ot ≤ 0.2Wt t = 1, . . . , 12 (16.106)

doing this to the spreadsheet of Figure 16.13 and resolving results in the spreadsheet
shown in Figure 16.14. The overtime limits have forced the model to resort to hiring.
Since layoffs are still not allowed, the model hires only 508.57 hours worth of workers, or

508.57

168
= 3

new workers, as opposed to the 6.6 workers hired in the original solution in Figure
16.12. To attain the necessary production, the solution uses overtime in months 1 to 7.
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Figure 16.13 Optimal solution when Ft = 0.
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Figure 16.14 Optimal solution when Ft = 0 and Ot ≤ 0.2Wt .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Parameters:

r

h

l

l′
e

e′
b

l_0

W_0

t

d_t

Decision Variables:

t

Xt

Wt

Ht

Ft

It

Ot

Objective:

Profit:

Constraints:

I1-I0-X1

I2-I1-X2

I3-I2-X3

I4-I3-X4

I5-I4-X5

I6-I5-X6

I7-I6-X7

I8-I7-X8

I9-I8-X9

I10-I9-X10

I11-I10-X11

I12-I11-X12

W1-W0-H1+F1

W2-W1-H2+F2

W3-W2-H3+F3

W4-W3-H4+F4

W5-W4-H5+F5

W6-W5-H6+F6

W7-W6-H7+F7

W8-W7-H8+F8

W9-W8-H9+F9

W10-W9-H10+F10

W11-W10-H11+F11

W12-W11-H12+F12

bX1-W1-O1

bX2-W2-O2

bX3-W3-O3

bX4-W4-O4

bX5-W5-O5

bX6-W6-O6

bX7-W7-O7

bX8-W8-O8

bX9-W9-O9

bX10-W10-O10

bX11-W11-O11

bX12-W12-O12

1000

10

35

52.5

15

9

12

0

2520

1

200

1

302.86

3028.57

508.57

0.00

102.86

605.71

$1,467,871.43

-200.00

-220.00

-230.00

-300.00

-400.00

-450.00

-320.00

-180.00

-170.00

-170.00

-160.00

-180.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-868.57 

-988.57 

-988.57 

-1108.57

-868.57

2

220

2

302.86

3028.57

0.00

0.00

185.71

605.71

3

230

3

302.86

3028.57

0.00

0.00

258.57

605.71

-200

-220

-230

-300

-400

-450

-320

-180

-170

-170

-160

-180

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

<=

4

300

4

302.86

3028.57

0.00

0.00

261.43

605.71

-d_1

-d_2

-d_3

-d_4

-d_5

-d_6

-d_7

-d_8

-d_9

-d_10

-d_11

-d_12

5

400

5

302.86

3028.57

0.00

0.00

164.29

605.71

6

450

6

302.86

3028.57

0.00

0.00

17.14

605.71

7

320

7

302.86

3028.57

0.00

0.00

0.00

605.71

8

180

8

180.00

3028.57

0.00

0.00

0.00

0.00

9

170

9

170.00

3028.57

0.00

0.00

0.00

0.00

10

170

10

170.00

3028.57

0.00

0.00

0.00

0.00

11

160

11

160.00

3028.57

0.00

0.00

0.00

0.00

12

180

12

180.00

3028.57

0.00

0.00

0.00

0.00

A B C D E F G H I J K L M

Note: All decision variables must be >= 0



588 Part III Principles in Practice

Notice that the amount of overtime used in these months is exactly 20 percent of regular
time work hours, that is,

3,028.57 × 0.2 = 605.71

What this means is that new constraints (16.106) are binding for periods 1 to 7, which
we would be told explicitly if we printed out the sensitivity analysis reports generated
by the LP solver. This implies that if it is possible to work more overtime in any of these
months, we can improve the solution.

Notice that the net profit in the model of the spreadsheet shown in Figure 16.14
is $1,467,871.43, which is a 13 percent decrease over the original optimal solution
of $1,687,337.14 in Figure 16.12. At first glance, it may appear that the policies of
no layoffs and limits on overtime are expensive. On the other hand, it may really be
telling us that our original estimates of the costs of hiring and firing were too low. If
we were to increase these costs to represent, for example, long-term disruptions caused
by labor changes, the optimal solution might be very much like the one arrived at in
Figure 16.14.

16.4.3 Modeling Insights

In addition to providing a detailed example of a workforce formulation in LP (16.61)–
(16.67), we hope that our discussion has helped the reader appreciate the following
aspects of using an optimization model as the basis for an AP or WP module.

1. Multiple modeling approaches. There are often many ways to model a given
problem, none of which is “correct” in any absolute sense. The key is to use
cost coefficients and constraints to represent the main issues in a sensible way.
In this example, we could have generated solutions without layoffs by either
increasing the layoff penalty or placing constraints on the layoffs. Both
approaches would achieve the same qualitative conclusions.

2. Iterative model development. Modeling and analysis almost never proceed in an
ideal fashion in which the model is formulated, solved, and interpreted in a
single pass. Often the solution from one version of the model suggests an
alternate model. For instance, we had no way of knowing that eliminating
layoffs would cause excessive overtime in the solution. We didn’t know we
would need constraints on the level of overtime until we saw the spreadsheet
output of Figure 16.13.

16.5 Conclusions

In this chapter, we have given an overview of the issues involved in aggregate and work-
force planning. A key observation behind our approach is that, because the aggregate
planning and workforce planning modules use long time horizons, precise data and intri-
cate modeling detail are impractical or impossible. We must recognize that the production
or workforce plans that these modules generate will be adjusted as time evolves. The
lower levels in the PPC hierarchy must handle the nuts-and-bolts challenge of converting
the plans to action. The keys to a good AP module are to keep the focus on long-term
planning (i.e., avoiding putting too many short-term control details in the model) and
to provide links for consistency with other levels in the hierarchy. Some of the issues
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related to consistency were discussed in Chapter 13. Here, we close with some general
observations about the aggregate and workforce planning functions.

1. No single AP or WP module is right for every situation. As the examples in this
chapter show, aggregate and workforce planning can incorporate many different
decision problems. A good AP or WP module is one that is tailored to address
the specific issues faced by the firm.

2. Simplicity promotes understanding. Although it is desirable to address different
issues in the AP/WP module, it is even more important to keep the model
understandable. In general, these modules are used to generate candidate
production and workforce plans, which will be examined, combined, and
altered manually before being published as “The Plan.” To generate a spectrum
of plans (and explain them to others), the user must be able to trace changes in
the model to changes in the plan. Because of this, it makes sense to start with as
simple a formulation as possible. Additional detail (e.g., constraints) can be
added later.

3. Linear programming is a useful AP/WP tool. The long planning horizon used
for aggregate and workforce planning justifies ignoring many production
details; therefore, capacity checks, sales restrictions, and inventory balances can
be expressed as linear constraints. As long as we are willing to approximate
actual costs with linear functions, an LP solver is a very efficient method for
solving many problems related to the AP and WP modules. Because we are
working with speculative long-range data, it generally does not make sense to
use anything more sophisticated than LP (e.g., nonlinear or integer
programming) in most aggregate and workforce planning situations.

4. Robustness matters more than precision. No matter how accurate the data and
how sophisticated the model, the plan generated by the AP or WP module will
never be followed exactly. The actual production sequence will be affected by
unforeseen events that could not possibly have been factored into the module.
This means that the mark of a good long-range production plan is that it enables
us to do a reasonably good job even in the face of such contingencies. To find
such a plan, the user of the AP module must be able to examine the
consequences of various scenarios. This is another reason to keep the model
reasonably simple.



Appendix 16A

Linear Programming

Linear programming is a powerful mathematical tool for solving constrained optimization prob-
lems. The name derives from the fact that LP was first applied to find optimal schedules or
“programs” of resource allocation. Hence, although LP generally does involve using a computer
program, it does not entail programming on the part of the user in the sense of writing code.

In this appendix, we provide enough background to give the user of an LP package a basic
idea of what the software is doing. Readers interested in more details should consult one of the
many good texts on the subject (e.g., Eppen, Gould, and Schmidt 1988 for an application-oriented
overview, Murty 1983 for more technical coverage).

Formulation

The first step in using linear programming is to formulate a practical problem in mathematical
terms. There are three basic choices we must make to do this:

1. Decision variables are quantities under our control. Typical examples for aggregate
planning and workforce planning applications of LP are production quantities, number
of workers to hire, and levels of inventory to hold.

2. Objective function is what we want to maximize or minimize. In most AP/WP
applications, this is typically either to maximize profit or minimize cost. Beyond simply
stating the objective, however, we must specify it in terms of the decision variables we
have defined.

3. Constraints are restrictions on our choices of the decision variables. Typical examples
for AP/WP applications include capacity constraints, raw materials limitations,
restrictions on how fast we can add workers due to limitations on training capacity, and
restrictions on physical flow (e.g., inventory levels as a direct result of how much we
produce/procure and how much we sell).

When one is formulating an LP, it is often useful to try to specify the necessary inputs in the
order in which they are listed. However, in realistic problems, one virtually never gets the “right”
formulation in a single pass. The example in Section 16.4.2 illustrates some of the changes that
may be required as a model evolves.

To describe the process of formulating an LP, let us consider the problem presented in Table
16.2. We begin by selecting decision variables. Since there are only two products and because
demand and capacity are assumed stationary over time, the only decisions to make concern how
much of each product to produce per week. Thus, we let X1 and X2 represent the weekly production
quantities of products 1 and 2, respectively.

Next, we choose to maximize profit as our objective function. Since product 1 sells for $90
but costs $45 in raw material, its net profit is $45 per unit.9 Similarly, product 2 sells for $100 but
costs $40 in raw material, so its net unit profit is $60. Thus, weekly profit will be

45X1 + 60X2 − weekly labor costs − weekly overhead costs

But since we assume that labor and overhead costs are not affected by the choice of X1 and X2,
we can use the following as our objective function for the LP model:

Maximize 45X1 + 60X2

Finally, we need to specify constraints. If we could produce as much of products 1 and 2 as we
wanted, we could drive the above objective function, and hence weekly profit, to infinity. This is
not possible because of limitations on demand and capacity.

9Note that we are neglecting labor and overhead costs in our estimates of unit profit. This is reasonable if
these costs are not affected by the choice of production quantities, that is, if we won’t change the size of the
workforce or the number of machines in the shop.

590
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The demand constraints are easy. Since we can sell at most 100 units per week of product 1
and 50 units per week of product 2, our decision variables X1 and X2 must satisfy

X1 ≤ 100

X2 ≤ 50

The capacity constraints are a little more work. Since there are four machines, which run at
most 2,400 minutes per week, we must ensure that our production quantities do not violate this
constraint on each machine. Consider workstation A. Each unit of product 1 we produce requires
15 minutes on this workstation, while each unit of product 2 we produce requires 10 minutes.
Hence, the total number of minutes of time required on workstation A to produce X1 units of
product 1 and X2 units of product 2 is10

15X1 + 10X2

so the capacity constraint for workstation A is

15X1 + 10X2 ≤ 2,400

Proceeding analogously for workstations B, C, and D, we can write the other capacity constraints
as follows:

15X1 + 35X2 ≤ 2,400 workstation B

15X1 + 5X2 ≤ 2,400 workstation C

25X1 + 14X2 ≤ 2,400 workstation D

We have now completely defined the following LP model of our optimization problem:

Maximize 45X1 + 60X2 (16.107)

Subject to:

X1 ≤ 100 (16.108)

X2 ≤ 50 (16.109)

15X1 + 10X2 ≤ 2,400 (16.110)

15X1 + 35X2 ≤ 2,400 (16.111)

15X1 + 5X2 ≤ 2,400 (16.112)

25X1 + 14X2 ≤ 2,400 (16.113)

Some LP packages allow the user to enter the problem in a form almost identical to that shown
in formulation (16.107)–(16.113). Spreadsheet programs generally require the decision variables
to be entered into cells and the constraints specified in terms of these cells. More sophisticated
LP solvers allow the user to specify blocks of similar constraints in a concise form, which can
substantially reduce modeling time for large problems.

Finally, with regard to formulation, we point out that we have not stated explicitly the constraints
that X1 and X2 be non-negative. Of course, they must be, since negative production quantities
make no sense. In many LP packages, decision variables are assumed to be non-negative unless

10Note that this constraint does not address such detailed considerations as setup times that depend on the
sequence of products run on workstation A or whether full utilization of workstation A is possible given the
WIP in the system. But as we discussed in Chapter 13, these issues are addressed at a lower level in the
production planning and control hierarchy (e.g., in the sequencing and scheduling module).
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the user specifies otherwise. In other packages, the user must include the non-negativity constraints
explicitly. This is something to beware of when using LP software.

Solution

To get a general idea of how an LP package works, let us consider the above formulation from a
mathematical perspective. First, note that any pair of X1 and X2 that satisfies

15X1 + 35X2 ≤ 2,400 workstation B

will also satisfy

15X1 + 10X2 ≤ 2,400 workstation A

15X1 + 5X2 ≤ 2,400 workstation C

because these differ only by having smaller coefficients for X2. This means that the constraints
for workstations A and C are redundant. Leaving them out will not affect the solution. In general,
it does not hurt anything to have redundant constraints in an LP formulation. But to make our
graphical illustration of how LP works as clear as possible, we will omit constraints (16.110) and
(16.112) from here on.

Figure 16.15 illustrates problem (16.107)–(16.113) in graphical form, where X1 is plotted on
the horizontal axis and X2 is plotted on the vertical axis. The shaded area is the feasible region,

consisting of all the pairs of X1 and X2 that satisfy the constraints. For instance, the demand
constraints (16.108) and (16.109) simply state that X1 cannot be larger than 100, and X2 cannot
be larger than 50. The capacity constraints are graphed by noting that, with a bit of algebra, we
can write constraints (16.111) and (16.113) as

X2 ≤ − (

15
35

)

X1 + 2,400

35
= −0.429X1 + 68.57 (16.114)

X2 ≤ − (

25
14

)

X1 + 2,400

14
= −1.786X1 + 171.43 (16.115)

If we replace the inequalities with equality signs in equations (16.114) and (16.115), then these are
simply equations of straight lines. Figure 16.15 plots these lines. The set of X1 and X2 points that
satisfy these constraints includes all the points lying below both of these lines. The points marked
by the shaded area are those satisfying all the demand, capacity, and non-negativity constraints.
This type of feasible region defined by linear constraints is known as a polyhedron.

Now that we have characterized the feasible region, we turn to the objective. Let Z represent the
value of the objective (i.e., net profit achieved by producing quantities X1 and X2). From objective
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(16.107), X1 and X2 are related to Z by

45X1 + 60X2 = Z (16.116)

We can write this in the usual form for a straight line as

X2 =
(−45

60

)

X1 + Z

60
= −0.75X1 + Z

60
(16.117)

Figure 16.16 illustrates equation (16.117) for Z = 3,000, 5,557.94, and 7,000. Notice that for
Z = 3,000, the line passes through the feasible region, leaving some points above it. Hence, we
can feasibly increase profit (that is, Z ). For Z = 7,000 the line lies entirely above the feasible
region. Hence, Z = 7,000 is not feasible. For Z = 5,557.94, the objective function just touches
the feasible region at a single point, the point (X1 = 75.79, X2 = 36.09). This is the optimal

solution. Values of Z above 5,557.74 are infeasible, values below it are suboptimal. The optimal
product mix, therefore, is to produce 75.79 (or 75, rounded to an integer value) units of product 1
and 36.09 (rounded to 36) units of product 2.

We can think of finding the solution to an LP by steadily increasing the objective value (Z ),
moving the objective function up and to the right, until it is just about to leave the feasible region.
Because the feasible region is a polyhedron whose sides are made up of linear constraints, the last
point of contact between the objective function and the feasible region will be a corner, or extreme

point, of the feasible region.11 This observation allows the optimization algorithm to ignore the
infinitely many points inside the feasible region and search for a solution among the finite set
of extreme points. The simplex algorithm, developed in the 1940s and still widely used, works
in just this way, proceeding around the outside of the polyhedron, trying extreme points until an
optimal one is found. Other, more modern algorithms use different schemes to find the optimal
point, but will still converge to an extreme-point solution.

Sensitivity Analysis

The fact that the optimal solution to an LP lies at an extreme point enables us to perform useful
sensitivity analysis on the optimal solution. The principal sensitivity information available to us
falls into the following three categories.

1. Coefficients in the objective function. For instance, if we were to change the unit profit
for product 1 from $45 to $60, then the equation for the objective function would change from

11Actually, it is possible that the optimal objective function lies right along a flat spot connecting two
extreme points of the polyhedron. When this occurs, there are many pairs of X1 and X2 that attain the
optimal value of Z , and the solution is called degenerate. Even in this case, however, an extreme point
(actually, at least two extreme points) will be among the optimal solutions.
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equation (16.117) to

X2 =
(

−60

60

)

X1 + Z

60
= −X1 + Z

60
(16.118)

so the slope changes from −0.75 to −1; that is, it gets steeper. Figure 16.17 illustrates the effect.
Under this change, the optimal solution remains (X1 = 75.79, X2 = 36.09). Note, however that
while the decision variables remain the same, the objective function does not. When the unit profit
for product 1 increases to $60, the profit becomes

60(75.79) + 60(36.09) = $6,712.80

The optimal decision variables remain unchanged until the coefficient of X1 in the objective
function reaches 107.14. When this happens, the slope becomes so steep that the point where the
objective function just touches the feasible region moves to the extreme point (X1 = 96, X2 = 0).
Geometrically, the objective function “rocked around” to a new extreme point. Economically, the
profit from product 1 reached a point where it became optimal to produce all product 1 and no
product 2.

In general, LP packages will report a range for each coefficient in the objective function for
which the optimal solution (in terms of the decision variables) remains unchanged. Note that these
ranges are valid only for one-at-a-time changes. If two or more coefficients are changed, the effect
is more difficult to characterize. One has to rerun the model with multiple coefficient changes to
get a feel for their effect.

2. Coefficients in the constraints. If the number of minutes required on workstation B by
product 1 is changed from 15 to 20, then the equation defined by the capacity constraint for
workstation B changes from equation (16.114) to

X2 ≤ −
(

20

35

)

X1 + 2,400

35
= −0.571X1 + 68.57 (16.119)

so the slope changes from −0.429 to −0.571; again, it becomes steeper. In a manner analogous
to that described above for coefficients in the objective function, LP packages can determine how
much a given coefficient can change before it ceases to define the optimal extreme point. However,
because changing the coefficients in the constraints moves the extreme points themselves, the
optimal decision variables will also change. For this reason, most LP packages do not report this
sensitivity data, but rather make use of this product as part of a parametric programming option
to quickly generate new solutions for specified changes in the constraint coefficients.

3. Right-hand side coefficients. Probably the most useful sensitivity information provided
by LP models is for the right-hand side variables in the constraints. For instance, in formulation
(16.107)–(16.113), if we run 100 minutes of overtime per week on machine B, then its right-hand
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side will increase from 2,400 to 2,500. Since this is something we might want to consider, we
would like to be able to determine its effect. We do this differently for two types of constraints:

a. Slack constraints are constraints that do not define the optimal extreme point. The capacity
constraints for workstations A and C are slack, since we determined right at the outset that they
could not affect the solution. The constraint X2 ≤ 50 is also slack, as can be seen in Figures 16.15
and 16.16, although we did not know this until we solved the problem.

Small changes in slack constraints do not change the optimal decision variables or objective
value at all. If we change the demand constraint on product 2 to X2 ≤ 49, it still won’t affect the
optimal solution. Indeed, not until we reduce the constraint to X2 ≤ 36.09 will it have any effect.
Likewise, increasing the right-hand side of this constraint (above 50) will not affect the solution.
Thus, for a slack constraint, the LP package tells us how far we can vary the right-hand side without
changing the solution. These are referred to as the allowable increase and allowable decrease of
the right-hand side coefficients.

b. Tight constraints are constraints that define the optimal extreme point. Changing them
changes the extreme point, and hence the optimal solution. For instance, the constraint that the
number of hours per week on workstation B not exceed 2,400, that is,

15X1 + 35X2 ≤ 2,400

is a tight constraint in Figures 16.15 and 16.16. If we increase or decrease the right-hand side,
the optimal solution will change. However, if the changes are small enough, then the optimal
extreme point will still be defined by the same constraints (i.e., the time on workstations B and D).
Because of this, we are able to compute the following:

Shadow prices are the amount by which the objective increases per unit increase in the
right-hand side of a constraint. Since slack constraints do not affect the optimal solution,
changing their right-hand sides has no effect, and hence their shadow prices are always
zero. Tight constraints, however, generally have nonzero shadow prices. For instance, the
shadow price for the constraint on workstation B is 1.31. (Any LP solver will automatically
compute this value.) This means that the objective will increase by $1.31 for every extra
minute per week on the workstation. So if we can work 2,500 minutes per week on
workstation B, instead of 2,400, the objective will increase by 100 × 1.31 = $131.

Maximum allowable increase/decrease gives the range over which the shadow prices are
valid. If we change a right-hand side by more than the maximum allowable increase or
decrease, then the set of constraints that define the optimal extreme point may change, and
hence the shadow price may also change. For example, as Figure 16.18 shows, if we
increase the right-hand side of the constraint on workstation B from 2,400 to 2,770, the
constraint moves to the very edge of the feasible region defined by 25X1 + 14X2 ≤ 2,400
(machine D) and X2 ≤ 50. Any further increases in the right-hand side will cause this
constraint to become slack. Hence, the shadow price is $1.31 up to a maximum allowable
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Part III Principles in Practice 

increase of 370 (that is, 2,770 - 2,400). In this example, the shadow price is zero for 

changes above the maximum allowable increase. This is not always the case, however, so in 

general we must resolve the LP to determine the shadow prices beyond the maximum 

allowable increase or decrease. 

1. Although the technology for solving aggregate planning models (linear programming) is well 

established and AP modules are widely available in commercial systems (e.g., MRP II 

systems), aggregate planning does not occupy a central place in the planning function of 

many firms. Why do you think this is true? What difficulties in modeling, interpreting, and 

implementing AP models might be contributing to this? 

2. Why does it make sense to consider workforce planning and aggregate planning 

simultaneously in many situations? 

3. What is the difference between a chase production plan and a level production plan, with 

respect to the amount of inventory carried and the fluctuation in output quantity over time? 

How do the production plans generated by an LP model relate to these two types of plan? 

4. In a basic LP formulation of the product mix aggregate planning problem, what information is 

provided by the following? 

(a) The optimal decision variables. 

(b) The optimal objective function. 

(c) Identification of which constraints are tight and which are slack. 

(d) Shadow prices for the right-hand sides of the constraints. 

1. Suppose a plant can supplement its capacity by subcontracting part of or all the production 

of certain parts. 

(a) Show how to modify LP (16.28)-(16.32) to include this option, where we define 

Vit = units of product i received from a subcontractor in period t 
kit = premium paid for subcontracting product i in period t (i.e., cost 

above variable cost of making it in-house) 

�it = minimum amount of product i that must be purchased in period t 

(e.g., specified as part of long-term contract with supplier) 

Vit = maximum amount of product i that can be purchased in period t 
(e.g., due to capacity constraints on supplier, as specified 

in long-term contract) 

(b) How would you modify the formulation in part (a) if the contract with a supplier 

stipulated only that total purchases of product i over the time horizon must be at least � ? 

(c) How would you modify the formulation in part (a) if the supplier contract, instead of 

specifying � and ii, stipulated that the firm specify a base amount of product i, to be 

purchased every month, and that the maximum purchase in a given month can exceed 

the base amount by no more than 20 percent? 

(d) What role might models like those in parts (a) to (c) play in the process of negotiating 

contracts with suppliers? 

2. Show how to modify LP (16.49)-(16.54) to represent the case where overtime on all the 

workstations must be scheduled simultaneously (i.e., if one resource runs overtime, all 

resources run overtime). Describe how you would handle the case where, in general, 

different workstations can have different amounts of overtime, but two workstations, say A 

and B, must always be scheduled for overtime together. 
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3. Show how to modify LP (16.61)–(16.67) of the workforce planning problem to
accommodate multiple products.

4. You have just been made corporate vice president in charge of manufacturing for an
automotive components company and are directly in charge of assigning products to plants.
Among many other products, the firm makes automotive batteries in three grades: heavy-
duty, standard, and economy. The unit net profits and maximum daily demand for these
products are given in the first table below. The firm has three locations where the batteries
can be produced. The maximum assembly capacities, for any mix of battery grades, are
given in the second table below. The number of batteries that can be produced at a location is
limited by the amount of suitably formulated lead the location can produce. The lead
requirements for each grade of battery and the maximum lead production for each location
are also given in the following tables.

Unit Maximum Lead

Profit Demand Requirements

Product ($/battery) (batteries/day) (lbs/battery)

Heavy-duty 12 700 21
Standard 10 900 17
Economy 7 450 14

Assembly Maximum Lead

Plant Capacity Production

Location (batteries/day) (lbs/day)

1 550 10,000
2 750 7,000
3 225 4,200

(a) Formulate a linear program that allocates production of the three grades among the three
locations in a manner that maximizes profit.

(b) Suppose company policy requires that the fraction of capacity (units scheduled/
assembly capacity) be the same at all locations. Show how to modify your LP to
incorporate this constraint.

(c) Suppose company policy dictates that at least 50 percent of the batteries produced must
be heavy-duty. Show how to modify your LP to incorporate this constraint.

5. Youohimga, Inc., makes a variety of computer storage devices, which can be divided into
two main families that we call A and B. All devices in family A have the same routing and
similar processing requirements at each workstation; similarly for family B. There are a total
of 10 machines used to produce the two families, where the routings for A and B have some
workstations in common (i.e., shared) but also contain unique (unshared) workstations.

Because Youohimga does not always have sufficient capacity to meet demand, especially
during the peak demand period (i.e., the months near the start of the school year in
September), in the past it has contracted out production of some of its products to vendors
(i.e., the vendors manufacture devices that are shipped out under Youohimga’s label). This
year, Youohimga has decided to use a systematic aggregate planning process to determine
vendoring needs and a long-term production plan.
(a) Using the following notation

Xit = units of family i (i = A, B) produced in month t (t = 1, . . . , 24) and available to
meet demand in month t
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Vit = units of family i purchased from vendor in month t and available to meet demand
in month t

Ii t = finished goods inventory of family i at end of month t
dit = units of family i demanded (and shipped) during month t
c jt = hours available on work center j( j = 1, . . . , 10) in month t
ai j = hours required at work center j per unit of family i
vi = premium (i.e., extra cost) per unit of family i that is vendored instead of being

produced in-house
hi = holding cost to carry one unit of family i in inventory from one month to the next

formulate a linear program that minimizes the cost (holding plus vendoring premium)
over a two-year (24-month) planning horizon of meeting monthly demand (i.e., no
backorders are permitted). You may assume that vendor capacity for both families is
unlimited and that there is no inventory of either family on hand at the beginning of the
planning horizon.

(b) Which of the following factors might make sense to examine in the aggregate planning
model to help formulate a sensible vendoring strategy?
� Altering machine capacities
� Sequencing and scheduling
� Varying size of workforce
� Alternate shop floor control mechanisms
� Vendoring individual operations rather than complete products
� All the above

(c) Suppose you run the model in part (a) and it suggests vendoring 50 percent of the total
demand for family A and 50 percent of the demand for B. Vendoring 100 percent of A
and 0 percent of B is capacity-feasible, but results in a higher cost in the model. Could
the 100–0 plan be preferable to the 50–50 plan in practice? If so, explain why.

6. Mr. B. O’Problem of Rancid Industries must decide on a production strategy for two
top-secret products, which for security reasons we will call A and B. The questions concern
(1) whether to produce these products at all and (2) how much of each to produce. Both
products can be produced on a single machine, and there are three brands of machine that
can be leased for this purpose. However, because of availability problems, Rancid can lease
at most one of each brand of machine. Thus, O’Problem must also decide which, if any, of
the machines to lease. The relevant machine and product data are given below:

Hours to Produce Hours to Produce Weekly Capacity Weekly Lease +
Machine One Unit of A One Unit of B (hours) Operating Cost ($)

Brand 1 0.5 1.2 80 20,000
Brand 2 0.4 1.2 80 22,000
Brand 3 0.6 0.8 80 18,000

Maximum Demand Net Unit Profit

Product (units/week) ($/unit)

A 200 150
B 100 225
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(a) Letting Xi j represent the number of units of product i produced per week on machine j
(for example, X A1 is the number of units of A produced on the brand 1 machine),
formulate an LP to maximize weekly profit (including leasing cost) subject to the
capacity and demand constraints. (Hint: Observe that the leasing/operating cost for a
particular machine is only incurred if that machine is used and that this cost is fixed for
any nonzero production level. Carefully define 0–1 integer variables to represent the
all-or-nothing aspects of this decision.)

(b) Suppose that the suppliers of brand 1 machines and brand 2 machines are feuding and
will not service the same company. Show how to modify your formulation to ensure that
Rancid leases either brand 1 or brand 2 or neither, but not both.

7. All-Balsa, Inc., produces two models of bookcases, for which the relevant data are
summarized as follows:

Bookcase 1 Bookcase 2

Selling price $15 $8
Labor required 0.75 hour/unit 0.5 hour/unit
Bottleneck machine time required 1.5 hours/unit 0.8 hour/unit
Raw material required 2 bf/unit 1 bf/unit

P1 = units of bookcase 1 produced per week

P2 = units of bookcase 2 produced per week

OT = hours of overtime used per week

RM = board-feet of raw material purchased per week

A1 = dollars per week spent on advertising bookcase 1

A2 = dollars per week spent on advertising bookcase 2

Each week, up to 400 board feet (bf ) of raw material is available at a cost of $1.50/bf. The
company employs four workers, who work 40 hours per week for a total regular-time labor
supply of 160 hours per week. They work regardless of production volumes, so their salaries
are treated as a fixed cost. Workers can be asked to work overtime and are paid $6 per hour
for overtime work. There are 320 hours per week available on the bottleneck machine.

In the absence of advertising, 50 units per week of bookcase 1 and 60 units per week of
bookcase 2 will be demanded. Advertising can be used to stimulate demand for each product.
Experience shows that each dollar spent on advertising bookcase 1 increases demand for
bookcase 1 by 10 units, while each dollar spent on advertising bookcase 2 increases demand
for bookcase 2 by 15 units. At most, $100 per week can be spent on advertising.

An LP formulation and solution of the problem to determine how much of each product
to produce each week, how much raw material to buy, how much overtime to use, and how
much advertising to buy are given below. Answer the following on the basis of this output.

MAX 15 P1 + 8 P2 - 6 OT - 1.5 RM - A1 - A2
SUBJECT TO

2) P1 - 10 A1 <= 50
3) P2 - 15 A2 <= 60
4) 0.75 P1 + 0.5 P2 - OT <= 160
5) 2 P1 + P2 - RM <= 0
6) RM <= 400
7) A1 + A2 <= 100
8) 1.5 P1 + 0.8 P2 <= 320

END
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OBJECTIVE FUNCTION VALUE

1) 2427.66700

VARIABLE VALUE REDUCED COST
P1 160.000000 .000000
P2 80.000000 .000000
OT .000000 2.133334
RM 400.000000 .000000
A1 11.000000 .000000
A2 1.333333 .000000

ROW SLACK OR SURPLUS DUAL PRICES
2) .000000 .100000
3) .000000 .066667
4) .000000 3.866666
5) .000000 6.000000
6) .000000 4.500000
7) 87.666660 .000000
8) 16.000000 .000000

NO. ITERATIONS = 5

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES
VARIABLE CURRENT ALLOWABLE ALLOWABLE

COEF INCREASE DECREASE
P1 15.000000 .966667 .533333
P2 8.000000 .266667 .483333
OT -6.000000 2.133334 INFINITY
RM -1.500000 INFINITY 4.500000
A1 -1.000000 1.000000 5.333335
A2 -1.000000 1.000000 7.249999

RIGHT-HAND SIDE RANGES
ROW CURRENT ALLOWABLE ALLOWABLE

RHS INCREASE DECREASE
2 50.000000 110.000000 876.666600
3 60.000000 20.000000 1315.000000
4 160.000000 27.500000 2.500000
5 .000000 6.666667 55.000000
6 400.000000 6.666667 55.000000
7 100.000000 INFINITY 87.666660
8 320.000000 INFINITY 16.000000

(a) If overtime costs only $4 per hour (and all other parameters remain unchanged), how
much overtime should All-Balsa use?

(b) If each unit of bookcase 1 sold for $15.50 (and all other parameters are unchanged),
what will the optimal profit per week be—or can you not tell without resolving the LP?

(c) What is the most All-Balsa should be willing to pay for another unit of raw material?
(d) If each worker were required (as part of the regular workweek) to work 45 hours per

week (and all other parameters remained unchanged), what would the company’s profit
be?

(e) If each unit of bookcase 2 sold for $10 (and all other parameters remained unchanged),
what would be the optimal quantity of bookcase 2 to produce—or can you not tell
without resolving the LP?

(f) Reconsider the All-Balsa problem formulation and suppose that instead of having
400 bf of raw material available at $1.50/bf, All-Balsa faces a two-tier pricing scheme
such that the first 200 bf/week costs $2.00/bf, but any amount above 200 bf/week up to a
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limit of an additional 300 bf/week costs $p/bf. (Note: p is a constant, not a variable, and
we cannot purchase the $p/bf raw material unless we first purchase 200 bf of the
$2.00 raw material.) To modify the LP to compute an “optimal” production/advertising
policy, we define

RM1 = bf of raw material purchased at $2.00/bf

RM2 = bf of raw material purchased at $p/bf

To formulate an appropriate LP to represent this new pricing scheme, we first replace
1.5RM in the objective function by 2RM1 + pRM2.
i. If p > 2, what other changes in the previous LP make it properly reflect the new

pricing scheme?
ii. If p < 2, what other changes in the previous LP make it properly reflect the new

pricing scheme?

8. Consider a production line with four workstations, labeled j = 1, 2, 3, and 4, in tandem (all
products flow through all four machines in order). Three different products, labeled i = A,
B, and C, are produced on the line. The hours required on each workstation for each product
and the net profit per unit sold (ri ) are given as follows:

j

i 1 2 3 4 ri

A 2.4 1.1 0.8 3.0 $50
B 2.0 2.2 1.2 2.1 $65
C 0.9 0.9 1.0 2.5 $70

The number of hours available (c jt ) and the upper and lower limits on demand (d̄i t and dit )
for each product over the next four quarters are as follows:

t 1 2 3 4

c1t 640 640 1,280 1,280
c2t 640 640 640 640
c3t 1,920 1,920 1,920 1,920
c4t 1,280 1,280 1,280 2,560

d̄At 100 50 50 75
d At 0 0 0 0
d̄Bt 100 100 100 100
d Bt 20 20 20 25
d̄Ct 300 250 250 400
dCt 0 0 0 50

(a) Suppose we use a quarterly holding cost of $5 and a quarterly backorder cost of $10 per
item on all products and allow backordering. Formulate an LP to maximize profit minus
holding and backorder costs subject to the constraints on workstation capacity and
minimum/maximum sales.

(b) Using the LP solver of your choice, solve your formulation in part (a). Which
constraints are binding in your solution?

(c) Suppose that there is an inspect operation immediately after station 2 (which has plenty
of capacity and therefore does not need to be modeled as an extra resource) and 20
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percent of the parts (regardless of product type) are recycled back through stations 1 and
2. Show how to modify your formulation in part a to model this.

9. A manufacturer of high-voltage switches projects demand (in units) for the upcoming year
to be as follows.

Jan 1,000 Jul 3,200
Feb 1,000 Aug 2,000
Mar 1,000 Sep 1,000
Apr 2,000 Oct 900
May 2,400 Nov 800
Jun 2,500 Dec 800

The plant runs 160 hours per month and produces at an average rate of 10 switches per hour.
Unit profit per switch sold is $50, and the estimated cost to hold a switch in inventory for
1 month is $5. There is no inventory at the start of the year. Overtime can be used at a cost of
$300 per hour.
(a) Compute the inventory-holding and overtime cost of a chase production strategy

(i.e., producing the amount demanded in each month).
(b) Compute the inventory holding and overtime cost of a level production strategy

(i.e., producing the same amount each month). If the monthly production quantity is set
equal to average monthly demand, how much inventory will be left at the end of the
year?

(c) Compute a production strategy by solving a linear program to maximize profit (i.e., net
sales revenue minus inventory carrying cost minus overtime cost). Is the amount of
overtime in the plan reasonable? If not, what changes to the LP model could be made to
generate a more reasonable solution?

(d) How does the solution change if the inventory carrying cost is reduced to $3 per unit per
month? If overtime costs are reduced to $200 per hour? Given that these costs are
approximate, what do these results imply about the production plan?

10. Reconsider Problem 2 of Chapter 6 in which a manufacturer produced three models of
vacuum cleaner on a three-station production line.
(a) Use linear programming to compute a monthly production plan that maximizes monthly

profit, and compare it to the profit resulting from the current plan given in Chapter 6 and
those suggested by the labor hours and ABA cost accounting calculations.

(b) Could this LP solution have been arrived at by rank-ordering the products according to
profitability by a cost accounting scheme? What does this say about the effectiveness of
using accounting methods to plan production schedules?
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17 Supply Chain

Management

One’s work may be finished some day,
but one’s education never.

Alexandre Dumas

17.1 Introduction

A major theme of this book is the central role of inventory in the operational behavior

of a production system. We began with a historical review of inventory control and its

relationship to production control in Part I. In Part II, we deepened our understanding of

the interaction between inventory (WIP, in particular) and other performance measures,

such as throughput and cycle time. Now in Part III we are ready to combine our historical

and Factory Physics insights to address the practical problem of managing inventories

in a manufacturing system. Our objective is to improve inventory efficiency throughout

the system. That is, we do not simply seek to reduce inventories; we seek to ensure that

inventories serve their designated purpose with minimal dollar investment. In modern

parlance, this overall systemwide coordination of inventory stocks and flows is known

as supply chain management.

For purposes of our discussions here, we divide inventories in a supply chain into

four categories:

1. Raw materials are components, subassemblies, or materials that are purchased

from outside the plant and used in the fabrication/assembly processes inside the

plant.

2. Work in process (WIP) includes all unfinished parts or products that have been

released to a production line.

3. Finished goods inventory (FGI) is finished product that has not been sold.

4. Spare parts are components that are used to maintain or repair production

equipment.

The reasons for holding each of these types of inventory, and therefore the options

for improving efficiency, are different. Hence, we treat each category separately in the

following discussions.

603
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17.2 Reasons for Holding Inventory

17.2.1 Raw Materials

If we could receive raw materials from suppliers in literal just-in-time fashion (i.e.,

exactly when needed by the production system), we would not need to carry any raw

materials inventories. Since this is never possible in practice, all manufacturing systems

carry stocks of raw materials. There are three main factors that influence the size of these

stocks.

1. Batching. Quantity discounts from suppliers, limited capacity of the plant’s

purchasing function (e.g., a limit on the number of purchase orders that can be

placed and tracked), and economies of scale in deliveries provide incentive to

order raw materials in bulk.1 We refer to inventory that addresses batching

considerations as cycle stock, since it represents stock held between ordering

cycles.

2. Variability. When production gets ahead of schedule, supplier deliveries get

behind schedule, or quality problems cause excessive scrap loss, the line will

shut down for lack of materials if extra stock is not available. This extra stock

can be planned for directly as safety stock (i.e., by ordering so that expected

stock levels remain above the safety level) or be the consequence of safety lead

time (i.e., order materials so that they arrive before needed and therefore wait in

raw materials inventory). In either case, we refer to inventory carried as

protection against variability as safety stock.

3. Obsolescence. Changes in demand or design can render some materials no

longer needed, so some inventory in manufacturing systems does not address

either of the above purposes. This inventory, which we term obsolete

inventory, may have been ordered as cycle or safety stock, but is now

essentially useless and must be disposed of and written off as quickly as

financial reporting considerations will permit.

To recognize these reasons for carrying raw materials inventories is useful in iden-

tifying improved management policies. However, one should remember that they are

not strictly separate. For instance, as we pointed out in Chapter 2, safety stock and cy-

cle stock provide protection against variability (i.e., because if we order in very large

batches, then we reduce the frequency with which inventory levels fall to the point where

a stockout is possible). Also, the level of obsolete inventory is clearly affected by the

levels of cycle and safety stock (i.e., if we order in large batches or carry large safety

stocks, then we risk having large amounts of inventory become obsolete as a result of

system changes). Appreciating these interactions can also help us devise raw materials

management policies.

17.2.2 Work in Process

Despite the JIT goal of zero inventories, we can never operate a manufacturing system

with zero WIP since, as we saw in Part II, zero WIP implies zero throughput. In Chapter 7,

1These factors are precisely those that motivated the fixed order cost in the EOQ model presented in

Chapter 2. The EOQ model balances this fixed cost against inventory carrying costs to determine an

economic order quantity.
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we derived a critical WIP level that represents the smallest WIP level required by a line

to achieve full throughput under the best conditions. Under realistic conditions, actual

WIP levels frequently exceed the critical WIP level by a large amount (e.g., often 20 to

30 times). This WIP will be in one of five states:

1. Queueing if it is waiting for a resource (person, machine, or transport device).

2. Processing if it is being worked on by a resource.

3. Waiting for batch if it has to wait for other jobs to arrive in order to form a

batch. This batch may serve to fill a bulk manufacturing operation (e.g., heat

treat, in which a roomful of jobs is subjected to a burn-in operation

simultaneously) or a move operation (e.g., when jobs are moved only in full

pallets). Note that once the process or move batch has been formed, any

additional waiting time for the resource (e.g., for the heat treater or the forklift

to become available) is classified as queueing time.

4. Moving if it is actually being transported between resources.

5. Waiting to match if it consists of components waiting at an assembly operation

for their counterparts to arrive so that an assembly can occur. Once the entire

“kit” of parts has arrived, any additional waiting time for the assembly resource

is defined as queueing time.

To use the above classification in a WIP management/reduction program, two ob-

servations are needed. First, as illustrated in Figure 17.1, in most manufacturing systems

the fraction of WIP that is actually processing or moving is small (e.g., less than 10

percent; see Bradt 1983 for empirical documentation). The majority of WIP is in queue,

waiting for batch, or waiting to match. Clearly, a WIP reduction program must address

these latter categories to be successful.

Second, queueing WIP, wait-for-batch WIP, and wait-to-match WIP are the result

of different causes. As we saw in Part II, the principal causes of queueing are high

utilization and variability (both flow variability and process variability). Wait-for-batch

WIP is clearly caused by batching for process or transport; the larger the batch size,

the more WIP required. Wait-to-match WIP is caused by lack of synchronization in the

arrival of parts to the assembly process, some of which is due to simple flow variability

and some of which can be caused by the production control process. These differences

imply that the different types of WIP are amenable to different management policies, as

we will discuss later.

Processing

Moving

QueueingWaiting for
batch

Waiting to
match

Figure 17.1

Typical breakdown of

WIP in a manufacturing

system.
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17.2.3 Finished Goods Inventory

If we could ship everything we produced directly to customers as soon as processing

was complete, there would be no need for FGI. Although some manufacturing systems

(e.g., heavily loaded job shops that make custom products) can almost achieve this, many

cannot. There are five basic reasons for carrying FGI.

1. Customer responsiveness. To provide delivery lead times that are shorter than

manufacturing cycle times, many firms make use of a make-to-stock (instead

of a make-to-order) policy. For example, many products, such as building

materials (e.g., roofing shingles, lumber), standard electrical components (e.g.,

resistors, capacitors), and basic food products (e.g., baking soda, corn oil) are

commodity products. As such, their price and specifications (e.g., quality) are

set by the market. The only competitive issue, then, is delivery. For this reason,

such products are frequently produced to stock. The amount of FGI needed to

support a given make-to-stock system depends on the variability of customer

demand and the desired level of customer service.

An approach that combines the effectiveness of make-to-stock and make-to-

order procedures is assemble-to-order. This procedure produces components

to stock and then assembles these components to order. In the terminology of

Chapter 10, make-to-order places the inventory/order interface at raw

materials, make-to-stock places it at finished goods, while assemble-to-order

places it somewhere in between. The result is faster response than the traditional

make-to-order approach with less inventory than a make-to-stock policy.

2. Batch production. If, for whatever reason, production occurs in prespecified

quantities (batches), then output will sometimes not match customer orders and

any excess will go into finished goods inventory. For example, a steel mill that

runs 250-ton batches (in order to efficiently utilize the casting furnace) but has

customer orders averaging 50 tons will frequently have to place remnants of

batches of various grades of steel into FGI.

3. Forecast errors. When jobs are released without firm customer orders, either to

replenish stock in a make-to-stock system or to meet anticipated orders in a

make-to-order system, product will inevitably be built that does not sell as

anticipated. This excess will wind up in FGI.

4. Production variability. In a make-to-order system where orders cannot be

shipped early (or have a limit on how early they can be shipped), variability in

production timing will sometimes result in product that will have to reside in

FGI while awaiting shipment. In either a make-to-order or a make-to-stock

system, variability in production quantity (e.g., due to random yield loss) can

result in overproduction relative to demand (e.g., if we “overinflate” to

compensate for the yield loss). Again, the excess will go into FGI.

5. Seasonality. One approach to dealing with demand that varies with season

(e.g., lawnmowers, snowblowers, room air conditioners) is to build inventory

during the off-season to meet peak demand. This built-ahead inventory will

become part of FGI.

Notice that the factors motivating finished goods inventory interact. For instance,

whenever we build FGI to provide short lead times or to cover seasonal demand we

increase exposure of the system to forecasting errors. Because of this, it is important

to view FGI holistically. Only by doing this can we consider basic structural changes

that may offer significant potential. For instance, maybe the system should really be run
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in make-to-order instead of make-to-stock fashion; maybe excess capacity or seasonal

labor should be used instead of built-ahead inventory to address seasonal demand, or

maybe the inventory/order interface should be relocated (e.g., to use an assemble-to-order

strategy). We will return to these options in our discussion of improvement strategies.

17.2.4 Spare Parts

Spare parts are not used as direct inputs to finished products, but they do support the

production process by keeping the machines running. In many systems the dollar value

of inventory involved is not large, but the consequences of shortfalls can be severe (e.g.,

the entire line can be shut down for lack of a critical part). In some systems (e.g., a

contract service operation that supports repairs in a nationwide network of machines),

however, the dollar value of spare parts inventories can be substantial. In either case, the

primary reasons for stocking spare parts are

1. Service. The main objective of any spare parts system is to support a

maintenance and repair process. If repair personnel must wait for a part (e.g.,

from a central storage site or an outside supplier), then the time to complete a

repair can be dramatically lengthened. All other things being equal, achieving

higher service (i.e., avoidance of delay due to an out-of-stock part) requires a

higher level of spare parts inventory.

2. Purchasing/production lead times. If spare parts could be purchased or

produced instantly, there would be no need to stock them. Unfortunately, this is

virtually never the case; so to provide the desired service, we must carry spare

parts inventories. In general, the longer the lead time to obtain a part, the more

stock we will have to carry.

3. Batch replenishment. If there are economies of scale in replenishing spare

parts (e.g., quantity discounts on a purchased part or a large fixed cost to

produce a part), then it may make sense to purchase them in bulk. Of course, a

larger replenishment batch implies a higher average inventory level.

In theory, spare parts inventory systems are not much different from FGI systems.

In both, we stock parts, possibly in batches, to satisfy an uncertain demand process

with some level of service. Because of this similarity, it may well be possible to use

similar tools for controlling spare parts and FGI. However, it is important to recognize

the difference between the roles played by the two types of inventory. For instance, it may

be reasonable to set a fill rate of 90 percent for FGI, based on industry benchmarking,

say. But a 90 percent fill rate for spare parts may be far too low when one considers the

operational and financial consequences of causing a long machine outage by stocking

out on a critical part. Thus, while we might use similar models to address the two types

of inventory, we must carefully consider the costs and objectives involved in order to set

appropriate parameters for the models.

Having reviewed the reasons for holding different types of inventory, we now review

techniques for improving the efficiency (i.e., attaining the same benefits with a smaller

overall investment) of each type of inventory.

17.3 Managing Raw Materials

As noted above, the objective in managing raw materials is to have them available when

needed by the production process without carrying any more inventory than necessary.
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Some strategies can enhance our ability to do this for all parts. Others are economically

viable for only certain classes of parts. Therefore, our basic strategy is one of “divide and

conquer,” in which we apply different approaches to different classes of raw material. In

the following sections we present some overall improvement strategies, a classification

scheme, and focused control policies geared to specific part classes.

17.3.1 Visibility Improvements

Obviously, we can do a better job of purchasing raw materials if we know what parts are

needed than if we must guess. Unfortunately, manufacturing cycle times and purchasing

lead times are frequently long enough to require us to purchase at least some of the mate-

rials before we have firm customer orders. In the short term, we may have no option other

than to maintain safety stocks of raw materials to buffer against purchasing mistakes.

In the long term, however, we can improve the situation via the following policies:

1. Improve forecasting. If forecasts of future demand are truly horrible, better

projections may be possible through the use of systematic forecasting

techniques (see Appendix 13A). However, such methods cannot get around the

first law of forecasting—forecasts are always wrong. Thus, there are limits to

the improvements possible through forecasting.

2. Reduce cycle times. Reduced manufacturing cycle times imply that jobs can be

released closer to their due dates. Hence, purchased parts can be ordered later,

when customer demands are firmer. In systems with long cycle times, cycle

time reduction can improve forecasts much more than sophisticated forecasting

techniques can. We discuss specific techniques for cycle time (and WIP)

reduction in Section 17.4.

3. Improve scheduling. If scheduling is poor, then projected use of purchased

parts may be very different from actual use. For instance, a schedule generated

with an infinite-capacity MRP model may project much earlier completion of

jobs than actually will occur. This will result in purchased parts arriving well

before they are actually used and hence will cause raw materials inventories to

be inflated. A good finite-capacity scheduler will generate more realistic

schedules and thus will enable purchased parts to be brought in closer to when

they are used.

17.3.2 ABC Classification

In most manufacturing systems, a small fraction of the purchased parts represent a

large fraction of the purchasing expenditures.2 To have maximum impact, therefore,

management attention should be focused most closely on these parts. To accomplish

this, many manufacturing firms use some sort of ABC classification for purchased parts

and materials. In a typical definition of ABC categories, we rank-order the purchased

parts according to the annual dollar value spent on each, and we define

A parts: the first 5 to 10 percent of the parts, accounting for 75 to 80 percent of

total annual expenditures.

2This is an example of Pareto’s law, commonly known as the “80-20 rule,” named for Italian economist

Vilfredo Pareto (1848–1923) who observed that a large fraction of wealth tends to be concentrated in a small

fraction of the population.
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B parts: the next 10 to 15 percent of the parts, accounting for 10 to 15 percent of

total annual expenditures.

C parts: the bottom 80 percent or so of the parts, accounting for only 10 percent

or so of total annual expenditures.

Because their number is relatively small and their cost is high, it makes sense to use

sophisticated, time-consuming methods to tightly coordinate the arrival of A parts with

their use by the production process. Such efforts are generally not warranted for C parts,

since the cost of holding small excess quantities of inventory is not large. The B parts are

in between, so they deserve more attention than the C parts, but not as much as the A parts.

Approaches may vary from system to system, but the main point of ABC classification

remains the same: Inventories of different classes of parts should be treated differently.

We discuss some suitable techniques and where each is applicable in the following

sections.

17.3.3 Just-in-Time

Very expensive A parts, for which holding inventory is costly, and extremely bulky

parts (e.g., packaging materials), for which holding inventory is inconvenient, are good

candidates for tight inventory control. The way to maintain the absolute minimum level

of inventory of a part is to coordinate deliveries with use in the production process. This

is precisely the idea behind just-in-time (JIT).

A typical JIT contract with a supplier calls for frequent deliveries (e.g., weekly, daily,

or even more often, depending on the system) in small quantities closely matched to what

is required by the production schedule. Since production schedules are prone to change,

most JIT contracts allow adjustment of the order quantities almost up to the delivery

time (although most contracts also specify limits on the amount of change allowed).

To give suppliers a reasonable chance of meeting delivery requirements, well-

managed JIT procurement systems provide visibility of the production schedule to sup-

pliers. The primary goal is to alert suppliers as quickly as possible to any changes in the

schedule. But such visibility can have other benefits. It can eliminate the need for pur-

chase orders. For instance, a contract with a supplier of automotive brakes might call for

it to look at the final assembly schedule and deliver the proper brakes to support it. The

system could go even further and eliminate invoices for the brakes by simply counting

the number of automobiles produced and sending payment to the supplier for them. (The

implicit, and reasonable, assumption is that every automobile has a set of brakes.)

In concept, JIT contracts with suppliers are very attractive. However, in order for

them to work, suppliers must be reliable, with regard to both delivery timing and quality.

If a shipment is late or defective, then the entire line may be stopped for lack of parts.

Because of this, firms that rely extensively on JIT deliveries of raw materials generally

institute some kind of vendor certification program. Good vendor certification programs

involve both reviews of supplier procedures and efforts to help vendors improve their

systems.

Because close supervision and cultivation of suppliers is a prerequisite for JIT

deliveries of raw materials, this approach may not be a feasible option for smaller firms.

A firm whose purchases compose a very small fraction of a supplier’s business may

simply lack the clout to persuade the supplier to deliver parts on a JIT basis. While

the current trend toward responsiveness (e.g., as embodied in buzzwords such as time-
based competition, total cycle time, short-cycle manufacturing) may be increasing the

number of suppliers who are willing to offer JIT deliveries to firms other than their largest
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customers, true JIT contracts are still largely unavailable to the typical small firm. Thus,

they must seek other approaches to managing expensive raw materials inventories.

17.3.4 Setting Safety Stock/Lead Times for Purchased Components

Even if a firm cannot or will not use JIT deliveries for expensive A parts, it still makes

sense to link purchases of these parts closely to the production schedule (instead of, say,

ordering infrequently in large batches and supplying the line from an amply stocked

materials crib). In MRP language, this means that expensive parts should be ordered on

a lot-for-lot basis. For example, if we plan to produce 1,000 high-resolution monitors

n weeks from now, we should order 1,000 liquid-crystal displays to arrive some fixed

safety lead time in advance of the schedule.3

Notice that this approach is different from JIT because we are ordering parts against

a planned schedule, rather than have them delivered in synchronization with actual
production. But if true JIT is not possible, this may be the best we can do. Of course,

if (when) the schedule changes, production of the desired amounts may be impossible

because of lack of appropriate raw materials. This implies that short delivery lead times

are less difficult to work with than long ones, because purchases will be made closer

to due dates, when the schedule consists more of firm orders and less of speculative

forecasts. In the long run, a higher-priced supplier with short lead times may be more

economical than a lower-priced one with long lead times.

As we noted in Chapter 12 in the context of supplier quality, management of pur-

chased parts is extremely important in assembly systems with many parts. There we

pointed out that if we purchase 10 parts with sufficient safety lead times such that each

has a service level of 95 percent, then the probability of having all 10 parts arrive in

time to meet the schedule is 0.9510 = 0.5987, which represents very poor service. As-

sembly systems with many purchased parts require extremely high service for each

part in order to meet schedules reliably. For instance, for all 10 parts to be available to

meet the schedule 95 percent of the time requires that each part have a service level of

0.951/10 = 0.9949.

Finally, note that it is not necessary to set the same service level for every A part

that is ordered on a lot-for-lot basis. If one part is particularly expensive, it might make

sense to set its service relatively low (say, 96 percent) and the other service levels higher

(say, 99.9 percent) to compensate. If we let Sj represent the service level chosen for the

j th part and there are n parts in total, then we can ensure 95 percent compliance with

the schedule provided we choose the Sj values such that

S1 · S2 · · · Sn = 0.95

A formal method for choosing service levels to meet an overall service level with minimal

average investment in inventory is described in Hopp and Spearman (1993).

17.3.5 Setting Order Frequencies for Purchased Components

The above JIT and lot-for-lot purchasing schemes are reasonable options for expensive A

parts, and they might also work for intermediate B parts, but are generally not appropriate

for inexpensive C parts. It doesn’t make sense to order screws, washers, two-cent resistors,

and so forth, to be delivered in tight synchronization with the production schedule. The

3If yield loss is a problem, we may also need to maintain a planned level of safety stock.
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increased risk of an outage and the extra purchasing and material handling costs simply

cannot be justified by reductions in inventory investment.

The problem of managing inexpensive purchased parts can be thought of in terms

of lot sizing. The essential economic trade-off is between inventory investment and

purchasing cost. Recall that this is precisely the trade-off addressed by the economic

order quantity (EOQ) model. Indeed, we could directly apply the single-product model

presented in Section 2.2, provided we are willing to ignore part interactions. That is, if

we let

N = total number of distinct part numbers in system

D j = demand rate (units per year) for part j

c j = unit production cost of part j

A = fixed cost to place an order for any part

h j = cost to hold one unit of part j for one year

Q j = size of order or lot size for part j (decision variable)

we can compute the lot size for part j by using the standard EOQ formula:

Q∗
j =

√

2AD j

h j
(17.1)

The most difficult input to estimate in this formula is the fixed order cost,4 A. Ideally,

this should reflect those costs that are incurred each time an order is placed. These could

include actual shipping costs, purchasing agent time spent to process and follow up on

the order, time required to receive the order, and so on. Overhead costs (e.g., maintenance

of a purchasing department) should not be included in A j .

A potential problem with the above approach is that it does not consider interactions

between parts, which can occur when (1) parts share common delivery systems and (2)

we consider the overall capacity of the purchasing department. For instance, if different

parts can share common delivery trucks, then there is an incentive to order parts at the

same time, when possible. In Chapter 2, we mentioned the powers-of-two replenishment

policy as one way to accomplish this. Given the robustness of the EOQ cost function

and the roughness of the input data, a reasonable approach to the multipart purchasing

problem is to simply use the EOQ formula to compute an optimal order interval for each

part (that is, D j/Q∗
j ) and then round to the nearest power of two of some convenient

base ordering cycle. For instance, if weekly orders are practical, then round the EOQ

interval to the nearest value in the set: 1 week, 2 weeks, 4 weeks, 8 weeks, and so on.

To consider the overall capacity of the purchasing function, we could approach the

problem as one of minimizing the total inventory holding cost for all parts subject to

the constraint that the average order frequency not exceed some specified constant F .

Since the total number of purchase orders placed per year is equal to the average order

frequency per item multiplied by N , this formulation is equivalent to minimizing the

total investment in inventory subject to the constraint that the total number of annual

purchase orders not exceed NF. We have found it easier to think in terms of average

order frequency, however, and therefore we state the problem in this way.

4Recall that in Part I we criticized the fixed-order-cost assumption for production systems because it

frequently acts as a proxy for a capacity constraint, which changes over time and cannot be determined in

advance of the schedule. However, for purchasing systems, capacity may not be a critical consideration, and

therefore a fixed order cost is a much more plausible modeling assumption.
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To formulate a mathematical model, we recall that if the order quantity for part j is

Q j , then the average inventory of part j (in units) is Q j/2, and hence the annual holding

cost is hi Qi/2. The order frequency of part j is D j/Q j . Therefore, total holding cost

is
∑N

j=1 h j Q j/2, and the average order frequency is 1/N ,
∑N

i= j D j/Q j . Thus, we can

express the problem to minimize total holding cost subject to an average order frequency

of no more than F as

Minimum

∑N
j=1 h j Q j

2
(17.2)

Subject to:
1

N

N
∑

j=1

D j

Q j
≤ F (17.3)

Notice that if we replace holding cost h j by unit cost c j , then the problem becomes

one of minimizing total inventory investment subject to a constraint on average order

frequency. Some decision makers find it easier to think in terms of inventory investment

rather than holding cost. However, the two are equivalent (i.e., result in the same lot

sizes) if h j = ic j , where i is an interest rate. So the decision of whether to use holding

cost or inventory investment as the objective is generally just a matter of taste.

This formulation is an example of a nonlinear programming problem. The stan-

dard technique for solving such problems is the method of Lagrange, which converts

a constrained optimization problem to an unconstrained one by attaching a penalty to

violation of the constraint and incorporating it into the objective (Bazaraa and Shetty

1979). While this sounds complex, it really boils down to finding a fixed setup cost

for (17.1) that causes constraint (17.3) to be satisfied. We do this by an iterative search

method like the following.

Algorithm (Multiproduct EOQ Model)

Step 0. Pick an initial value for A.

Step 1. Use A in equation (17.1) to compute the lot sizes Q j for all j = 1, . . . , N .

Step 2. Compute the resulting order frequency:

F(A) = 1

N

N
∑

j=1

D j

Q j

Step 3. If F(A) = F , stop.5 Else,

If F(A) < F , decrease A
If F(A) > F , increase A

and go to step 1.

The increases and decreases in A can be made by trial and error, or some more

sophisticated search technique, such as interval bisection.6 As long as the method we

use takes smaller and smaller steps when we near the optimum, the procedure will

eventually converge.

5Since F(A) is a continuous number, it will never equal F exactly. So we typically stop when F(A) is

within some small prespecified tolerance of F .
6Basically, bisection starts with two points for A, an upper bound that is too high (i.e., causes

F(A) < F), and a lower bound that is too low (i.e., causes F(A) > F), and tries the midpoint between them.

If it is too high, then the midpoint replaces the upper bound; if it is too low, it replaces the lower bound. The

gap between the lower and upper bounds will steadily decrease. When it is sufficiently small (i.e., below

some specified tolerance), we stop.
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At the end of this procedure, we will have the optimal order quantities Q∗
j , j =

1, . . . , N . We also get the appropriate fixed order cost A. An alternate interpretation of

this cost is the decrease in total inventory holding cost per unit decrease in the average
order frequency. If we knew how much we were willing to pay in annual holding cost

to decrease the average order frequency by one order per item per year, then we could

immediately use this value in equation (17.1) to compute the optimal order quantities.

If, as is often the case, this is a difficult number to come up with, we can run the above

algorithm for a variety of values of F and plot the optimal holding cost (or inventory

investment, if we use c j in place of h j ) versus average order frequency. Such a curve

would represent the multiproduct analog to Figure 2.3 for the single-product case.

We could directly implement the optimal lot sizes Q j , j = 1, . . . , N , computed via

the above procedure. However, if there are savings to ordering parts simultaneously, it

may make sense to round the order intervals associated with these lot sizes to powers of

two. We do this by noting that the reorder interval for part i is given by

T ∗
j = Q∗

j

D j

If we round the T ∗
j values to the nearest power of two, then, as we discussed in Chapter 2,

orders of different parts will tend to “line up.” Of course, this rounding will affect both

inventory and average order frequency. If we round the T ∗
j values to T ′

j values, then our

order quantities become

Q′
j = T ′

j D j

Hence, the actual inventory holding cost will be

∑N
i= j c j Q′

j

2

and the actual average order frequency will be

1

N

N
∑

i= j

D j

Q′
j

If the increase in inventory investment relative to the optimum is too great, or if the

average order frequency is too much larger than the target level F , then the benefits from

power-of-two rounding may not justify their costs. If the difference between the actual

solution and the optimum is slight, then such rounding is probably worthwhile.

Example:

To illustrate the above procedure, we consider a very simple four-part example with

data given in Table 17.1. The objective is to minimize average inventory investment

subject to an average annual order frequency of F = 12 (i.e., once per month). Note

that since the objective is average inventory investment, we use a holding cost rate equal

to the unit cost h j = c j .

Table 17.2 summarizes the output of the above procedure applied to this example.

The rightmost column in this table gives average inventory investment for each set of

order quantities, which is calculated as

∑N
i= j c j Q j

2
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Table 17.1 Input Data for
Multipart Lot
Size Example

Part j D j c j

1 1,000 100

2 1,000 10

3 100 100

4 100 10

Table 17.2 Calculations for Multipart Lot Size Example

Inventory

Iteration A Q1(A) Q2(A) Q3(A) Q4(A) F(A) Investment ($)

1 1.000 4.47 14.14 1.41 4.47 96.85 387.39

2 100.000 44.72 141.42 14.14 44.72 9.68 3,873.89

3 50.000 31.62 100.00 10.00 31.62 13.70 2,739.25

4 75.000 38.73 122.47 12.25 38.73 11.18 3,354.89

5 62.500 35.36 111.80 11.18 35.36 12.25 3,062.58

6 68.750 37.08 117.26 11.73 37.08 11.68 3,212.06

7 65.625 36.23 114.56 11.46 36.23 11.96 3,138.21

8 64.065 35.80 113.19 11.32 35.80 12.10 3,100.68

9 64.845 36.01 113.88 11.39 36.01 12.03 3,119.50

10 65.235 36.12 114.22 11.42 36.12 11.99 3,128.87

11 65.040 36.07 114.05 11.41 36.07 12.01 3,124.19

12 65.138 36.09 114.14 11.41 36.09 12.00 3,126.53

To initiate the procedure, we begin with A = 1. As shown in Table 17.2, this results

in an average order frequency of 96.85, which is much too high. Therefore, A must be

increased. So we try A = 100. As we would expect, since we are penalizing frequent

orders heavily, this results in much higher order quantities, and an average order fre-

quency falls to 9.68. Since this is too low, we now have A bracketed. We know that

the optimal value of A (the one that achieves an order frequency of 12) is between 1

and 100. So we try A = 50. Since this results in an order frequency of 13.70, it is too

low. So we try A = 75. This decreases the order frequency to 11.18. Proceeding in this

manner, the procedure eventually converges to the desired order frequency. Note that all

the calculations involved are easily handled in a spreadsheet, provided that the number

of parts is not too large. Indeed, it is a simple matter to use Goal Seek or Solver in Excel

to search out the proper value of A.

The last line in Table 17.2 gives us the result from the multipart lot-sizing procedure.

These numbers tell us that the optimal lot sizes for parts 1, 2, 3, and 4 are 36.09, 114.14,

11.41, and 36.09, respectively. Notice that the lot size of part 2 is larger than that of part 1,

and the lot size of part 4 is larger than that of part 3. This is because part 2 is less costly than

part 1 and part 4 is less costly than part 3. Intuitively, optimal lot size is decreasing in cost.

Furthermore, the lot size of part 1 is larger than the lot size of part 3, even though

their costs are the same. This is because the demand is greater for part 1. The same

relationship holds between parts 2 and 4. As we would expect, lot size is increasing in

demand rate.
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Finally, notice that parts 1 and 4 have the same lot size. This is because

D1

c1

= D4

c4

From expression (17.1), it is apparent that lot size depends on D j and h j (and hence c j )

only through their ratio.

The output from the procedure also tells us that A = 65.138. This gives us an estimate

of the cost (in inventory investment) of changing the average order frequency. Increasing

the order frequency by one (to 13 per year) would decrease inventory investment by

$65.14, while decreasing it by one (to 11 per year) would increase inventory investment

by $65.14. However, we must note that these costs are only approximate, since the true

cost function is nonlinear. In reality, increasing the order frequency by one will save less

than $65.14, while decreasing it by one will cost more than $65.14. However, it does

give the user a rough idea of the inventory value of more frequent orders.

The resulting value of A also serves as a reality check on our original choice of

order frequency target. If the actual cost of placing an order is less (more) than $65.14,

then we should have chosen an order frequency larger (smaller) than 12 times per year.

The point is that if we have some idea of what A and F should be, but aren’t completely

certain about either, then we will get a better solution by cross-checking them against

each other and adjusting until both are reasonable.

We can be more exact about the trade-off between inventory investment and or-

der frequency. Notice that if we keep track of the inventory investment, as we did in

Table 17.2, then each choice of A gives us an inventory investment/order frequency

pair. Hence, by varying A over a sufficiently wide range, we can generate a graph of

inventory investment versus average order frequency. We do this in Figure 17.2. No-

tice that the inventory investment falls very rapidly as we increase the number of or-

ders per year from zero to five. However, increasing the order frequency above this,

and particularly above 10 per year, has a much smaller effect. This type of diminish-
ing returns is exactly analogous to the behavior of the single-product model shown in

Figure 2.3.
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Last, if there are economies to joint orders, we might want to round our order

intervals to powers of two. To do this, we first compute the order intervals:

T ∗
1 = Q∗

1

D1

= 36.09

1,000
= 0.03609 year = 13.17 days

T ∗
2 = Q∗

2

D2

= 114.14

1,000
= 0.11414 year = 41.66 days

T ∗
3 = Q∗

3

D3

= 11.41

100
= 0.11414 year = 41.66 days

T ∗
4 = Q∗

4

D4

= 36.09

100
= 0.3609 year = 131.73 days

Using days as our base time unit, we choose T ′
1 to be the closest power of two to 13.17,

namely, 24 = 16. We choose T ′
2 and T ′

3 as the closest power of two to 41.66, which is

25 = 32. And we set T ′
4 equal to the closest power of two to 131.73, which is 27 = 128.

These order intervals translate to order quantities as follows:

Q′
1 = D1T ′

1

365
= 1,000 × 16

365
= 43.84 units

Q′
2 = D2T ′

2

365
= 1,000 × 32

365
= 87.67 units

Q′
3 = D3T ′

3

365
= 100 × 32

365
= 8.77 units

Q′
4 = D4T ′

4

365
= 100 × 128

365
= 35.07 units

Substituting these into the expressions for inventory investment and order frequency

yields

Inventory investment =
∑4

j=1 c j Q′
j

2
= $3,243.84

Average order frequency = 1

4

4
∑

j=1

D j

Q′
j

= 12.12

Since we presumably save some effort by combining orders because of the power-of-two

order intervals, it may be acceptable to have a slightly higher average order frequency

than the originally desired level of 12. Notice, however, that the inventory investment

increases from $3,126.53 to $3,243.84. This increased cost must be offset by the benefits

of joint replenishment (e.g., fewer separate purchase orders to issue, truck sharing) for

the powers of two policy to be worthwhile.

17.4 Managing WIP

The first thing to note about managing WIP is that Little’s law

CT = WIP

TH
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implies that for fixed throughput, reducing WIP and reducing cycle time are directly

linked. Therefore, the measures we will suggest to increase the efficiency of WIP are the

same as those one would use to reduce cycle times.

The second important point concerning WIP management is that, as we pointed

out earlier, the bulk of work-in-process in most production systems (i.e., disconnected

flow lines) is in queue (caused by variability and high utilization), waiting for batch

(caused by batching), or waiting to match (caused by lack of synchronization). Thus, WIP

reduction programs should be directed at (judiciously) lowering utilization, smoothing

out variability, reducing batching, or improving synchronization.

In the following sections, we review techniques for reducing WIP in queue, waiting

to move, and waiting to match.

17.4.1 Reducing Queueing

Recall that for a single-machine workstation, with mean processing time te, coefficient

of variation of processing times ce, coefficient of variation of arrivals ca , and utilization

u, cycle time can be approximated by

CT ≈
(

c2
a + c2

e

2

) (

u

1 − u

)

te + te (17.4)

so by Little’s law and the fact that u = rate, where ra is the average arrival rate to the

workstation,

WIP = CT · ra ≈
(

c2
a + c2

e

2

) (

u

1 − u

)

u + u (17.5)

Thus, to reduce WIP and CT at the workstation, we can reduce the variability of arrivals

to the station (c2
a), the effective variability of the processing times at the station (c2

e ), or

utilization (u).

Generic options for achieving these include the following:

1. Equipment changes/additions. The simplest way to increase capacity, and hence

reduce utilization, of a station is to replace machines with faster models or augment

the current machines with additional parallel capacity. While hardly imaginative,

this option can be effective. However, to choose good equipment additions, we must

consider the purchase cost, the effect on the capacity and variability at the station,

and downstream (flow) variability effects. We discuss a framework for this in

Chapter 18.

2. Pull systems. As we saw in Chapter 10, a pull system will achieve the same level of

throughput with a lower average WIP level. The reason is that releases to the line are

coordinated with the status of the line (i.e., work is allowed to enter the line only

when there is space for it). This is something like reducing ca to the front of the line,

but not quite. What pull systems really do is to tie releases to the line to completion

of work within the line. Most important, they establish a WIP cap, which prevents

the WIP level in a line from exceeding a specified quantity. Thus, pull systems can

mandate a WIP reduction. The challenge is to achieve the WIP reduction without a

loss in throughput. This requires making some of the other variability reduction or

capacity enhancement changes suggested here.
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3. Finite-capacity scheduling. If releases to the line are made without adequate

attention to capacity (e.g., as in MRP), then WIP explosions at bottleneck resources

are likely. As Chapter 15 described, a finite-capacity scheduling system can help

regulate releases in accordance with system capacity. Although this does not tie

releases to production quite as strongly as a pull system (a pull system links releases

to actual production, while a finite-capacity scheduler links releases to expected
production), finite-capacity schedulers can substantially reduce WIP by preventing

systematic overreleasing to the line. Ideally, one should supplement a finite-capacity

scheduling system with a pull system, in order to keep the system under control

when conditions depart from the schedule.

4. Setup reduction. All other things being equal, reducing setups will increase

effective capacity, and therefore reduce utilization, of a workstation. However,

typically when we reduce setups, we run smaller lots and hence perform more

setups. Even if the increase in the number of setups completely offsets the capacity

increase, as we discussed in Part II, shorter, more frequent setups will decrease

effective variability at the workstation (ce). This will serve to reduce queueing at the

workstation and downstream (i.e., because flow variability will also be reduced).

Moreover, as we noted earlier, if we can produce smaller batches, we will have less

need to store excess production as finished goods inventory.

5. Improved reliability/maintainability. Increasing either the mean time to failure or

the mean time to repair increases the availability of a machine and hence augments

its capacity. In addition, decreasing the mean time to repair can significantly reduce

the effective variability of the machine (ce). Thus, these types of improvement can

reduce queueing at a workstation and, by lowering downstream flow variability, also

reduce queueing at subsequent stations.

6. Enhanced quality. As we noted in Chapter 12, reducing either rework or yield loss

can substantially increase capacity and reduce effective variability. Because of this,

quality improvement efforts can be major components of a WIP/cycle time

reduction program.

7. Floating work. Cross-trained workers who can move to where capacity is required

can increase the effective capacity of the line. Cross-training also tends to give

workers a more global picture of the line and gets more brains thinking about the

problems faced at each station in the line. In manual assembly systems, paced or

unpaced, the effects of floating work can be achieved by designating certain tasks as

“shared.” For example, a particular component might be assigned to be attached by

either worker A (upstream) or worker B (downstream). Whenever worker A is

keeping up with the line, she will attach the shared component. However, if worker

A gets behind (e.g., a quality glitch slows her down), then she can pass the

component to worker B for him to attach. In general, floating work schemes work

effectively only if the incentive system encourages cooperation toward a linewide

goal (e.g., throughput).

Finally, we make the same point we made with regard to ABC classification of

purchased parts: Not all WIP need be treated equally. It may make perfect sense to

stratify parts by volume. High-volume parts could be assigned to lines with few part

families, and hence few setups, where the steadiness of flow facilitates use of a highly

efficient pull system. Low-volume parts could be produced in a job shop environment,

so that high flexibility purchased at the cost of low efficiency would affect only a minor

portion of the overall business. This type of focused factory strategy can greatly simplify

management of a factory with many different parts.
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17.4.2 Reducing Wait-for-Batch WIP

Batching for process reasons may be unavoidable (e.g., a batch burn-in operation that

requires 24 hours may be able to provide sufficient capacity only when large batches

are processed together). Batching for move reasons is another matter. Anything that

enables jobs to move from one workstation to the next in smaller batches, and hence

with less waiting, will clearly reduce WIP and cycle time. Specific approaches for doing

this include these:

1. Lot splitting. Remember that process lots and move lots do not have to be the

same. Even if long setup times at a workstation that processes jobs one at a time

necessitate large batches for capacity reasons, there is no need to wait until the

batch is complete before moving some of the jobs to the next workstation. For

instance, a machining center that produces crankshafts in lots of 10,000 (i.e.,

before setting up to produce a different type of crankshaft) might send them to

the subsequent finishing process in lots of 100. In theory, the crankshafts could

even be moved one at a time from machining to finishing. The limiting factor is

the amount of time required to move the material.

2. Flow-oriented layout. More frequent moves can be facilitated by the plant

layout. One of the advantages of a cellular layout is that workstations are in

close proximity so that material can move easily between them. Material

handling systems (e.g., conveyors, AGVs) can also facilitate small lot transfer

between workstations, even if they are not physically close to one another.

3. Cart sharing. In workstations with multiple parallel machines producing

identical product, sharing incoming and/or outgoing carts (or whatever

containers are used to move jobs between workstations) can reduce the amount

of WIP waiting before and after the workstation. For instance, Figure 17.3
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shows 12 machines filling different numbers of outgoing carts (we have not

explicitly represented incoming carts). On average, the number of completed

parts waiting to be moved to the next workstation in the system with one

outgoing cart will be one-twelfth that in the system with 12 outgoing carts.

Notice, however, that this assumes that the machine operators spend the same

amount of time moving completed parts to the carts in both systems. If, because

of geography, operators must walk farther to bring parts to the single shared cart

than to put them on individual carts in the 12-cart system, then cart sharing can

lengthen the effective processing times. Depending on the system, the cycle

time reduction from cart sharing might offset that from the capacity decrease.

However, in general, cart sharing typically makes sense only where the time

and inconvenience are slight. This consideration might make the three- or

four-cart arrangement the most practical option for the 12-machine workstation

in Figure 17.3.

17.4.3 Reducing Wait-to-Match WIP

At assembly stations, all subcomponents must be available in order for the assembly

operation to occur. We have already discussed the problem of managing purchased parts

feeding an assembly process in this chapter and in Chapter 12, so we will consider only

the situation where subcomponents are produced on different fabrication lines within

the plant.

Ideally, we would like to release work orders for the various subcomponents and

process them in the fabrication lines so that they arrive at assembly at exactly the same

time, in close coordination with the final assembly schedule. Variability generally makes

this impossible, but there are things we can do to improve synchronization:

1. Pull system. As we know from Chapter 14, a pull system, and a CONWIP system in

particular, will naturally synchronize releases into the fabrication lines with final

assembly. If fabrication lines are of different length (i.e., in terms of the time

required to traverse them), then different WIP levels (card counts) will be needed.

This will mean that releases into the fabrication lines at the same time will not

necessarily correspond to the same finished product. However, if the WIP levels in

the fabrication lines are set appropriately, subcomponent arrivals to assembly will be

synchronized.

2. Common release list. The above CONWIP scheme for coordinating releases with

final assembly will synchronize arrival of subcomponents to assembly only if the

release sequence is not scrambled in the fabrication lines. If, for instance, local

dispatching rules such as shortest processing time (SPT) are used at individual

workstations, then jobs can pass one another and synchronization will be lost. Even

if we use first-in, first-out (FIFO) at the workstations in the fabrication lines, passing

is still possible at multimachine stations. Thus, the way to maintain synchronization

with the final assembly schedule is to follow a common release list at each

workstation in the fabrication lines. This release list maintains the jobs in order of

the final assembly sequence. As long as the fabrication workstations process jobs in

the order specified by the release list, the jobs will arrive synchronized to assembly.

If the release list must be routinely violated (e.g., because of batching or quality

problems), then a buffer of WIP will have to be maintained in front of assembly to

avoid stoppages because of “out-of-sync” arrivals.
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3. Balanced batching. If one fabrication line uses large process lots because of a long

setup, it may be unable to coordinate with the final assembly schedule. There are

three ways to deal with this problem. (1) Produce well ahead of the final assembly

schedule on this fabrication line, and maintain a substantial buffer between this line

and final assembly. (2) Generate the final assembly schedule in accordance with the

batching requirements of the fabrication line. (3) Reduce setup times or augment

capacity in the fabrication line so that smaller lots become feasible and it can be

synchronized with the desired final assembly schedule. The first two are short-term

options; the third may require more time to implement.

17.5 Managing FGI

Finished goods inventory acts as a buffer between production and demand. As we noted

earlier, such a buffer may be needed to (1) insulate customers from manufacturing cycle

time, perhaps to provide “instant” delivery; (2) absorb variability in either the production

or demand processes; or (3) level out capacity loading (e.g., due to seasonality). These

imply that anything that links production and demand processes more closely will allow

less FGI to be carried. Options for doing this include the following:

1. Improved forecasting. While we don’t want to raise unrealistic expectations

for a forecasting panacea, it is certainly the case that forecasting errors can inflate

FGI. If better techniques for forecasting demand, like the time series methods of

Chapter 13, can reduce the discrepancies between production and demand, then

FGI will be reduced. Despite this fact, there are limits to our ability to predict

the future, and so the other options below may be more promising in most

systems.

2. Dynamic lead time quoting. Many systems quote fixed lead times to customers.

However, because plant loading varies over time, actual manufacturing cycle times

also vary over time. Therefore, if we set the fixed lead time such that the fraction of

time we can deliver within this time is reasonably high, then a high percentage of

jobs will finish early. If early delivery is not permitted, these jobs will wait in FGI.

We can eliminate this problem by dynamically quoting customer lead times that are

sensitive to plant loading.

For example, we worked with a manufacturer of metal cabinets that published

10-week fixed lead times in its product catalog. If it had used a dynamic lead time

quoting system, customers who placed orders when the plant was almost empty

might have received a 2-week lead time, while customers who placed orders when

the plant was backed up with work might have received a 12-week lead time.

Overall, lead times would be shorter on average, and less product would have to

wait in FGI for shipment to attain the same on-time delivery performance.

3. Cycle time reduction. A very effective way to reduce forecasting errors is to rely

less on forecasting. If cycle time (including the entire value-added chain consisting

of time to enter orders, code orders, engineer orders, schedule orders, manufacture

products, deliver products, etc.) can be reduced, then work releases can be made

closer to their due dates. Since forecasts tend to grow worse with distance into the

future, later releases have the effect of making the master production schedule more

reliable. If cycle times become short enough, then all releases can be made in

conjunction with firm customer orders and therefore FGI due to forecasting errors
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can be eliminated altogether. Happily, all the WIP reduction techniques listed earlier

are also cycle time reduction techniques (as a consequence of Little’s law) and

therefore are well suited to this purpose.

4. Cycle time variability reduction. Chapter 12 pointed out that if we want to

guarantee a certain level of service, the lead time quoted to a customer is affected by

both the average cycle time and the standard deviation of cycle time. The more

variability in cycle times, the more safety lead time we must build into our quotes to

ensure a high percentage of on-time deliveries. Higher safety lead times imply that

product will spend more time waiting in FGI, unless early delivery is permitted.

Fortunately, many of the things we can do to reduce average cycle time (reduce

setups, improve reliability/maintainability, implement pull mechanisms, reduce

rework and scrap) also serve to reduce cycle time variance.

5. Late customization. Even if it is necessary to carry inventory in order to provide

short customer lead times, it may not be necessary to carry the inventory in the form

of FGI. In some cases, it may be possible to stock the product in semifinished form

and assemble or customize to order. Semi-finished inventory is more flexible,

provided it can be used to produce more than one finished product, which makes it

possible to carry less total inventory.

For example, a manufacturer of faucet fixtures might offer 20 different models

made up of all combinations of five bases and four handle styles. By stocking the

bases and handles, the manufacturer need maintain only nine different items in

stock, instead of 20. Furthermore, because of variability pooling, it is easier to

forecast demand for the nine parts than for the 20 finished products, and hence less

total stock will be required.

As another example, an appliance manufacturer might produce a family of

electric mixers that differ according to accessories (a dough hook might or might not

be included), retail outlet (labels and packaging might indicate a store brand), and

market destination (instructions might be in different languages). By stocking

generic families of mixers, distinguished by color of plastic parts, say, the

manufacturer could quickly label and package mixers to supply demand for many

different finished products. Under this strategy, forecasts would only have to be

accurate at the family level, so FGI due to forecasting errors could be considerably

reduced.

The potential drawbacks to this type of strategy are that (1) customer lead time is

not reduced as much as if FGI is stocked in finished form, which could present a

problem if the competition stocks at the FGI level, and (2) storage of semifinished

products can be difficult; for example, dirt and breakage might be a problem if

mixers are not boxed.

The ability to store product at the semifinished level can also be a function of

product design. For instance, the manufacturer of institutional cabinetry mentioned

earlier had 10-week lead times in large part because of its large product line with

each product built from scratch (i.e., sheet metal). A competitor was able to offer

4-week lead times by offering a smaller product line built around a small set of

standard modules (stocked) with different paint colors, face-framing options, and

features (faucets, electrical hookups, glass doors, etc.) to allow them to meet

customers’ needs. Because customers were typically architects who were also

frequently behind schedule, responsiveness was highly valued in this market, and

the competitor was clearly gaining the upper hand as a result of the shrewd product

design strategy.
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6. Balancing labor, capacity, and inventory. In many markets, product is produced

during periods of low demand and held as FGI to meet demand during peak periods.

While this may be the best option in some cases, it is by no means the only way to

address the problem of seasonal demand. An alternative approach may be to vary

the size of the workforce, either by using temporary workers during the peak season

or by pairing the product with one with an offset peak (e.g., lawnmowers with

snowblowers) and transferring workers between lines. Another—heretical, to most

traditional managers—option is to maintain enough excess capacity to meet peak

demand without building inventory. When the costs of carrying FGI, obsolescence,

and poor customer service due to forecasting errors are considered, it is possible that

these other options may be more economical than building large stores of FGI. At the

very least, it may make sense to use a combination of approaches, such as a limited

inventory buildup, coupled with some excess capacity and some floating labor.

17.6 Managing Spare Parts

Managing spare parts is an important component of an overall maintenance policy, which

can be a major determinant of operational efficiency in a manufacturing system. Because

of its importance and complexity, a wide variety of spare parts practices are observed

in industry (see Cohen, Zheng, and Agrawal 1997 for a benchmark study). We will not

attempt a survey of these practices. Instead, in this section, we establish a framework

for evaluating spare parts inventories and build on the models from Chapter 2 to develop

appropriate tools.

17.6.1 Stratifying Demand

There are two distinct types of spare parts, those used in scheduled preventive mainte-

nance and those used in unscheduled emergency repairs. For instance, a filter may be

used in a regular monthly maintenance procedure, while a fuse is replaced only when it

fails. The two types of parts should be managed differently.

Scheduled maintenance represents a very predictable demand source. Indeed, if

maintenance procedures are followed carefully, this demand may be much more stable

than customer demand for finished products. Thus, standard MRP logic is probably ap-

plicable to these parts. That is, starting with projected demand, we net against current

inventory (and scheduled receipts) and use a lot-sizing rule (lot for lot, fixed order quan-

tity, etc.), to generate planned order receipts, and then back out according to purchasing

lead times to generate purchase orders. If the parts are produced internally, we can sub-

stitute whatever scheduling procedure is used in place of the fixed purchase lead times

to generate a production schedule. In either case, the stable predictable nature of the

demand process makes these preventive maintenance parts relatively easy to manage.

Unscheduled emergency repairs are by definition unpredictable. Therefore, using

MRP logic for these parts tends to work poorly. We address approaches for maintaining

sufficient safety stock to support timely repair of equipment in the following section.

17.6.2 Stocking Spare Parts for Emergency Repairs

For spare parts whose demand is unpredictable, the challenge is to provide high service

in a cost-efficient manner. Because demand is uncertain, the (Q, r ) model we discussed
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in Chapter 2 is a potential tool for examining this trade-off. To apply it, we must decide

how to represent service in a multipart environment.

In spare parts systems, service is related to the availability of the machines being

supported. Moreover, because a machine that is down for lack of a $2 fuse is just as

unavailable as one that is down for lack of a $3,000 computer unit, it is often reasonable

to assume that the cost of not having a part on hand is the same for all parts. Therefore,

if we can specify either the backorder cost or the stockout cost, we can analyze the parts

separately, using one of the models of Section 2.4.3.

However, as we have noted before, backorder and stockout costs are often difficult

to estimate. In the case of spare parts systems, the reason is that the cost of a part shortage

depends on the cost of the machine outage caused by it, which in turn depends on the cost

of customer delays caused by the outages. Because of this, it is frequently attractive to

think of the problem in terms of a service constraint rather than a service cost. Fortunately,

there is a close connection between the cost and constraint formulations.

To adapt the (Q, r ) model to the multiproduct case, we make use of the same

notation as in Section 2.4.3 with a subscript j to represent parameters for part j ,

j = 1, . . . , N , so that

N = total number of distinct part types in system

D j = expected demand (in units per year) for part j

� j = replenishment lead time (in days) for part j

X j = demand for part j during replenishment lead time (in units),

a random variable

θ j = E[X j ] = D j� j/365, expected demand during replenishment lead

time for part j (in units)

σ j = standard deviation of demand during replenishment lead time for

part j

g j (x) = density of demand during replenishment lead time

for part j

G j (x) = P(X j ≤ x), cumulative distribution function of demand for part j
during replenishment lead time

A = setup or purchase order cost per replenishment for any part

(in dollars)

c j = unit production or purchase cost of part j (in dollars per unit)

h j = annual unit holding cost for part j (in dollars per unit per year)

k = cost per stockout for any part (in dollars)

b = annual unit backorder cost for any part (in dollars per unit of

backorder per year). Note that failure to have inventory available

to fill a demand is penalized by using either k j or b j but not both.

B = desired total backorder level

S = desired average service level

F = desired average order frequency

Q j = order quantity for part j (in units); this is a decision variable

r j = reorder point for part j (in units); this is a decision variable

s j = r j − θ j , safety stock for part j implied by r j (in units)

Fj (Q j ) = order frequency (replenishment orders per year) for part j as a

function of Q j
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Sj (Q j , r j ) = fill rate (fraction of orders filled from stock) of part j as a function

of Q j and r j

B j (Q j , r j ) = average number of outstanding backorders for part j as a function

of Q j and r j

I j (Q j , r j ) = average on-hand inventory level (in units) of part j as a function

of Q j and r j

With this notation, we can represent the total cost in two ways. We develop both,

along with their associated constraint formulations, below.

Backorder Model. We begin by characterizing service by means of the average back-

order level. We can formulate a cost function representing the sum of the setup plus

backorder plus holding cost as

Yb(Q, r) =
N

∑

j=1

[AFj (Q j ) + bB j (Q j , r j ) + h j I j (Q j , r j )] (17.6)

where Q = (Q j , j = 1, . . . , N ) and r = (r j , j = 1, . . . , N ) represent vectors of the

order quantities and reorder points. Since the cost function Yb is simply the sum of

separate terms that depend on (Q j , r j ) pairs, we can minimize it by minimizing the

terms for each j separately. But we already did this in Chapter 2. Hence, using the

same approximation we used there (i.e., approximating the (Q, r ) backorder formula

B j (Q j , r j ) by the base stock backorder formula B j (r j )) leads to the same expressions

for the optimal order quantities and reorder points:

Q∗
j =

√

2AD j

h j
(17.7)

G(r∗
j ) = b

b + h j
(17.8)

Note that these are the familiar EOQ and base stock formulas. Furthermore, if we assume

that lead time demand for product j is normally distributed with mean θ j and standard

deviation σ j , then we can simplify (17.8) to

r∗
j = θ j + z jσ j (17.9)

where z j is the value in the standard normal table such that �(z j ) = b/(b + h j ).

Note that these expressions for Qi and ri are sensitive to the differences between

parts. For instance, all other things being equal, a high-cost part (which will have a

higher h j coefficient) will have both a smaller order quantity Q j and reorder point r j

than will a low-cost part. In addition, as we would expect, Q j and r j are increasing in

the demand rate D j (i.e., because increasing D j increases θ j , so by equation (17.9) r j

increases in θ j ). In the normal demand case, the reorder point r j will also increase in

the standard deviation of lead time demand provided that z j > 0, which as we noted in

Chapter 2 is true as long as b > h j . Finally, we note that increasing the fixed order cost A
increases all order quantities Q j , and increasing the backorder cost b increases all reorder

points r j .

If we can specify reasonable values for the fixed setup (order) cost A and the

unit backorder penalty b, we can use formulas (17.7) and (17.9) to compute stocking
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parameters for the multiproduct (Q, r ) system. However, as we observed in Chapter 2,

this is frequently difficult to do in practice. In production environments, A is often a proxy

for capacity, since the motivation for producing in batches is to avoid capacity losses due

to frequent setups. In purchasing environments where capacity is not a direct concern,

estimating A directly is much easier. But even in this case, estimating the backorder cost

b is problematic, since it involves placing a value on loss of customer goodwill and other

intangibles. For this reason, it is often more intuitive to use a constrained model. When

service is appropriately characterized by the total number of outstanding backorders (for

all part types), then we can formulate the problem as:

Minimize Inventory holding cost

Subject to: Average order frequency ≤ F
Total backorder level ≤ B

We can use an iterative procedure, like that we described for the multiproduct EOQ

model earlier, to solve this constrained problem. The basic idea is to first adjust the fixed

order cost A until the order frequency constraint is satisfied and then adjust the backorder

cost b until the backorder level constraint is satisfied. Note that when we check to see

whether a given set of (Q j , r j ) values satisfies the backorder level constraint, we use the

exact formula for computing backorder level, not the approximation we used to derive

equation (17.8). Also, because the backorder level B j (Q j , r j ) depends on both Q j and

r j , while the order frequency Fj (Q j ) = D j/Q j depends only on Q j , it is important to

adjust A first and b second. We state the procedure formally on the next page.

Algorithm (Multiproduct (Q, r) Backorder Model)

Step 0. Pick initial values for A and b.

Step 1. Use A in equation (17.7) to compute the lot sizes Q j for all j = 1, . . . , N .

Step 2. Compute the resulting order frequency

F(A) = 1

N

N
∑

j=1

D j

Q j

Step 3. If F(A) = F , go to Step 4. Else,

If F(A) < F , decrease A
If F(A) > F , increase A

and go to step 1.

Step 4. Use b in equation (17.9) to compute the reorder points r j for all

j = 1, . . . , N .

Step 5. Compute the resulting total backorder level

B(b) =
N

∑

j=1

B j (Q j , r j )

Step 6. If B(b) = B, stop. Else,

If B(b) < B, decrease b
If B(b) > B, increase b

and go to step 4.

Stockout Model. If service is characterized better by average fill rate than by total

backorder level, then we can formulate a cost function representing the sum of the setup
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plus stockout plus holding cost as

Ys(Q, r) =
N

∑

j=1

{

AFj (Q j ) + k[1 − Sj (Q j , r j )] + h j I j (Q j , r j )
}

(17.10)

where Q = (Q j , j = 1, . . . , N ) and r = (r j , j = 1, . . . , N ) represent vectors of the

order quantities and reorder points. As with the backorder cost model, we can optimize

this separately for each part j . Using the same approximation we used in Chapter 2 (i.e.,

that we can compute Q j using the EOQ model and approximate the fill rate with the

type II approximation Sj (Q j , r j ) ≈ 1 − B j (r j )/Q j and approximate the backorder level

B j (Q j , r j ) by the base stock backorder formula B j (r j )) leads to the same expressions

for the optimal order quantities and reorder points:

Q∗
j =

√

2AD j

h j
(17.11)

G(r∗
j ) = k D j

k D j + h j Q j
(17.12)

If we further assume that lead time demand for product j is normally distributed

with mean θ j and standard deviation σ j , then we can simplify equation (17.12) to

r∗
j = θ j + z jσ j (17.13)

where z j is the value in the standard normal table such that �(z j ) = k D j/(k D j + h j Q j ).

As in the backorder model, these expressions for Qi and ri are sensitive to the

differences between parts. Again, all other things being equal, a high-cost part will

have both a smaller order quantity Q j and reorder point r j than will a low-cost part.

Also, Q j and r j are again increasing in the demand rate D j , and in the normal demand

case, the reorder point r j will increase in the standard deviation of lead time demand

provided that z j > 0. Finally, as we would expect, increasing the fixed order cost A
increases all order quantities Q j , and increasing the stockout cost k increases all reorder

points r j . A difference from the backorder model is that the r∗
j values depend on the Q j

values.

If we can specify reasonable values for the fixed setup (order) cost A and the

unit stockout penalty k, we can use formulas (17.11) and (17.13) to compute stocking

parameters for the multiproduct (Q, r ) system. If, for the reasons discussed and in

Chapter 2, we are not able to do this, we can use a constrained formulation. When

service is appropriately characterized by the average fill rate, then we can formulate the

problem as

Minimize Inventory holding cost

Subject to: Average order frequency ≤ F
Average fill rate ≥ S

We can use an analogous iterative procedure to that used above for the backorder

model. As before, we make use of exact formulas for computing the fill rate in order

to check the fill rate constraint. Again, it is important to adjust A to achieve the order
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frequency constraint before adjusting k to achieve the fill rate constraint. The formal

procedure can be stated as follows:

Algorithm (Multiproduct (Q, r) Stockout Model)

Step 0. Pick initial values for A and k.

Step 1. Use A in equation (17.11) to compute the lot sizes Q j for all

j = 1, . . . , N .

Step 2. Compute the resulting order frequency

F(A) = 1

N

N
∑

j=1

D j

Q j

Step 3. If F(A) = F , go to step 4. Else,

If F(A) < F , decrease A
If F(A) > F , increase A

and go to step 1.

Step 4. Use k in equation (17.13) to compute the reorder points r j for all

j = 1, . . . , N .

Step 5. Compute the resulting total average fill rate

S(k) =
∑N

j=1 D j Sj (Q j , r j )
∑N

j=1 D j

Step 6. If S(k) = S, stop. Else,

If S(k) < S, increase k
If S(k) > S, decrease k

and go to step 4.

Multiproduct (Q, r) Example. To illustrate the use of the backorder and stockout

models for the multiproduct (Q, r ) problem, and the difference between them, we con-

sider the example in Table 17.3. This table gives the unit cost c j , annual demand D j ,

replenishment lead time � j , and mean and standard deviation of lead time demand, θi and

σi , respectively. Our objective is to minimize average inventory investment subject to

constraints on average order frequency and either average fill rate or average backorder

level. Note that since we are using inventory investment as our objective, we set the

holding cost equal to unit cost: h j = c j .

First we address the problem of setting the order quantities Q j . To do this, we

assume a target average order frequency of F = 12 orders per year. Notice that the unit

cost and annual demand data are identical to those in Table 17.1. Hence, we have already

Table 17.3 Cost and Demand Data for Multipart (Q, r) Example

c j D j � j θ j σ j

j $/unit) (units/yr) (days) (units) (units)

1 100 1,000 60 164.4 12.8

2 10 1,000 30 82.2 9.1

3 100 100 100 27.4 5.2

4 10 100 15 4.1 2.0
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Table 17.4 Results of Multipart Stockout Model (Q, r) Calculations

B j I j

Q j kD j/(kD j+h j Q j ) r j F j S j (Backorder (Inventory

j (units) (unitless) (units) (Order Freq.) (Fill Rate) Level) Level)($)

1 36.1 0.666 169.9 27.7 0.922 0.544 2,410.66

2 114.1 0.863 92.1 8.8 0.995 0.022 670.24

3 11.4 0.387 25.9 8.8 0.749 0.918 512.52

4 36.1 0.666 5.0 2.8 0.988 0.014 189.33

12.0 0.950 1.497 3,782.75

solved this problem because the portion of the multipart algorithms for computing Q j

is identical to the multipart EOQ algorithm. From our previous example, we know that

choosing a fixed order cost of A = 65.138 yields Q j values that achieve an average order

frequency of 12 per year. These Q j values are recorded in Tables 17.4 and 17.5.

This leaves only the problem of computing the reorder points r j . We start by using

the stockout model with a target average fill rate of S = 0.95. Using the above stockout

model algorithm, we find that the penalty cost that makes the average fill rate equal 95

percent is k = 7.213. Table 17.4 reports the resulting critical ratios, reorder points, fill

rates, backorder levels, and inventory levels for each part. It also computes the average

fill rate (95 percent), the total backorder level (1.497 units), and the total inventory

investment ($3,782.75).

Notice that the algorithm produces a very high fill rate (99.5 percent) for inexpensive,

high-demand part 2, but a low fill rate (74.9 percent) for expensive, low-demand part 3.

Intuitively, the algorithm is trying to achieve an average fill rate of 95 percent as cheaply

as possible, so it makes service high where it can do so cheaply (i.e., where the unit cost

is low) and where it has a big impact on the overall average (i.e., where annual demand

is high).

An alternative to characterizing service via fill rate is to use the backorder level

instead. We can do this by using the backorder model algorithm to adjust the backorder

cost b until the total backorder level achieves a specified target. To make a comparison

of the stockout and backorder models, we take as our total backorder target the level that

resulted from the stockout model, that is, B = 1.497 units.

Before going on, we pause to note that establishing a target backorder level is not

always an easy thing to do. Unlike the fill rate, which is expressed in a unitless percentage,

Table 17.5 Results of Multipart Backorder Model (Q, r) Calculations

B j I j

b j /(b j+h) Q j r j F j S j (Backorder (Inventory

j (unitless) (units) (units) (Order Freq.) (Fill Rate) Level) Level)($)

1 0.538 36.1 165.6 27.7 0.875 0.974 2,024.77

2 0.921 114.1 95.0 8.8 0.997 0.010 698.76

3 0.538 11.4 27.9 8.8 0.840 0.511 671.85

4 0.921 36.1 7.0 2.8 0.998 0.002 209.10

12.0 0.934 1.497 3,604.48
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the total backorder level measures the average number of outstanding backorders at any

time. Therefore, one cannot easily translate a backorder level from one system to another

(e.g., an average backorder level of five might be horrendous service for a system with

few parts and low demand and just fine for a system with many parts and high demand).

One way to place the backorder level in a more intuitive context is to think of it in terms

of the average wait a customer demand experiences as a result of backorders. If we let

W represent the average wait of a demand and D represent the total number of demands

per year, then by Little’s law

B = D × W

or

W = B

D
In this example, D = 2,200 units per year, so a backorder level of 1.497 units translates

to

W = 1.497

2,200
= 6.8045 × 10−4 years = 5.96 hours

This means that on average a part (any part, not just one that encounters a backorder

situation) will experience 5.96 hours of delay due to lack of inventory. Of course, what

this really means is that most parts will encounter no delay, while others will experience

significantly longer than 5.96 hours. But looking at the average delay per part gives the

decision maker a sense of how much disruption is implied by a given backorder level.

Indeed, it is completely equivalent to use hours of delay as the performance target instead

of backorder level in the algorithm—all we have to do is to divide by the demand rate

and multiply by the number of hours in a year.

Now, supposing that the backorder level target of 1.497 is reasonable, we can use the

backorder algorithm to find the backorder penalty that causes total backorders to achieve

this level. It turns out that b = 116.50 does the trick. Table 17.5 reports the resulting

critical ratios, reorder points, fill rates, backorder levels, and inventory levels for each

part. It also computes the average fill rate (93.4 percent), the total backorder level (1.497

units), and the total inventory investment ($3,604.48).

Notice that the algorithm results in low backorder levels for inexpensive parts 2 and

4, but higher backorder levels for expensive parts 1 and 3. In addition, it tends to have

higher backorder levels for higher-demand parts (i.e., part 1 is higher than part 3, and

part 2 is higher than part 4) because higher demand produces more backorders when all

other things are equal. As did the stockout model, the backorder model places the bulk

of its inventory investment in the expensive, high-demand part 1.

But there are some key differences between the two solutions. Notice that while the

total backorder levels are the same, as we forced them to be, the fill rates and inventory

levels are different. The backorder model achieves a given backorder level with a smaller

investment in inventory ($3,604.48 versus $3,782.75). But it does so at the price of a

lower fill rate (93.4 percent versus 95 percent). If we had used the backorder model to

adjust the backorder cost b to make the fill rate equal 95 percent, it would have resulted

in a higher inventory investment than did the stockout model. The conclusion is that

the stockout model finds a policy that efficiently uses inventory to achieve a given fill

rate, while the backorder model finds a policy that efficiently uses inventory to achieve

a given total backorder level. Thankfully, this is exactly what we would expect them

to do. But since the two models articulate different trade-offs, it is important that we
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choose the right one for a given situation. If fill rate is the right measure of service, the

stockout model is appropriate. If backorder level (or time delay) is a better representation

of service, then the backorder model makes more sense.

Finally, we observe that we can use either the stockout or the base stock model to

generate a trade-off curve between inventory investment and either fill rate or backorder

level. We do this by simply varying the stockout cost k or the backorder cost b and plotting

the resulting pairs of inventory investment and fill rate (or backorder level). Figure 17.4

depicts curves for the previous example for a variety of order frequencies. Note that,

as we expect, inventory investment grows exponentially as we approach a 100 percent

fill rate. Furthermore, we can see that the inventory reduction from adding an additional

six replenishment orders per year diminishes as the number of orders increases. These

curves represent efficient frontiers, since they represent the lowest inventory investment

for each order frequency/fill rate pair. A manager can use a graph like this to get a feel for

how much investment in inventory is required to achieve various service levels. With this

information, he or she can choose a sensible fill rate target. A similar curve of inventory

investment versus fill rate could be generated by using the backorder model.

17.7 Multiechelon Supply Chains

Many supply chains, including those for spare parts, involve multiple levels as well

as multiple parts. For instance, a retailer might stock inventory in regional warehouses,

which supply individual outlets, which in turn supply customers. Alternatively, an equip-

ment manufacturer that offers service contracts on its products may stock spare parts

in a main distribution center, which supplies regional facilities, which in turn provide

parts to maintain customer equipment. Because of variability pooling, stocking inven-

tory in a central location, such as a warehouse or distribution center, allows holding

less safety stock than holding separate inventories at individual demand sites. However,

holding inventory in distributed fashion (e.g., at the retail outlets or service facilities) en-

ables swifter response to demand because of geographic proximity. The basic challenge

in multiechelon supply chains is to balance the efficiency of central inventories with

the responsiveness of distributed inventories so as to provide high system performance

without excessive investment in inventory. Research indicates that doing this by directly

applying single-level approaches to multilevel problems can work poorly (Hausman
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and Erkip 1994, Muckstadt and Thomas 1980). This motivates us to give multiechelon

systems special treatment.

The complexity and variety of multiechelon supply chains make them very chal-

lenging from an analysis standpoint. Serious study of such systems dates back to the

classical work of Clark and Scarf (1960) and continues today (see Federgruen 1993,

Axsäter 1993, Nahmias and Smith 1992 for excellent surveys and Schwarz 1981 for an

anthology on the subject). More modern studies place multiechelon inventory manage-

ment in the context of supply chain management (see, e.g., Lee and Billington 1992;

Fisher 1997; Simchi-Levi, Kaminsky, and Simchi-Levi 1999). Since it is not possible

for us to give anything close to a comprehensive treatment here, we will focus instead

on defining the issues and indicating how some of the earlier single-level results can be

adapted to the multilevel setting.

17.7.1 System Configurations

The defining feature of a multiechelon supply chain is that lower-level locations are

supplied by higher-level locations. However, within this framework there are many pos-

sible variations, and, if we allow transshipment between locations at the same level (e.g.,

regional warehouses can supply one another), then the very definition of a level becomes

hazy. In short, multiechelon systems can be extremely complex.

For the purposes of our discussion, we will concentrate primarily on arborescent

systems, in which each inventory location is supplied by a single source (see Figure 17.5).

In particular, we will consider the two-level arborescent system in which a single central

warehouse (depot, distribution center) supplies multiple retail outlets (facilities, demand

sites). We do this because (1) such systems are common in practice; (2) good approximate

models of their behavior exist (see Deuermeyer and Schwarz 1981, Sherbrooke 1992,

Svoronos and Zipkin 1988); and (3) approaches to the two-level problem can be used as

building blocks for developing approaches to more complex multilevel systems.

Before we move on to analysis, however, it is important to point out that the system

configuration itself is a decision variable. Just because a system is currently configured

using a three-level arborescent structure does not mean that this must always be the

case. Indeed, determining the number of inventory levels, the locations of warehouses,

and the policies for interconnecting them can be among the most important logistics

decisions a firm can make about its distribution system. Even though these systems

Level 1 Level 2 Level

Serial
system

General
arborescent
system

Stocking site Inventory flow

Figure 17.5

Arborescent multiechelon

supply chains.
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present challenging problems, it is better to address them openly than to miss significant

opportunities because the status quo is viewed as immovable.

As an example of this type of rethinking the system configuration, we offer the

case of an equipment manufacturer with whom we are familiar. This firm offered service

contracts on its equipment (e.g., a guarantee of a maximum number of hours of downtime

per month) and stocked spare parts to support the maintenance process. These parts were

stocked at three levels: at a main distribution center, at regional facilities, and at customer

sites (for customers whose service contracts specified it). Virtually all shipments from the

distribution center to facilities were made via overnight mail (except for one facility that

was close enough to the distribution center for the maintenance personnel to physically

pick up parts needed for repairs). Maintenance personnel replenished on-site inventories

from the facilities. Roughly one-half of the total inventory in the system was held at the

distribution center, with the remainder in the field (i.e., at facilities and sites).

This configuration raises an obvious question. Why stock parts at a distribution

center at all?7 A facility can receive a part overnight equally well from the distribution

center or from another facility. (Indeed, we discovered that the facility managers had an

informal system of getting parts from one another via overnight mail when the distribution

center was out of stock.) Thus, it might be possible for the distribution center to divide its

inventories among the facilities. This would place the inventory geographically closer to

the demand sites and therefore make it less likely that customers with broken machines

would have to wait overnight for a crucial part. Moreover, if a facility lacked a part, it could

still get it overnight, from another facility instead of the distribution center, provided that

some facility in the system had the part in stock. The distribution center would cease to

be a physical stocking site and would become the logical purchasing agent (i.e., to order

parts from vendors or to be manufactured internally) and coordinating mechanism (i.e.,

by maintaining the information system that kept track of the location of the inventory in

the system). The net result would be that for the same total amount of inventory in the

system, customers would receive better repair service. This kind of bold reconfiguration

might well offer greater overall benefits than detailed optimization of the existing system.

17.7.2 Performance Measures

To make design decisions or develop a model, it is essential that desired system perfor-

mance be specified in concrete terms. A host of measures can be used, including these:

1. Fill rate is the fraction of demands that are met out of stock. This could apply

at any level in the system. It is important to remember, however, that a measure

applied to higher levels (e.g., the central warehouse) is only a means to an end.

It is the performance of the low levels that actually service customers that

determines the ultimate performance of the system.

2. Backorder level is the average number of orders waiting to be filled. This

measure applies to systems where backordering occurs (e.g., spare parts

systems, where a demand must eventually be filled whether or not the part is in

stock at the time of the demand). As we noted earlier, backorder level is closely

related to the average backorder delay, since we can apply Little’s law to

conclude

Average backorder delay = average backorder level

average demand rate

7We are indebted to Professor Yehuda Bassok for pointing out this “obvious” question to us.
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For instance, if a particular part has an annual usage of 100 parts per year and

the average backorder level is one part, then the average delay seen by a part

(any part, not just those that get backordered) is 1
100

year, or 3.65 days.

3. Lost sales is the number of potential orders lost because of stockout. This

measure applies to systems in which customers go elsewhere rather than wait

for a backordered item (e.g., retail outlets). If every demand that encounters a

stockout situation is lost, then the expected lost sales per year is related to fill

rate by

Lost sales = (1 − fill rate) × average demand rate

For instance, if the fill rate for a given part is 95 percent and annual demand is

100 parts per year, then (1 − 0.95)(100) = 5 parts per year will be lost because

of stockout.

4. Probability of delay is the likelihood that an activity (e.g., a machine repair,

shipment of a multipart customer order) will be delayed for lack of inventory.

This measure is often used in systems where high reliability is required (e.g.,

aircraft maintenance). In general, the probability of delay in a multipart,

multilevel system is a function of the fill rates of the various parts, although

depending on the manner in which parts are demanded together (e.g., used on

the same repair or customer order), this dependence can be complex (see

Sherbrooke 1992 for a more complete discussion).

From these discussions we conclude that fill rate and average backorder level are

key measures, since the other measures can be computed from them. For this reason, the

majority of mathematical models either use these measures directly or use cost functions

that rely on them.

17.7.3 The Bullwhip Effect

An important issue that arises in multiechelon supply chains is that of channel alignment.

This refers to the coordination of policies between the various levels and can involve

information sharing, inventory control, and transportation, among other management

decisions. Because there are so many possible decision variables, channel coordination

is challenging even when a single firm controls all the levels in the supply chain. When

the levels consist of different firms, the problem becomes even more daunting.

A natural response to the complexity of multiechelon supply chains is to treat the

various levels independently. That is, allow each level to use local information to im-

plement locally “optimal” policies. Indeed, when levels consist of separate firms, such a

strategy is the traditional default. But while natural to implement, the approach of sep-

arating levels can lead to very poor performance of the overall supply chain. The most

obvious consequence of poor channel coordination is inefficiency (i.e., inventory will

be held in inefficient quantities and locations). But a more subtle, though equally dam-

aging, consequence is the bullwhip effect, which refers to the amplification of demand

fluctuations from the bottom of the supply chain to the top.

Figure 17.6 illustrates the bullwhip effect. Even though demand at the bottom of the

supply chain (e.g., retail level) is relatively stable over time, it is quite volatile at the top

level (e.g., manufacturer level). This phenomenon was observed by Forrester (1961) in

case studies of industrial dynamics models. It was also noted in a behavioral context as

part of the well-known Beer Game, developed at MIT in the 1960s (see Sterman 1989).
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levels of the supply chain.

More recently it has been observed in practice. For example, Procter & Gamble noted

that retail demand for Pamper brand diapers was fairly stable, while distributor orders

to the manufacturing plant were highly variable. Similar behavior has been observed in

the demand for printers by Hewlett-Packard and for insulin produced by Eli Lilly. As we

know, variability must be buffered—by inventory, capacity, or time. Hence, the bullwhip

effect leads to negative consequences, such as excessive WIP, poor use of capacity, long

customer backlogs, and expediting costs.

Given that the bullwhip effect is real, the key questions are, What causes it? and

What can be done about it? Lee, Padmanabhan, and Whang (1997a, 1997b) classified

the causes of the bullwhip effect into four categories. Following their structure, we will

summarize these along with potential remedies.

Batching. At the lowest level of the supply chain (e.g, the retail level) demand is

often steady, or at least predictable, because purchases are made in small quantities.

For instance, individual diabetics typically purchase small supplies of insulin, adequate

to meet needs for a few weeks or months. Since the diabetics make their decisions

independently, total retail demand is extremely level over time. This smoothness would

be preserved throughout the supply chain if the retailer replenished its stock directly by

placing lot-for-lot orders on the distributor, and the distributor did the same with its orders

to the manufacturer. However, if retailers and distributors use some kind of lot-sizing

rule (e.g., they follow a (Q, r ) policy and hence wait until their requirements justify a

replenishment order of size Q), then their demands will be much lumpier than those at

the retail level. Furthermore, if there is synchronization among the decision makers at a

given level (e.g., they all regenerate their MRP systems at the beginning of the month8),

then this lumpiness will be even more exaggerated.

Since the amplification of demand variability is the result of batch ordering, policies

that facilitate replenishment of stock in smaller quantities will reduce the bullwhip effect.

Some options are to

1. Reduce the cost of the replenishment order. As we know from Chapter 2, one of

the main reasons for ordering in bulk is the cost of placing a purchase order.

8The phenomenon of synchronized MRP systems causing total demand to spike at certain times is

sometimes called the MRP jitters.
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One way to lower this cost is by using electronic data interchange (EDI) to

reduce or eliminate purchase orders. By greatly reducing the amount of

paperwork involved, such “paperless” ordering systems can facilitate more

frequent replenishment in smaller quantities.

2. Consolidate the orders to fill the trucks. Another reason for ordering in bulk is

the cost of transportation. It is not uncommon for wholesalers or distributors to

set their order quantities equal to a full truckload. This is because the cost of

shipping in full truckloads is significantly less than that for less-than-full

truckloads. However, a truck need not necessarily be filled with the same

product. So one way to reduce order quantities while retaining the full-truck

cost advantage is to order multiple products from the same supplier.

Alternatively, the replenishment process could be turned over to a third-party

logistics company, which would consolidate loads from multiple suppliers

and/or multiple customers. In either case, the result would facilitate more

frequent deliveries.

Forecasting. In supply chains where the levels are managed by independent decision

makers (e.g., they consist of separate companies), demand forecasting can amplify order

variability. To see how, suppose that the retailer sees a small spike in demand. Because

orders must cover both anticipated demand and safety stock, this leads to an order spike

that is larger than the demand spike. The distributor, who forecasts demand on the basis

of retailer orders, sees this spike, adds its own safety stock to the anticipated demand, and

passes on an even larger order spike to the manufacturer. The reverse situation happens

when the retailer sees a dip in demand. Hence, demand volatility increases as we progress

up the supply chain.

The basic reason that forecasting aggravates the bullwhip effect is that each level

updates its forecast on the basis of the demand it sees, rather than on actual customer

demand. Hence, policies that serve to consolidate demand forecasting will reduce the

bullwhip effect. Some options are these:

1. Share demand data. A simple remedy for reducing the amplification effect of

separate forecasting at multiple levels is to use a common set of demand data.

In supply chains owned by a single firm, sharing demand data from the lowest

level is conceptually straightforward (although far from universally practiced).

In supply chains involving multiple firms, it requires explicit cooperation. For

example, IBM, Hewlett-Packard, and Apple all require sell-through data from

their resellers as part of their contracts. In supply chains where the participants

make use of EDI, information sharing is relatively simple in principle; the

challenge is to achieve the necessary degree of partnering to make it happen.

2. Vendor-managed inventory. A more aggressive way to ensure that forecasting is

done using low-level demand data is to have a single entity do it. In vendor-

managed inventory (VMI) systems, the manufacturer controls resupply over

the entire chain. For example, Proctor & Gamble controls inventories of

Pampers all the way from its supplier (3M) to its customer (Wal-Mart). The fact

that alliances using VMI can pool inventory across levels enables them to

operate with substantially less inventory than is needed in uncoordinated supply

chains.

3. Lead time reduction. The magnification effect of forecasting on orders is a

function of the amount of safety stock a demand spike drives into the system.

But as we saw in Chapter 2, safety stock increases with replenishment lead
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time. Hence, an obvious, but potentially significant, way to reduce demand

volatility due to forecasting is through lead time reduction. Any of the

efficiency improvements discussed in Section 17.4 for WIP/cycle time

reduction could be practiced at the various levels to achieve this.

Pricing. Another factor that can cause demand seen at higher levels of the supply

chain to “clump up” into spikes is price discounting. Whenever a product’s price is low,

because of promotional pricing, customers tend to forward-buy (i.e., purchase in greater

quantities than needed). When prices return to normal, customers consume the excess

stock and hence order less than normal. The result is a volatile demand process.

Since it is price variation that drives demand volatility, the obvious remedy is to

stabilize prices. Specific policies for supporting more stable prices are

1. Everyday low pricing. The most straightforward way to stabilize prices is to

simply reduce or eliminate reliance on promotions using discounting. In the

grocery industry, several manufacturers have established uniform wholesale

pricing policies and have promoted them via a marketing campaign centered on

“everyday low prices” or “value prices.”

2. Activity-based costing. Traditional accounting systems may not show the costs

of some practices resulting from promotional pricing, such as when regional

discounts cause retailers to buy in bulk in one area and ship product to other

areas for consumption. Activity-based costing (ABC) systems account for

inventory, shipping, handling, and so forth, and hence are useful in justifying

and implementing an everyday low-pricing strategy.

Gaming Behavior. One final factor that contributes to the bullwhip effect is the manner

in which customers use their orders in a gaming fashion. For instance, suppose a supplier

allocates a product in short supply to customers in proportion to the quantities they have

on order. Then customers have a clear incentive to exaggerate their orders in hope of

getting more product. When supply catches up with demand, the customers will cancel

the excess orders, leaving the supplier awash in inventory. This occurred more than once

during the 1980s in the computer memory chip market, when shortages encouraged

computer makers to order chips from several suppliers, buy from the first one to deliver,

and cancel the remaining orders.

The fundamental issue here is that when gaming behavior is present, customer orders

can provide very bad information to the supplier about actual demand. Alternatives for

reducing the incentive to game orders include the following:

1. Allocate shortages according to past sales. If a supplier facing a product shortage

allocates its supply on the basis of historical demand, rather than current orders, then

customers do not have an incentive to exaggerate orders in shortage situations.

2. Use more stringent time fencing. Recall from Chapter 3 that frozen zones and time

fences are tools used to place restrictions or penalties on customers for making changes

in orders. If customers cannot freely cancel orders, then gaming strategies become more

costly. Of course, a supplier must decide on a reasonable balance between responsive

customer service and demand stabilization.

3. Reduce lead time. Another situation that can lead to gaming behavior occurs when

products involve long-lead-time components. For example, we worked with a printed-

circuit board (PCB) plant that supplied computer assembly (box) plants. To assemble

the circuit boards, the PCB plant had to purchase both the raw cards and the components

to be mounted on them. Some of the components had very long procurement lead times
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of a year or more. To encourage its customers to communicate demands early, the PCB

plant had a series of time fences that restricted the changes in order quantity and type

at various lead times prior to the requested due date. However, because the company

knew that long-lead-time parts would be difficult to obtain if demands were increased,

customers had strong incentive to overestimate their requirements. Sure enough, when

we checked the data, we found that at each time fence requirements dropped significantly

(e.g., if a time fence allowed a 15 percent reduction in order quantity without cost penalty,

then many orders were decreased by exactly this amount when they reached that time

fence). The result was to drive excess quantities of the long-lead-time parts into the PCB

plant’s inventory. One remedy, as suggested above, would be to restrict customers’ ability

to alter orders. For instance, if the PCB plant had a frozen zone longer than the lead time

of all its components, such gaming behavior would not occur. But of course it is not

reasonable to impose a 1 year frozen zone on customers. The alternative, therefore, is to

work to reduce lead times of the components so that customers will have less incentive

to try to trick the system into overordering for these parts.

Finally, we observe that a sweeping policy for reducing all the factors contributing

to the bullwhip effect is to eliminate whole layers of the supply chain. This is precisely

what Dell Computer did with its direct marketing system in which computers were sold

by the manufacturer to the customer without the use of resellers. In addition to giving

Dell access to direct customer demand data, it eliminated a whole level of inventory and

hence cost. This strategy played a major part in making Dell one of the most successful

companies in America during the 1990s.

17.7.4 An Approximation for a Two-Level System

We now turn to a specific supply chain problem by considering a two-echelon inventory

system with a single warehouse that supplies a number of facilities, which in turn supply

customer demands. Assume that both warehouse and facilities make use of continuous

review inventory control policies, where the warehouse uses a (Q, r ) policy and the

facilities use base stock policies (i.e., they replenish stock one at a time, so in effect they

use (Q, r ) policies with r = 1). This type of system makes sense for a spare parts system,

where speed of delivery is crucial and volumes are relatively small. Thus, facilities are

likely to receive shipments of parts from the warehouse on a frequent basis, and one-

at-a-time replenishment is a practical option. This assumption may be less appropriate

for retail systems, where outlets are replenished less frequently and high volumes make

bulk deliveries necessary. We refer the interested reader to Nahmias and Smith (1992)

for details on modeling retail systems.

The one-at-a-time facility replenishment assumption implies that demands at the

facilities are passed directly back to the warehouse. This means that if demand for each

part at each facility is distributed according to the Poisson distribution, then total demand

at the warehouse is also Poisson-distributed. (Recall that in Chapter 2 we observed that

the Poisson distribution is often a reasonable modeling assumption for representing

demand processes.) This allows us to take the following approach. First we analyze the

warehouse using a single-level (Q, r ) model, where we fix the service level (fill rate) and

compute order quantities and reorder points for each part. Then we compute the expected

number of backorders outstanding at any point for each part and use this to estimate the

delay that an order from a facility will experience. With this, we approximate lead times

seen by the facility as the expectation of the actual delivery time from the warehouse

plus this delay. Then, using these modified lead times, we apply a base stock model to

each facility to compute reorder points for each part.
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To develop a model, we will make use of the following notation, which is analogous

to that used for the multi-item (Q, r ) model above, with additional subscripts m to

indicate the facility:

N = total number of distinct part types in system

M = number of facilities serviced by warehouse

D j = ∑M
m=1 D jm , expected demand (in units per year) for part j at

warehouse

� j = replenishment lead time (in days) for part j to warehouse, assumed

constant

X j = demand for part j at warehouse during replenishment lead time

(in units), a random variable

θ j = D j� j/365, expected demand during replenishment lead time

for part j

g j (x) = density of demand during replenishment lead

time for part j at warehouse

G j (x) = P(X j ≤ x), cumulative distribution function of demand for part j
at warehouse during replenishment lead time

W j = expected time (in days) an order for part j waits at warehouse

due to backordering

D jm = annual demand (in units per year) for part j at facility m

� jm = lead time (in days) for facility m to receive part j from warehouse,

assumed constant

X jm = demand for part j at facility m during replenishment lead time

(in units), a random variable

θ jm = D j� j/365, expected demand during replenishment lead time

for part j

g jm(x) = density of demand during replenishment lead time

for part j at facility m

G jm(x) = P(X jm ≤ x), cumulative distribution function of demand for part j
at facility m during replenishment lead time

L jm = lead time, including backordering delay (in days), for an order of

part j from facility m to be filled by warehouse, a random variable

c j = unit cost (in dollars) of part j

Q j = order quantity for part j at warehouse; this is a decision variable

r j = reorder point for part j at warehouse; this is a decision variable

r jm = reorder point for part j at facility m; this is a decision variable

R jm = r jm + 1, base stock level for part j at facility m; this is a decision

variable, which is equivalent to r jm

Fj (Q j ) = order frequency (replenishment orders per year) for part j at

warehouse as a function of Q j

Sj (Q j , r j ) = fill rate (fraction of orders filled from stock) of part j at warehouse

as a function of Q j and r j

B j (Q j , r j ) = average number of outstanding backorders for part j at warehouse

as a function of Q j and r j

I j (Q j , r j ) = average on-hand inventory level (in units) of part j at warehouse

as a function of Q j and r j
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Warehouse Level. We can solve the warehouse problem (i.e., compute Q j and r j for

all parts) by using any of the approaches given earlier for the single-level problem. That

is, we could use a cost model in which we specify a fixed order cost A and either a

backorder cost b or a stockout cost k. Or we could use a constrained model in which we

specify constraints on the average number of orders per year F and either the fill rate S
or the average backorder level B. Typically, it makes more sense to use a model based

on a backorder cost or constraint, rather than one based on fill rate, since the reason for

holding inventory in the warehouse is to minimize delay seen by the facilities (and hence

the customers).

Regardless of what model we use, we will wind up with a set of Q j and r j values,

which can then be used to compute Fj , Sj , B j , and I j for all parts j = 1, . . . , N , using

the functions developed in Chapter 2. We will use these as inputs to the calculations at

the facility level.

Facility Level. Observe that the expected time (in days) an order from a facility waits

at the warehouse due to backordering is

W j = 365B j (Q j , r j )

D j
(17.14)

Notice that this is nothing more than an application of Little’s law to the backorders (i.e.,

the wait is analogous to cycle time, the backorder level is analogous to WIP, and the

demand rate is analogous to throughput). Hence we can estimate the mean effective lead

time (in days) for part j to facility m as

E[L jm] = � jm + W j (17.15)

We could just act as though this mean lead time were a constant and use it in the base

stock model to compute performance measures for the facilities. Indeed, researchers have

shown that treating these lead times as if they were equal to their means (that is, L j ) can

yield reasonable results (see Sherbrooke 1992). However, it is clear that L jm is a random

variable that could exhibit a great deal of variability. When an order from the facility to

the warehouse finds stock available, L jm = � jm . But when an order finds the warehouse

in a state of stockout, then L jm could be much longer than this. Computing the exact

distribution of the effective lead time seen by a facility is complicated (see de Kok 1993).

But we can incorporate the effect of lead time variability in an approximate way.

Technical Note

To approximate the variance of the effective lead time of an order from a facility to the

warehouse, suppose that there are only two possibilities: Either the order sees no delay and

the lead time is � jm , or it does encounter a stockout delay and has lead time � jm + y, where y is

a deterministic delay. Since the probability of stockout is 1 − Sj (we will omit the dependence

of Sj and Bj on Q j and r j for notational convenience), we know that

E[L jm] = Sj� jm + (1 − Sj )(� jm + y) = � jm + (1 − Sj )(y) (17.16)

But in order for this to match equation (17.15), we must have

y = W j

1 − Sj
(17.17)
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To calculate the variance of L jm , we first compute

E[L2
jm] = Sj�

2
jm + (1 − Sj )(� jm + y)2 (17.18)

and then

Var(L jm) = E[L2
jm] − E[L jm]2

= Sj (1 − Sj )y2

= Sj

1 − Sj
W 2

j (17.19)

The standard deviation of the effective lead time to the facility (in days) is therefore

approximately equal to

σ (L jm) =
√

Sj

1 − Sj
W j (17.20)

We can use E[L jm] and σ (L jm) in a base stock model for each part j at facility m
to compute a base stock level R jm .

Integrating Levels. There are two issues to be addressed to coordinate the two levels:

the model to use at the warehouse level and the parameters to use in the model. Once we

have chosen these, the above method for modeling the facility level will adjust the base

stock levels for facilities accordingly.

In a multiechelon spare parts supply chain, the most natural model for the warehouse

level is the backorder model. The reason is that service to the customer is closely related

to delay caused by part outages. Hence, the key measure of service at the warehouse is

time delay, which we have seen is proportional to backorder level. Therefore, a logical

choice of a warehouse model is the backorder (Q, r ) model with a constraint on backorder

level. We can use the previously described algorithm to compute the order quantities Q j

and reorder points r j for the warehouse. Equivalently, we could use the backorder model

with a backorder cost b instead of a constraint on backorder level. However, it is usually

more intuitive to set a target backorder level (or time delay) constraint than it is to specify

a backorder cost.

In other multiechelon supply chains, such as retail systems, customer service may be

more appropriately measured by the fill rate. For instance, if orders that cannot be filled

immediately at the warehouse are either lost or shunted to a (more expensive) third party,

then fill rate makes perfect sense as the service measure at the warehouse. However, we

would need to modify the model to account for lost sales or a different dependence of

the lead times on the warehouse service level.

Once we have a model for the warehouse level, we need to specify its parameters.

If we use the constrained backorder model, then the key decisions concern what to use

for the order frequency target F and the target backorder level B. The order frequency

target can be selected directly by considering the capacity of the warehouse procurement

system and hence the number of replenishment orders that it can accommodate annually.

Alternatively, we could specify a fixed cost of placing an order A and use this in the

multipart EOQ formula (17.7) to compute order quantities.
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Selecting the target backorder level is more difficult. How many backorders are

allowable at the warehouse depends on what this does to performance at the facilities.

Therefore, it is almost impossible to specify a backorder level target a priori. Instead,

what we should do is to think of this backorder level target as a variable that we can adjust

to seek the best overall system performance. Specifically, we solve the warehouse level

by using a given backorder level target. Then we solve the facility level so as to achieve

the desired backorder level or fill rates at the facilities and observe the inventory holding

cost (or investment). Finally we go back and try a different backorder level target at the

warehouse and resolve both levels to see if the same performance at the facilities can

be achieved with a lower inventory cost. Changing the backorder level target will alter

the balance of inventory at the warehouse versus the facilities. The search for a backorder

target that achieves the optimal balance can be automated within a spreadsheet or other

optimization routine.

Example:

We conclude this section with a two-echelon example. Because our purpose is to highlight

the relationship between levels, we will keep things simple by looking at only a single

part.

Suppose the example we solved for Jack, the maintenance department manager

(Chapter 2), actually represents the warehouse in a two-echelon supply chain. Jack

stocks spare parts at the warehouse in order to supply various regional facilities, which

provide the parts for use in actual machine repair. Omitting the subscripts j because this

is a single-part example, we see the key data for the warehouse are D = 14 parts per

year, Q = 4, and r = 3. Recall that we computed the order quantity Q = 4 and reorder

point r = 3 in Chapter 2 by using the backorder cost model (assuming a fixed setup cost

of A = $15 and a backorder cost of b = $100). But we could have just as easily have

used a constrained model with constraints on order frequency F and backorder level B.

Now let’s extend this example by looking at a single facility with Dm = 7 (i.e., the

facility accounts for one-half of the annual demand seen by the warehouse). From the

calculations in Chapter 2, we know that B(4, 3) = 0.0142 units, so the average time a

replenishment order waits due to lack of inventory is

W = 365B(4, 3)

D
= 365(0.0142)

14
= 0.3702 days

Supposing that the actual delivery time to receive a part from the warehouse is one day,

the expected lead time for a part is

E[Lm] = 1 + 0.3702 = 1.3702 days

and hence expected demand during replenishment lead time to the facility is

θm = 1.3702 × 7

365
= 0.0263 units

Also from our previous calculations in Chapter 2, we know that the fill rate is

S(4, 3) = 0.965. Hence, the standard deviation of replenishment lead time is

σ (Lm) =
√

S

1 − S
W =

√

0.965

1 − 0.965
(1.3702) = 1.944 days
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Assuming that demand at the facility level is Poisson, we can use equation (2.58) to

compute the standard deviation of lead time demand as

σm =
√

θm +
(

Dm

365

)2

σ (Lm)2 =
√

0.0263 +
(

7

365

)2

(1.944)2 = 0.166 units

Note that in this example σm = 0.166 is very close to
√

θm = √
0.0263 = 0.162. The

reason is that the inflation factor in equation (2.58) is relatively small. This implies that

lead time demand is very close to Poisson. Hence, we can use the Poisson formulas to

approximate the service that results from various base stock levels.9 For instance, if we

set the reorder point for the facility equal to rm = 0, then the fill rate is given by

Gm(rm) =
rm

∑

y=0

p(y) = p(0)

= θ0
me−θm

0!
= e−0.0263

= 0.974

If we increase the reorder point to rm = 1, then service increases to 0.997. So, depending

on the criticality of this part at the facility, it looks as if a reorder point of zero or one

will be appropriate.

17.8 Conclusions

Inventory management is as old as manufacturing itself. Analytical approaches to inven-

tory control date back to the scientific management era (i.e., the early 20th century) and

are among the earliest examples of operations research/management science. Despite

this, the field continues to evolve. Even techniques as old as the EOQ and (Q, r ) models

are experiencing breakthroughs (e.g., new algorithms and use in multiechelon supply

chains). Thus, it appears that the final word on inventory and supply chain management

is far from written. The models presented in this chapter provide reasonable approaches

to some settings, but better methods and extensions to new settings will undoubtedly

evolve. This means that inventory will be an area ripe for continual improvement and

that manufacturing managers will need to continue learning new tricks in this important

field.

In the meantime, the following tips are worth keeping in mind:

1. Understand why inventory is being held. Different types of inventory are held for

different reasons, some conscious and others unconscious. Rigorously asking the

question of why each type of inventory is held in a given system can reveal

inefficiencies that are being taken for granted.

2. Look for structural changes. Fine-tuning a supply chain through the use of

sophisticated models is fine. However, really big improvements are likely to require

structural changes. For instance, changing from a strategy of stocking FGI to one of

9Since the actual variability is slightly greater than the Poisson distribution, actual service will be slightly

lower than predicted by the Poisson formulas.



644 Part III Principles in Practice

stocking semifinished product and producing to order might have a dramatic effect

on total inventory investment. Similarly, eliminating the central warehouse and

stocking all spare parts at regional facilities could produce a substantial

improvement in customer service with no increase in inventory. The specific

changes that are possible depend on the system. The key to identifying them is to

take for granted as little of the status quo as possible.

3. Use empirical evaluation procedures. Any model is based on simplifying

assumptions (e.g., steady state, Poisson demand), and input data are approximate at

best. Thus, the best analysis can do is to help us find a reasonable policy (finding the

“optimum” is out of the question) and examine trade-offs. Given this, we should be

careful to supplement analysis with empirical observation and feedback. Examples

of parameters we should monitor include (1) service levels, to compare with those

predicted by our models and to determine whether policy changes are needed;

(2) minimum inventory levels and stockout frequency of stock in raw materials and

FGI, to determine whether we are carrying insufficient or excessive safety stock;

and (3) queue lengths and starvation time at key workstations, to detect excessive or

insufficient WIP. Many other measures may make sense, depending on the system.

The important thing is to identify a few key measures and set up an adequate data

collection and interpretation system for them.

4. Cycle time reduction is crucial. Little’s law tells us that where there is WIP, there is

cycle time. So WIP reduction and cycle time reduction are virtually synonymous.

But even more important, reduced cycle times make it possible to rely less on

distant forecasts in the purchase of components and the scheduling of work.

The net result, therefore, is smaller raw materials and FGI levels, as well as less

WIP.

5. Coordinate levels in multiechelon supply chains. Inventory management grows

more complex when stock is held at multiple levels. In addition to managing

each level efficiently, it is critical to make sure that performance at the separate

levels supports overall system efficiency. The bullwhip effect is an important

example of how myopic control of the separate levels can cause huge problems

for the system as a whole. To avoid these, it is important to analyze the supply

chain as a whole, rather than as separate parts, share common data (e.g., retail

demand data) wherever possible, and streamline the supply chain to avoid

unnecessary complexity.

6. Coordinate incentive systems with objectives. It is well and good to set up an

inventory management system with specific performance goals in mind. However,

any such system will rely on people to make it work. Therefore, if the reward

structure does not support the system goals, it is unlikely to work. (Recall the

personnel law: people, not organizations, are self-optimizing.) For example, we

recently worked for a company with a multiechelon supply chain in which facilities

were evaluated primarily in terms of customer service but, in the name of inventory

efficiency, also had their inventory levels audited once per month. Predictably,

facility managers had a tendency to hoard inventory (i.e., carry more than the

recommended levels) all month. Right before the end-of-month audit, they would

send the excess back to the distribution center. Once the audit was completed, they

would order back up to their “excessive” levels. The effect was to destroy any

balance between inventory and service. Clearly, no modeling or analysis effort could

correct this problem. Only revising the facility evaluation procedure (e.g., by using
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ratings that combine service with inventory level, where inventory is measured

continuously or randomly in units of dollars) could rationalize the facility inventory

levels.

Discussion Point

Suppose a manufacturer of electric mixers sells virtually identical models to several

retailers. The major differences between models are the boxes (which are printed with

glossy pictures of the mixer and the house brand of the retail outlet) and the paper

inserts (which include instructions and retailer-specific information). Demand is strongly

seasonal (i.e., peaking around Christmas), so the firm follows a strategy of building

inventory (FGI) in the off-season. The problem is that while forecasts for total volumes are

typically reasonable, the forecasts for individual retailers can be awful. The result is that

the firm is frequently short of fast-selling models and awash in slow-moving ones. What

general strategies might the firm consider to improve customer service and reduce FGI?

Study Questions

1. Why might the EOQ model be better suited to purchased parts than to internally

manufactured products?

2. How can cycle time reduction reduce raw materials, WIP, and FGI?

3. In general, WIP reduction techniques are also lead time reduction techniques, but the

reverse is not always true. List some lead time reduction techniques that do not reduce WIP.

4. What causes large inventories of unmatched parts at an assembly operation? What measures

might we consider to address such a situation?

5. What is the difference between type I and type II service? What is the rationale for using

type I service in a (Q, r )-type model?

6. Why do we use approximations for fill rate and backorder level in the algorithms for

computing Q and r , but check the constraints on these measures against the exact formulas?

7. Suggest appropriate performance measures for evaluating the efficiency of raw materials,

WIP, FGI, and spare parts in a manufacturing system.

8. List some examples of arborescent multiechelon supply chains. Can you think of a system

that has the reverse of the arborescent structure (i.e., so that many high-level sites supply a

few middle-level sites, which in turn supply a single low-level site)?

9. What are the four main causes of the bullwhip effect in multiechelon supply chains? Which

causes are likely to have the largest effect in each of the following systems?

(a) A consumer products distribution network, consisting of the manufacturing plant,

regional warehouses, and retail outlets.

(b) A spare parts network, consisting of a main distribution center, regional facilities, and

customer sites.

(c) A military supply network, consisting of a central warehouse, regional depots, and field

usage sites.

10. List some supply chains in which holding the bulk of the stock at the demand level (e.g., at

retail outlets) and making use of lateral transshipments might make sense.

11. What incentive or reward system changes might be required to effectively reconfigure a

multiechelon supply chain to do away with the central warehouse and store all inventory at

regional facilities?
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Problems

1. CMW, a custom metalwork shop, makes a variety of products from three basic inputs—bar

stock, sheet metal, and rivets—which are purchased in bars, sheets, and kits (boxes of 100),

respectively. Projected use and cost of these raw materials for the upcoming year are as

follows:

Use Cost

Part (1,000 units/year) ($/unit)

Bar stock 120 40

Sheet metal 400 20

Rivet kits 1,000 0.5

The shop estimates that issuing a purchase order for any type of material costs $100 and uses

an interest rate of 15 percent to calculate holding costs.

(a) Assuming steady use throughout the year, estimate the purchasing plus holding costs if

all products are purchased four times per year. What happens to cost if we purchase each

product 12 times per year?

(b) What are the “optimal” order frequencies if we use the EOQ model separately for each

product? How many total purchase orders must be placed under this policy?

(c) Use the EOQ model to compute order quantities for each part and adjust the fixed cost of

placing an order until the average order frequency is 12 times per year. How does the

holding cost compare to that in part (a) where all parts are ordered 12 times per year?

2. Rivethead Charlie is in charge of the raw materials crib at a facility that manufactures

specialized camping gear. In one part of the crib, Charlie stocks connectors. These are not

included on the bills of material for the end items, but instead are ordered according to

Charlie’s “two-bin” system. Under this system, Charlie maintains two bins for each type of

connector that hold 1,000 units each. Whenever one bin of a connector becomes empty,

Charlie opens up the second bin and orders a refill (that is, 1,000 units) to replenish the first

bin. The two most common connectors are rivets, which are used at an average rate of 2,000

per month, and screws, which are used at an average rate of 500 per month. The

replenishment lead time from the supplier is 2 weeks ( 1

2
month), and the unit cost is $0.10 for

both rivets and screws. You can assume that demand (use in the manufacturing process) is

Poisson for both types of connector.

(a) Note that Charlie is following a (Q, r ) policy. What are Q and r for rivets and screws

under his policy?

(b) What are the average fill rate and inventory investment (total for both parts) under

Charlie’s policy?

(c) A summer intern suggests that Charlie should use “days of supply” to set the sizes of the

bins, rather than a fixed size of 1,000. What would be the (Q, r ) policy that would result

if Charlie used bins sized to hold a 1-month supply of parts? What are the average fill rate

and inventory investment under this new policy?

(d) Suppose Charlie uses a two-bin policy in which bins hold 5 weeks (1.25 months) of

supply. What are Q and r for rivets and screws, and what are the average fill rate and

inventory investment? What do the results of parts (c) and (d) say about the efficacy of

using the days-of-supply approach to bin sizing? Is the intern’s suggestion a good one?

(e) What type of policy might be better than a two-bin policy, with or without the

days-of-supply modification?

3. Stock-a-Lot maintains inventories of parts to support repairs of manufacturing equipment.

For a subset of its parts, the expected use, unit cost, and replenishment lead time for the

upcoming year are forecast as follows:



Chapter 17 Supply Chain Management 647

Use Cost Lead Time

Part (units/year) ($/unit) (months)

1 5 1,000 1

2 10 100 2

3 5 200 6

4 20 1,000 1

5 50 50 3

(a) Find order quantities that make the average order frequency equal to five times per year,

by adjusting the fixed order cost and using the EOQ model.

(b) Using the order quantities from part (a), compute the reorder points so that the fill rate is

95 percent for all parts; and compute the average inventory investment.

(c) Using the order quantities from part (a), compute the reorder points that achieve an

average fill rate of 95 percent, by adjusting the stockout cost in the stockout model

algorithm.

(d) Compute the average backorder level resulting from the solution to part (c). Using the

backorder model algorithm and the order quantities from part (a), find the reorder points

that attain the same backorder level as part (c). How does the total inventory investment

compare to that from part (c)?

4. Reconsider the Stock-a-Lot problem, and suppose now that the warehouse supplies several

regional facilities. Assume the warehouse is stocked according to the policy computed in part

(c) of Problem 3. Consider a single facility supplied by the warehouse that has 12-hour actual

delivery times and a demand rate for part 4 of 10 units per year. Compute the following for

part 4.

(a) Find the expected number of outstanding backorders at the warehouse.

(b) Determine the expected effective lead time to the facility.

(c) Treating demand at the facility as Poisson, find the minimum base stock level for part 4 at

the facility that achieves a target service level of 99 percent.

5. A&T Inc. has a spare parts system that corresponds to the example depicted in Figure 17.4.

(a) A&T’s current stocking policy has resulted in an average order frequency of F = 12, a

fill rate of S = 0.85, and an inventory investment of $2,500. Comment on the quality of

the policy. If you were to encounter a situation like this in practice, what system elements

would you look at in the hope of making improvements?

(b) The president of A&T has demanded a system with a fill rate of S = 0.95 and inventory

investment of no more than $1,000. What can you say about the feasibility of this

demand? How could you respond to it?

6. Windsong, a novelty store that sells wind chimes and related items, stocks the popular “Old

Ben” model. Sales are steady at a rate of one per day (365 per year), and demand can be

regarded as Poisson. Windsong purchases Old Bens, along with other products from a supplier

that makes daily deliveries. Hence, Windsong uses a base stock policy for its products.

Suppose that the supplier has set its stocking policy such that the fill rate and average

backorder level for Old Bens are 89.7 percent and 0.465 day, respectively. Replenishment

lead time is 7 days.

(a) What is the expected demand during replenishment lead time when delays by the

supplier are taken into consideration?

(b) What is the standard deviation of lead time demand? Is it more or less variable than

Poisson?

(c) If we assume demand is Poisson, what fill rate will result from a base stock policy with a

reorder point of 10? Will the actual fill rate be higher or lower than this?
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18 Capacity Management

You can’t always get what you want.
No, you can’t always get what you want.
But if you try sometimes, you just might find
You get what you need.

Rolling Stones

18.1 The Capacity-Setting Problem

Choices about how much and what type of capacity to install have a strong direct influence
on a firm’s bottom line. Additionally, because capacity planning is at the top of the plant
planning hierarchy (see Figure 13.2), capacity decisions have a major impact on all other
production planning issues (e.g., aggregate planning, demand management, sequencing
and scheduling, shop floor control). In this chapter we invoke Factory Physics concepts
to translate strategic capacity decisions into specific tactical terms. Our goal is to provide
a framework for capacity planning that explicitly recognizes its impact on the overall
plant management process.

18.1.1 Short-Term and Long-Term Capacity Setting

There are many times in the life cycle of a manufacturing facility when it makes sense
to adjust capacity. Most often, the motivation is to accommodate a change in the total
volume or the product mix of demand. In the short term, the facility can address demand
changes through the use of overtime, addition or deletion of shifts, subcontracting, and
workforce size changes. These policies were discussed in Chapter 16 in the context of
aggregate planning; they are clearly options in capacity planning as well.

Some of these short-term options may also be viable as long-term policies. For
instance, we could run three shifts or subcontract part of or all production on a semiper-
manent basis. Of course, if we outsource manufacturing of a product to a vendor on
a long-term basis, the vendor might eventually decide to sell it directly and become
a competitor. Fortunately, however, there are barriers to entry that often prevent this.
For example, nonmanufacturing factors such as rights to a recognizable brand name
or possession of an effective delivery/service network can be critical. Even if eventual
competition is not a serious risk, relying on vendors to manufacture parts or products

648
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makes them a significant partner in the quality management process, as we discussed
in Chapter 12. Without measures to ensure vendor quality, the decision to outsource
manufacturing can seriously hamper a firm’s ability to control its destiny.

In the long term, we must go beyond these short-term options and consider permanent
equipment, or “bricks and mortar” changes. These involve either major changes to an
existing facility or construction of a new facility altogether. In some cases, a firm can
permanently increase capacity by redesigning a product, using design for manufacture
(DFM) approaches (see Turino 1992, Chapter 7 for a discussion). More frequently,
however, the change must come from either adding machines or processing stations or
making permanent changes in the productivity of existing equipment or procedures.

18.1.2 Strategic Capacity Planning

Before a firm can consider how much and what type of capacity to install, it must
articulate a capacity strategy. Such a strategy hinges on decisions that are very close
to the firm’s core business plan. For instance, it may need to decide whether to enter a
new market, whether to remain in an existing market, to lead or follow in the product
innovation process, to make or outsource a product, what segment of the market to
pursue, and many other questions. Taken together, these questions are tantamount to
the fundamental strategic question of “What business are we in?” which lies beyond
the scope of Factory Physics. The laws of physics can tell us how a particular physical
system will behave but not what system we should be interested in. Similarly, the laws
of manufacturing can help us design systems to attain specific objectives but cannot tell
us what our objectives should be. Therefore, for the purposes of our discussion, we will
assume that the above strategic decisions have been made and that the issue is how to
evolve a capacity plan to support them.

Once we have decided that we need to add capacity, there are several issues to
address.

1. How much and when should capacity be added? Should additions be made only
when demand has already developed (when we are already losing sales), or in anticipa-
tion of future demand? If we don’t anticipate demand, should we fill in the overcapacity
periods by using short-term measures such as overtime or subcontracting? If we de-
cide to anticipate demand, how far into the future should we try to cover? Adding large
increments will satisfy demand further into the future, will cause fewer construction dis-
ruptions, and can take advantage of economies of scale. However, large increments also
imply poorer equipment utilization and greater exposure to risk. (What if the forecasted
demand does not materialize?) The appropriate approach also depends on the production
technology involved. For example, steel mills must generally add capacity in large units
in the form of new furnaces or rolling mills, while a metalworking job shop can add
small increments of capacity by adding individual machines. See Freidenfelds (1981)
for an analysis of these issues.

2. What type of capacity should be added? The size of the capacity increment
we can add also depends on the flexibility of the equipment we choose. If machines
purchased now can be adapted to new products that will be introduced in the future, the
risk of installing more capacity than currently needed is substantially less. In today’s
environment of rapid product change, product lifetimes are often less than the lifetimes
of the production equipment; consequently, this type of flexibility has become a key
consideration in choosing new capacity. See Sethi and Sethi (1990) for a review of the
different types of flexibility in manufacturing systems.
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3. Where should additional capacity be added? Should we add capacity by expand-
ing an existing facility, or should we build a new one? Although it is often more expensive
to build a new facility than to expand an existing one, the new facility often affords new
marketing and distribution efficiencies, for instance by being closer to either suppliers
or customers. See Daskin (1995) for models of the facility location problem.

An important strategic concept is known as production economies of scale. The
basic idea is that unit costs are typically (but not always) less for a large plant than for
a small one. Hayes and Wheelwright (1984) discuss three different economies of scale:
short-, intermediate-, and long-term.

Short-term economies of scale arise from the fact that in the very near term, many
manufacturing costs are fixed. Although adjustable in the longer term, the production
facility, its labor force, management, insurance cost, property taxes, and so on, for any
given day, are all fixed. The cost of these does not depend on production volumes. Indeed,
in the near term, the only true variable costs are material, some utilities, and some wear
on machines. We can express cost per unit as

Unit cost = fixed cost + variable cost

throughput

= fixed cost

throughput
+ variable unit cost

Thus, in the short term, unit cost decreases as throughput increases.
Intermediate-term economies of scale depend on the run lengths used in produc-

tion—the number of units of a product that are produced before the facility switches to
another product. Given the changeover cost and run length of a particular product, unit
cost can be expressed as

Unit cost = changeover cost

units per run
+ running cost per unit

In this case, labor might or might not be fixed. Run lengths can be affected by setting
up less frequently (facilitated through setup reduction), by dedicating equipment (so
that some product families can be continually run without changing over), and by using
specialized equipment (e.g., flexible manufacturing systems). Of course, some of these
options can result in larger inventories, as we discussed in Part II.

Long-term economies of scale are functions of plant equipment itself. Economists
have long noted that the cost of equipment tends to be proportional to its surface area,
while capacity is more closely proportional to volume. To illustrate the implications of
this, suppose the equipment is a cube with side length �. Then we can express cost as

K = a1�
2

and capacity as

C = a2�
3

where a1 and a2 are proportionality constants. To express cost as a function of capacity,
we solve for � in terms of C , and we get � = a3C1/3, with a3 representing another
constant; then we substitute into the cost expression. This yields

K (C) = aC2/3

where, again, a is a proportionality constant.
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For general (non-cube-shaped) equipment, cost as a function of the capacity can be
approximated by

K (C) = aCb

where b is typically between 0.6 and 1.
We can now express cost per unit as

Unit cost = K (C)

C
= aCb−1

Since b is usually less than one, this implies that unit cost tends to decrease with capacity.
That is, large plants are more efficient than small ones.

In practice, economies of scale frequently do enable bigger plants to achieve lower
unit costs, but not always. There can also be diseconomies of scale that cause the orga-
nization to lose efficiency as it becomes larger. One place this happens is in distribution.
A small compact cell has less material handling than a large plant composed of many
process centers. While process centers in the large plant may be more efficient than the
single stations of which the cell is composed, jobs must also be moved greater distances.
This increases material handling and cycle times. Also since large manufacturing plants
typically serve larger areas than small ones, their freight costs are typically higher. In
the case of bulky commodity products like bricks, the most profitable plant size may be
quite small.

Another form of diseconomy of scale is due to bureaucratization. As the size of the
operation increases, so does the required amount of supervision and support. To keep
the span of control manageable, the large firm adds layers of management, which further
decreases communication effectiveness. This can lead to compartmentalization and turf
wars. If not managed carefully, such diseconomies can be very destructive.

Finally, larger plants naturally create more risk. Natural disasters such as earth-
quakes, fires, floods, and hurricanes will obviously have a greater negative impact on
the company if they strike a single large plant than if they affect a single small facility
among many. Similarly, poor management, strikes, and the like are more disruptive if
the company capacity is concentrated than if it is distributed.

A natural question arises in this context: What is the optimal plant size? This question
is largely one of strategy, which is beyond the scope of this book. Moreover, since it
involves many firm-specific issues, a general-purpose answer is not possible. The above
discussion gives a preliminary overview of the issues to be considered. More detailed
treatments are available in the manufacturing strategy literature (e.g., see Hayes and
Wheelwright 1984; Schmenner 1993).

In keeping with our focus on plant management, we will assume that the size of the
facility has already been determined on the basis of strategic considerations. Thus, we
will consider the problem of how to change capacity within a plant to attain a specified
set of objectives. In particular, we examine two scenarios: building a new facility and
changing an existing one.

18.1.3 Traditional and Modern Views of Capacity Management

To frame the capacity-planning problem at the plant level, it is useful to distinguish
between the traditional and the modern views of the role of capacity (Suri and de Treville
1993). The traditional view is based on the interpretation of manufacturing efficiency
shown in the left portion of Figure 18.1. Here, the only question is whether there is
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Traditional versus modern
views of capacity
planning.

enough capacity to meet a particular throughput target, and the answer is either yes or
no. If utilization is below capacity, then production is feasible; otherwise, it is infeasible.

The modern view, which is more realistic and consistent with the principles of
Factory Physics, holds that lead times and WIP levels grow continuously with increasing
utilization; this is shown in the right side of Figure 18.1. In this view, there is no one
point where production is infeasible. Instead, a continuum of decreasing responsiveness
occurs as capacity is utilized more heavily.

These two views imply very different approaches to the design of production lines.
The traditional view suggests selecting a set of machines that have sufficient capacity, at
the lowest possible cost. But doing this usually leads to problems when the line goes into
production. We have encountered many plants with lines consisting of machines, each of
which has rated capacity above the desired rate, but which consistently fall well short
of their throughput targets. (The reader who has absorbed the Factory Physics principles
of Part II should have a pretty clear idea of why such lines fail to meet throughput goals.)

The modern view affords a much richer interpretation of the capacity issue. Since
capacity is more than a simple yes-or-no question, we must consider other measures
of performance in addition to cost and throughput. WIP, mean cycle time, cycle time
variance, and quality are all affected by capacity decisions. If we can state our objectives
in terms of these measures, then we can formulate the capacity-planning problem very
simply (solving it, however, is a different matter) as follows:

For a fixed budget, design the “best” facility possible.

This formulation is imprecise since what is “best” is difficult to define because we
usually have more than one objective. For instance, is a line with low throughput and low
cycle time better or worse than one with higher throughput and higher cycle time? As we
discussed in Chapter 6, we get around the problem of dealing with multiple objectives by
using the technique of satisficing, that is, by selecting one measure as the objective and
fixing the remainder as constraints. In this way, the problem is divided into a strategic

problem that defines one or more tactical problems. The strategic problem might be
to choose how much capacity to have, how long cycle times should be, what types of
capacity to use, what throughput is required, and so on. The tactical problem is then to
minimize cost or some other quantity subject to the constraints imposed by the strategic
problem. This approach of higher-level problems providing constraints for lower-level
ones was discussed in Chapter 6.
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One formulation would be to maximize throughput subject to a budget constraint
and, possibly, constraints on WIP and cycle time. Another would be to minimize cycle
time subject to constraints on budget and throughput. Still another would be to minimize
cost subject to constraints on throughput, cycle time, and WIP. Which is best depends
on the circumstances. If, on one hand, we are concerned with improving an existing line
and have a fixed budget to spend, then the formulation to optimize something (maximize
throughput or minimize cycle time) subject to a budget constraint makes perfect sense.
If, on the other hand, we are designing a new line to achieve given performance specifi-
cations, then minimizing cost subject to constraints on things like throughput and cycle
time is appropriate.

Regardless of the formulation chosen, we can use the resulting model to examine
important trade-offs. For instance, if we use a model to minimize cost subject to con-
straints on throughput and cycle time, we can vary the levels of the throughput and cycle
time constraints to see how cost changes. The result will be curves of throughput versus
cost and cycle time versus cost, both of which are useful in deciding whether our initial
strategic specifications were reasonable.

In addition to focusing on the optimality of capacity decisions, we must be sensitive
to their robustness. The requirements we specify today may be quite different from our
requirements in the future. It is sometimes a good idea to spend a bit more money up
front (e.g., on a capacity cushion, or on more expensive but more flexible equipment) to
cover future contingencies. We can consider such options by examining various demand
scenarios in the model. However, we must take care not to overbuild for the sake of robust-
ness. One of the reasons that wafer fabrication facilities are enormously expensive is that
they are designed in the hope of making almost anything that might be desired in the near
future. Because technological uncertainty in semiconductor manufacturing is extremely
high, this requires installing the very latest leading-edge (or “bleeding-edge”) equipment.

For the remainder of this chapter, we will focus on the problem of minimizing the
cost of installing or changing a line, subject to various performance constraints. We have
chosen this particular formulation for the following reasons: (1) It is the most natural
framework for considering the new line design problem, and (2) it is well adapted to gen-
erating cost-versus-performance trade-off curves. However, one can easily analyze other
formulations (e.g., to minimize cycle time subject to throughput and cost constraints)
using the tools and techniques we present here.

18.2 Modeling and Analysis

We have relied heavily on models throughout this book, primarily because models force
us to think carefully about the systems we are studying and help us develop intuition
about how they behave. But at the practical level, without some form of model, either
explicit or implicit, one cannot do analysis at all. Accounting, marketing, finance, quality
control, and virtually all other business functions rely on models to interpret data, predict
performance, and evaluate actions. Happily, the models upon which we rely to address the
capacity-planning problem are largely the same as those we used in Part II to explain the
concepts of Factory Physics. In particular, we use the queueing network representation
of a manufacturing line to develop capacity analysis tools. Although we adhere to the
basic formulas introduced in Part II, there is a large literature on these tools, and we refer
the interested reader to Buzacott and Shanthikumar (1993), Suri et al. (1993), and Whitt
(1983, 1993) for more details.
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For clarity, we concentrate our analysis on a single line and regard the remainder
of the production facility as fixed. We assume that the line has M workstations and that
the “manufacturing recipe” is given—that is, the operations required at each station to
produce the part or product are set in advance. We consider here only the case in which
the line produces a single product, although we can accommodate the multiple-product
case by attributing the variability due to different processing times of different products at
the stations to the natural variability at the process centers (i.e., by inflating the coefficient
of variation of the effective processing times). We number the stations 1, 2, . . . , M , where
jobs arrive to station 1, which feeds them to station 2, which feeds them to station 3, and
so on. In this discussion we do not consider rework or branching routings, although these
can be accommodated by using more sophisticated versions of the queueing network
models (see Suri et al. 1993).

For each station there are a number of different technology options, consisting of
specific configurations of machines and/or operating policies, from which to select. These
options might include different models of machines from various equipment vendors.
They might also include a machine with and without a kit of field replacement parts,
where the option with the replacement parts has shorter repair times but higher cost than
the option without them. Notice that this definition makes identifying an appropriate set
of technology options more than a matter of collecting data from equipment vendors. We
must make use of our Factory Physics intuition from Part II to recognize options like field
replacement parts that are potentially attractive. We assume here that a reasonable set of
technology options can be generated and that cost, capacity, and variability parameters
can be estimated for each option.

To keep the number of technology options and the analysis manageable, we assume
that no mixing of machine types is allowed at multimachine stations. In other words, if
the line requires three lathes and we have chosen the South Bend X-14 as our model,
we will use three South Bend X-14s. We cannot use two South Bend X-14s and one
Peoria P1000. This restriction is likely to be satisfied naturally in new lines, since we
are unlikely to want to deal with two equipment vendors when we can deal with only
one. In retrofit situations, it may not be literally satisfied, but is frequently not a major
problem from a modeling perspective.

Each option at each station is described by five parameters:

te = mean effective process time for machine, including outages,
setups, rework, and other routine disruptions

ce = effective coefficient of variation (CV) for the machine, also considering
outages, setups, rework, and other routine disruptions

m = number of (identical) machines at station

k = cost per machine

A = fixed cost of machine option

The total cost of installing the option is given by A + km. Thus, if it costs $75,000
to install one machine and $125,000 to install two machines, then A = $25,000 and
k = $50,000. The idea here is to allow us to represent the costs of activities that need
only be done once, regardless of the number of machines installed, such as modifying
the electrical or ventilation systems or reinforcing the floor.

We described how to compute te and c2
e from more basic parameters in Chapter 8.

Here we assume that these have already been computed for each option. However, it may
be useful to examine the more basic parameters (MTTR, MTTF, etc.) to suggest other
technology options.
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To formulate constraints for the model, we assume that strategic decisions have been
made regarding the overall performance of the line, which establish the following:

TH = required throughput

CT = maximum total cycle time

Then, using the above parameters and a description of the arrival process to the line,
we compute the following for each station in the line:

u(m) = utilization of station with m machines installed

CT(m) = cycle time at station with m machines installed

ca = CV of arrivals to station

cd = CV of departures from station

The formulas for computing u and CT are familiar from Part II and can be expressed
as

u(m) = rate
m

(18.1)

CT(m) =
(

c2
a + c2

e

2

)

(

u
√

2(m+1)−1

m(1 − u)

)

te + te (18.2)

The squared coefficient of variation (SCV) of the arrivals c2
a is specified as a parameter

for station 1, and for subsequent stations is equal to the SCV of the departures from the
previous station. That is, letting c2

a(i) and c2
e (i) represent the SCV of the arrival times

and effective processing times at station i(i = 1, . . . , M), respectively, we have

c2
a(i) =

{

a specified constant i = 1

c2
d (i − 1) i > 1

(18.3)

where for i = 1, . . . , M ,

c2
d (i) = 1 + [c2

a(i − 1) − 1][1 − u2(m)] + u2(m)√
m

[c2
e (i) − 1] (18.4)

For a given equipment configuration (i.e., choice of technology option at each station)
we use equation (18.2) to compute CT(m) and check the total cycle time constraint. If it
is violated, we must consider more capacity or a lower variability option. The trick is to
change the configuration in the most cost-effective fashion.

Before this can be done, however, we must have a starting point that has sufficient
capacity. We call this a capacity-feasible solution and give an example of how to find it
below.

18.2.1 Example: A Minimum Cost, Capacity-Feasible Line

Consider a four-station line with a throughput target of 2 1
2 jobs per hour or 60 jobs per

day (running three shifts per day). Suppose the SCV of arrivals to the line is equal to
1.0 (recall that we termed this the moderate-variability case in Part II). Thus, TH = 2.5
jobs per hour and c2

a = 1.0 for the first station. Set the target cycle time for the line at
CT = 16. To begin, assume that only one type of machine is available at each station
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Table 18.1 Basic Data for a Line Design Problem

Fixed Cost Unit Cost te

Station ($000) ($000) (hours) c2
e

1 225 100 1.50 1.00
2 150 155 0.78 1.00
3 200 90 1.10 3.14
4 250 130 1.60 0.10

(although we are allowed to choose the number of machines to install at each station).
Table 18.1 gives the data for the four stations.

First, we perform a capacity check to determine the minimum number of machines
we need at each station. We do this by solving equation (18.1) for the minimum value
of m that keeps utilization below one, that is,

u(m) = rate
m

m < 1

or

m > rate

For the first station,

rate = 2.5 jobs/hour × 1.5 hours = 3.75

which indicates we require at least four machines. Table 18.2 summarizes the other
machine requirements and their corresponding utilization.

Note that for station 4,

rate = 2.5 jobs/hour × 1.6 hours = 4.00

However, this would yield a utilization of exactly 1.0. Since the utilization law of Factory
Physics stated that utilization must always be strictly less than 1.0, we must assign five
machines to station 4, thereby lowering the utilization to 0.80.

Note that the solution in Table 18.2 is the least-cost configuration that has sufficient
capacity. This is called the minimum cost, capacity-feasible (MCCF) configuration
and in this case costs $2,455,000.

It is easy to extend this analysis to find the MCCF configuration when there is
more than one technology option at each station. For each station we determine how

Table 18.2 The Minimum Cost, Capacity-Feasible Solution

Station Number of Machines Utilization Cost ($000)

1 4 0.94 625
2 2 0.98 460
3 3 0.92 470
4 5 0.80 900

Total 2,455
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many machines of each option are required to meet the capacity target and choose the
option with the smallest total cost. Doing this for each station will result in an MCCF
configuration for the line.

18.2.2 Forcing Cycle Time Compliance

Once we have a capacity-feasible configuration, we then check the cycle time, using
equations (18.2) and (18.4).

Station 1:

CT(4) =
(

1.0 + 1.0

2

)

(

0.94
√

2(4+1)−1

4(1 − 0.94)

)

1.5 + 1.5 = 6.72 hours

c2
d = 1 + (1 − 1)(1 − 0.942) + 0.942

√
4

(1 − 1) = 1.0

Station 2:

CT(2) =
(

1.0 + 1.0

2

)

(

0.98
√

2(2+1)−1

2(1 − 0.98)

)

0.78 + 0.78 = 15.82 hours

c2
d = 1 + (1 − 1)(1 − 0.982) + 0.982

√
2

(1 − 1) = 1.0

Station 3:

CT(3) =
(

1.0 + 3.14

2

)

(

0.92
√

2(3+1)−1

3(1 − 0.92)

)

1.1 + 1.1 = 8.87 hours

c2
d = 1 + (1 − 1)(1 − 0.922) + 0.922

√
3

(3.14 − 1) = 2.0

Station 4:

CT(5) =
(

2.0 + 0.1

2

)

(

0.80
√

2(5+1)−1

5(1 − 0.80)

)

1.6 + 1.6 = 2.59 hours

The sum of these cycle times is 34 hours, which is significantly greater than the target
of 16. Clearly, the line needs changes to obtain a design that complies with the strategic
specifications.

There are three basic improvement alternatives: (1) modify the existing machines,
(2) change the machine options, or (3) add more machines. Chapter 9 described how to
use Factory Physics principles to diagnose problems in a line. This approach could be
used to determine the cause of long cycle times (e.g., long and infrequent outages) and
therefore what machine modifications would be most effective. It might be worthwhile
to spend money to reduce variability or speed up a machine rather than to purchase an
additional one. Of course, if we are designing a new line, there are no “existing” tools,
and hence alternative 1 is not available.

Altering machine options in the pursuit of shorter cycle times might entail purchasing
a different and perhaps more expensive machine with better operating characteristics
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(e.g., faster rate or smaller process variability). Often, however, especially in high-tech
situations, the number of distinct machine types is quite limited. In some cases there
may be only a single equipment vendor available. When this is the case, most of the
technology options that can be used to reduce cycle time are modifications of a given
machine type. Modifications include speeding up the machine, reducing setup time,
reducing MTTR, and so on.

The most obvious way to reduce excess cycle time is simply to purchase more
machines. If capacity comes in small increments, this might well be the most economical
approach.

Depending on the size of the required reduction in cycle time, the range of available
technology options, and the cost and size of capacity increments, the best approach may
consist of any number of combinations of these types of alternatives.

18.3 Modifying Existing Production Lines

We now offer a heuristic procedure for determining a least-cost configuration that meets
the throughput and cycle time constraints. The heuristic starts with the MCCF configu-
ration and then looks for the change that results in the “biggest bang for the buck” with
respect to cycle time improvement.

To illustrate this approach, we reconsider the example of Table 18.1. Recall that
the minimum cost, capacity-feasible configuration (Table 18.2) did not satisfy the cycle
time constraint. Specifically, desired total cycle time was 16 hours, but the resulting total
cycle time of the minimum cost configuration was 34 hours. We now consider how to
bring the configuration into cycle time compliance in a cost-efficient fashion. Note that
this is precisely the type of problem faced by firms trying to implement the methods of
cycle time reduction or time-based competition in an existing facility.

To make the example more realistic, suppose we can modify as well as add machines
at each station. In particular, suppose that by spending $10,000 per machine at the third
station, we could alter long and infrequent random outages to shorter but more frequent
ones with the same availability (recall the discussion in Chapter 8 that showed why this
is desirable). We might be able to accomplish this by installing field replacement parts
and/or doing more preventive maintenance. We assume here that this does not change
te, but does reduce c2

e from 3.14 to 1.0. Using these cost and performance data, we can
consider this variability reduction option as an alternative to adding machines.

Hence, these are the available options: At any station, we can add a machine; at
station 3, we can either add a machine or reduce machine variability by changing the
characteristics of the machine. For each alternative, we can compute the change in cycle
time at the station and the change in cost.1 A reasonable measure of the effectiveness
of the change is the ratio of the change in cost to the change in cycle time. The “best
single change” is that with the lowest ratio. We compute these ratios for each option in
Table 18.3.

The first thing we notice from Table 18.3 is that no single change reduces total cycle
time by enough to satisfy the cycle time constraint—we need an 18-hour reduction.
The smallest ratio is obtained by modifying the machine at station 3 (by reducing

1We ignore what might happen downstream at this point, so our calculations are actually approximations
of the change in cycle time for the entire line. It is easy enough to go back and check the line cycle time for a
specific option, and for that matter it is not too hard to include downstream effects when estimating the effect
of a single change. However, if we do this, we can only evaluate changes one at a time—the reduction in total
cycle time from two options together is not necessarily the sum of the reductions from each separately.
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Table 18.3 Cost and Cycle Time Impacts of Improvement Alternatives

Current Number Cost Increase CT Decrease Ratio

Station of Machines Change ($000) (hours) ($000/hour)

1 4 Add machine 100 4.63 21.61
2 2 Add machine 155 14.73 10.52
3 3 Add machine 90 7.20 12.49
3 3 Reduce variability 30 4.49 6.67
4 5 Add machine 130 0.71 183.10

Table 18.4 Capacity- and Cycle Time–Feasible Configuration

Station Number of Machines Utilization Station Cost ($000)

1 4 0.94 625
2 3 0.65 615
3 3 (modified) 0.92 500
4 5 0.80 900

Total 2,640

repair time variability) with cycle time reduced by 4.49 hours at a cost of $30,000.
This takes us down to 29.51 hours, still considerably longer than the 16 hours allotted.
If we repeat the analysis, the minimum ratio occurs by adding a machine to station 2,
which costs $155,000 and further reduces cycle time by 14.7 hours. This takes us down
to 14.81 hours, which is within the 16-hour constraint.

Although we are not guaranteed that repeatedly choosing the best single change will
bring us within the cycle time constraint at a minimum cost, this approach usually works
well. In any case, it does yield a configuration that is throughput- and cycle time–feasible.
For this example, the resulting solution is given in Table 18.4.

The total cost is $2,640,000, or $185,000 more than the MCCF configuration. In
addition, notice that this line is not even close to balanced. Surprisingly, the most expen-
sive station (number 4) has the second lowest utilization. This is because both the fixed
cost and the unit cost at station 4 are quite high, and because four machines at station 4
result in 100 percent utilization.

18.4 Designing New Production Lines

The problem of designing a new line is different from that of modifying an existing
one, in that there are typically many more options to consider. In a new line, we are not
constrained by existing machines, facilities, or even structure. Indeed, we may have so
much freedom that the problem becomes almost impossible to solve in an optimal fashion.

18.4.1 The Traditional Approach

In the 18th century, when the first factories were designed, a major consideration was how
to arrange the various operations in order to run them from a single source of power—
the waterwheel. Consequently, operations were arranged in linear fashion along the
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waterwheel shaft, each connected to a belt on a properly sized gear to obtain the required
turning speed from the waterwheel. Today, it is not uncommon to find factories that
follow this traditional design, their process centers laid out in straight lines within a
rectangular facility.

We found this curious, since manufacturing plants have not relied on water power
for 150 years, and we questioned several architectural engineers who design complex
plants (e.g., wafer fabs) and manufacturing engineers who work in existing plants. We
discerned that a typical procedure for designing new plants and new lines goes something
like this:

1. Establish the basic size and shape of the new facility.

2. Determine where the support facilities (electricity, steam headers, process
gases, etc.) should go to minimize the cost of the facility.

3. Determine where the workstations should go within the facility to minimize
cost.

4. Determine the product flow.

Given this, the tendency toward linear layouts is not surprising. Since the design
process starts with the size and shape of the facility, tradition exerts strong influence
over the resulting design. But there are obvious problems with this scheme. The most
serious is that little consideration is given to product flow until after most of the plant
has been designed.

18.4.2 A Factory Physics Approach

A good alternative approach is to view the problem from a customer perspective. This
makes it clear that the main purpose of a line or plant is to provide quality product in
a timely and competitive fashion. A facility design process consistent with this goal,
which is almost the reverse of the traditional approach, is the following:

1. The customer determines the product. Mixes, volumes, and cycle times are
forecast.

2. The product(s) determine(s) the processes. For most products, there is a basic
recipe of steps that must be done to produce a unit.

3. The processes determine a basic set of machines. Machine descriptions will
start out very general and will acquire detail as the planning process evolves.

4. The machines determine the facilities needed to support them.

5. The facilities determine the overall structure and size of the plant.

Of course, if we were to literally follow this procedure, we could end up with a
facility that is well equipped to make the product in the volumes desired but is too
costly to build. Focusing solely on product flow in order to minimize cycle times may
lead us to install multiple expensive machines when one would have done. For instance,
in a wafer fab, the photolithography operation is typically one of the more expensive
machines in the fab. Its facility requirements are enormous, and to make matters worse,
the wafers must visit the operation for each layer (often 10 or more) applied during
fabrication. A pure cycle time minimization perspective might suggest installing 10 sets
of equipment at a tremendous cost. A pure cost minimization perspective would call for
only one set of equipment. The “best” option can only be determined by considering
photolithography in the context of the other operations and comparing relative costs of
different configurations that meet performance targets.
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As a result, it makes sense to approach the facility design problem from a combi-
nation of the traditional and Factory Physics perspectives. We start with an idea of the
basic processes and layout of the factory. Using the basic layout, we install the process
centers, sizing them to meet desired throughput and cycle time levels. If the resulting
configuration results in too high a facility cost, we reconsider the basic layout. On the
other hand, if cycle times are excessive, we consider installing more support facilities to
improve process flows.

As part of the analysis, we might also want to do a Pareto analysis of the product mix
to determine if a “factory within a factory” concept is applicable. If most of the volume
is for a relatively small number of products, it may make sense to duplicate processes in
the plant. One set, in a tight flow line configuration, is dedicated to the small number of
products representing the large portion of throughput. The other is arranged in more of a
job shop configuration that maximizes flexibility at the expense of lower utilization or
higher cycle times. Low utilization should be expected in this portion since the volumes
are (by design) low.

Once we have settled on a basic layout, we turn to detailed selection of specific
options and numbers of machines. A relatively simple procedure is to start with the MCCF
configuration and then successively choose the best single change, as described, to bring
the line into cycle time compliance. To be effective, we should include as many available
technology options (i.e., including both purchasing additional machines and modifying
machines and/or procedures on site) as we can without overwhelming the decision maker.
We want to avoid overlooking an inexpensive modification that alleviates a performance
problem and eliminates the need for additional expensive machines. Factory Physics
diagnostic procedures (Chapter 9) are useful in identifying promising options.

Of course, as we know, the performance requirements (e.g., throughput and cycle
time targets) are themselves decision variables. Although we can specify plausible values
to start the analysis, it makes sense to examine trade-offs between cost and performance.
For example, if we could shorten cycle times by 5 days at a cost of $100,000, we might
well decide to do it. We can do this with our model by solving it for various values of
the throughput or cycle time constraints in order to generate a cost-versus-performance
curve. A typical plot of cost versus total cycle time is shown in Figure 18.2. While
the model cannot specify which point on this curve is optimal, it does provide useful
information to help the decision maker make a rational choice.

18.4.3 Other Facility Design Considerations

These discussions offer some perspective on how to incorporate cost, throughput, cycle
time, and other factors into a customer-oriented facility design process. However, there
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is more to the facility design problem than we have dealt with here. Indeed, there exists
a vast literature called, broadly, plant layout or facilities planning, which deals with
topics ranging from the placement of various process centers to minimize product flow,
to determining the number of employee parking spaces. This literature addresses the
important issues of materials handling, physical plant layout, storage and warehousing,
office planning, facility services, and developing and maintaining facilities plans. We
suggest Tompkins and White (1984) as a good introduction to this field.

18.5 Capacity Allocation and Line Balancing

As the previous example illustrated, Factory Physics procedures for line design are
unlikely to result in a balanced line. The reasons are as follows:

1. An unbalanced flow line with a distinct bottleneck is easier to manage and
exhibits better logistical behavior (i.e., has a characteristic curve closer to the
best case) than a corresponding balanced line.

2. The cost of capacity is typically not the same at each station, so it is cheaper to
maintain excess capacity at some stations than at others.

3. Capacity is frequently available only in discrete-size increments (e.g., we can
buy one or two lathes, but not one and one-half), so it may be impossible to
match capacity of a given station to a particular target.

When appropriate consideration is given to these factors, the optimal configuration of
most flow lines will be an unbalanced line.

18.5.1 Paced Assembly Lines

Despite the arguments in favor of unbalanced lines, sometimes line balancing makes
sense. Indeed, the line-of-balance (LOB) problem is a classic problem in industrial
engineering. However, it is applicable only to paced assembly lines, not flow lines.

In a flow line, stations are essentially independent. Each station operates at its own
speed, so the bottleneck is the slowest station in the line. In a paced assembly line, parts
flow through the line on a belt or chain that moves at a constant speed. The parts move
through zones that usually contain one or more operators. The line is designed so that the
operators will almost always be able to complete their task while the part is in their zone.
If not, the line would be disrupted as workers tried to finish tasks in the next worker’s
zone. Hence, the bottleneck of a paced assembly line is not the slowest station in the line
but the line-moving mechanism itself.

Additionally, capacity increments in a paced assembly line are usually much smaller
than those in a flow line. In a paced assembly line, tasks are typically assigned to workers
on the line and can be split into fine increments. For example, in a manual electronic
assembly operation, each station “stuffs” circuit boards with a number of components.
Since there are many components, the line can be balanced by adjusting the amount of
stuffing done at each station. A discussion and an example technique for solving the
LOB problem are given in Appendix 18A.

Another justification for a balanced assembly line is one of personnel management.
People do not like to be in a situation in which they are constantly expected to do
more than their peers for the same pay. Since most assembly lines are staffed by people
(although some assembly lines use robots), the issue of fairness is an important one. In
these cases a line in which each station has nearly the same amount of work is desirable.
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In contrast, in a flow line, the tasks depend more on the machines themselves and are
therefore less easily divided. To increase capacity at a particular station, we must either
add an additional machine to that station or speed up the existing ones. Unfortunately,
the notion of a balanced line has become so ingrained that it is often applied when it is
inappropriate. This and the desire to have high utilization are the reasons one frequently
encounters nearly balanced flow lines.

18.5.2 Unbalancing Flow Lines

The previous reasons for unbalancing flow lines suggest that a process with small and
inexpensive capacity increments should never be a bottleneck. Such a process can easily
and inexpensively add small increments of capacity until it no longer causes problems
due to insufficient capacity. On the other hand, a process for which capacity comes in
large expensive blocks is a good choice to be the line bottleneck.

As an example, consider two different process centers in a circuit board plant: cop-
per plate and manual inspect. The manual inspect operation occurs before the copper
plate operation.2 Copper plate utilizes a machine that involves a chemical bath along
with enormous amounts of electricity. Each machine has a capacity of around 2,000
panels per day. Adding an additional machine at copper plate costs more than $2 million
in machine and facility costs and requires a significant amount of floor space. Cop-
per plate represents one of the largest and most expensive machines in the plant. In
contrast, each of the stations in manual inspect requires one semiskilled operator, an
illuminated magnifier, and a touch-up tool. Each station can inspect around 150 panels
per day. None of these stations costs more than $100, and the floor space requirements
are small.

If these were the only two stations in the line, the situation would be easy to analyze. If
we designate the copper plater to be the bottleneck, then we can easily and inexpensively
keep it from starving by adding capacity to the manual inspect operation. It is of little
consequence that manual inspection is not fully utilized. On the contrary, to designate
manual inspection as the bottleneck and to keep it from starving,3 we would have to add
a large and costly increment of capacity to the copper plate operation. Thus, it makes
more sense to designate copper plate as the bottleneck and to manage it accordingly.

18.6 Conclusions

This chapter has focused primarily on applying the Factory Physics framework to the
design of new production lines and improvement of existing ones with respect to capacity.
Our main points can be summarized as follows:

1. Capacity decisions have a strategic effect on the competitiveness of the
manufacturing operation. A capacity strategy has a strong direct effect on costs
and many indirect effects on performance by influencing other planning and
control problems, including aggregate planning, scheduling, and shop floor
control. Decisions include how much, when, where, and what type of capacity

2The capacities, capabilities, and even the process description have been altered here from those in a
circuit board plant in which the authors have consulted.

3Recall that in a CONWIP line, there really is no front to the line. Thus, workstations earlier in the line
can be starved by later workstations if the pull signals (i.e., the CONWIP “cards”) are not returned in a
timely manner.
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to add. Other strategic issues involve various economies and diseconomies of
scale.

2. Factory Physics formulas can provide the basis for line design and
improvement procedures. By allowing computation of throughput, cycle time,
and WIP for a given configuration, these formulas enable us to frame the line
design or improvement problem as one to minimize cost subject to specified
throughput, cycle time, and/or WIP constraints. By varying the constraints, we
can also generate cost-versus-performance constraints.

3. Capacity additions and equipment or procedure modifications can be viable
alternatives and/or complements to one another. For instance, reducing repair
times on an existing machine can sometimes have similar logistical effects as
adding capacity to a station in the form of additional machines. All other things
being equal, the value of procedural changes is typically greater than that of
equipment additions, because the learning and discipline gained from
improving a line can be translated to other lines, while simple capacity
additions offer no such learning opportunities.

4. Flow lines should generally be unbalanced. Logistical and cost differences
between stations make it sensible to configure flow lines to have different levels
of utilization at the stations.

5. Paced assembly lines should generally be balanced. On paced assembly lines it
is the pacing mechanism (e.g., the conveyor or chain) that is typically the
bottleneck. To enable workers to complete their assigned tasks within the
allotted pacing time, as well as to allocate work fairly, it makes sense to divide
tasks among stations as evenly as possible, subject to precedence and
discreteness requirements.

It is important to note that lines designed by using Factory Physics procedures
are likely to be more expensive than lines designed by a traditional minimum cost,
capacity-feasible approach. However, they are also much more likely to do what they
were designed to do. When one considers factors such as lost sales due to inability to
meet throughput targets, loss of customer goodwill due to inability to meet cycle time
targets, and the confusion that results in trying to operate a line that is in a constant state
of chaos, the more expensive Factory Physics lines are likely to be much more profitable
in the long run.
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The Line-of-Balance Problem

Assigning tasks to stations on a paced assembly line should be done so that each station has nearly
the same amount of work. There are two good reasons for this: to use labor efficiently and to avoid
issues of fairness that result when one station must work much harder than another.

Assume there are n tasks to be performed on each piece moving through the line and the time to
do the i th task is ti . These tasks are assigned to k workstations where k ≤ n. If t0 is the time allowed
for each station (i.e., the time for the conveyor to move through a workstation), then the rate of
the line will be rb = 1/t0.

Since the tasks have random times, we need to make some allowance for variability. We define
c < t0 to be the maximum time allowed for task assignment. By requiring the sum of the mean
task times to be less than or equal to c, we provide some extra time at each station to accommodate
the inherent variability of the tasks. Note that u = c/t0 is the maximum utilization of any station
in the line and is always less than one.

In many texts dealing with the LOB problem, c is called the cycle time. However, since we use
this term to refer to the time through an entire routing, we will refer to c as the conveyor time

(i.e., because it is the time the conveyor allows at each station).
The objective of most line-of-balance algorithms is to minimize total idle time, which we write

as

Total idle time = kc −
n

∑

i=1

ti

An equivalent measure is known as balance delay

b = kc − ∑n
i=1 ti

kc

which represents the total fraction of idle time.
To further complicate matters, we must consider a number of other constraints. The most

common are precedence constraints, which occur when certain tasks must be done before others.
We will consider only precedence constraints, but refer the reader to Hax and Candea (1984,
section 5.4) for a more complete discussion of the LOB problem and a survey of relevant literature.

It turns out that the LOB problem is very complex (i.e., NP-hard), so that optimal algorithms
often require excessive amounts of computer time for realistically sized problems (e.g., with 100
tasks or more). For this reason, most commercial packages rely on heuristic methods.

We illustrate a heuristic LOB algorithm using a simple procedure that is similar to that of
Kilbridge and Wester (1961) by using an example from Johnson and Montgomery (1974, p. 369).
To do this, consider the nine tasks whose precedence relations are given in Figure 18.3. The times

1
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5 8
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7

6

Figure 18.3

Precedence diagram for
LOB example.
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Table 18.5 Data for LOB Problem Example

Task Average Performance Number of

Number Time Successors

1 5 7
2 3 6
3 6 4
4 8 5
5 10 3
6 7 3
7 1 2
8 5 0
9 3 0

for these tasks and the number of successors are given in Table 18.5. Note that task 5 has the
largest average performance time of 10. Thus, c ≥ 10. Also note that the sum of the performance
times is

∑

i ti = 48.
To have zero idle time, the ratio

∑n
i=1 ti/c must be an integer. However, this does not guarantee

zero idle time because the precedence constraints might prevent the required assignment of tasks
to stations. Nonetheless, this fact and

max
i

{ti } ≤ c ≤
n

∑

i=1

ti

help to determine an appropriate value for c. If we factor
∑n

i=1 ti = 48, we get

2 × 2 × 2 × 2 × 3 = 48

The combinations of these factors that are between 10 (the largest performance time) and 48 (the
sum of the performance times) are

2 × 2 × 2 × 2 × 3 = 48

2 × 2 × 2 × 3 = 24

2 × 2 × 2 × 2 = 16

2 × 2 × 3 = 12

So we might be able to achieve a perfectly balanced line (i.e., no idle time) with either 48/48 =
1 station (obvious and not very useful), 48/24 = 2 stations, 48/16 = 3 stations, or 48/12 = 4
stations. Let us consider the case with c = 16, the three-station case.4

To describe our procedure, define N to be the current station number, T the set of tasks
assigned to the current station, A the time available to be assigned at the current station, and S the
set of available tasks to be assigned, that is, those tasks whose precedence constraints have been
satisfied and whose performance times fit within the remaining time. The algorithm then proceeds
as follows:

Step 1. Set the current station number N to 1.

Step 2. Set the time available to c, A ← c, and T = φ, indicating no assignments thus far.

4Of course, by choosing the value c = 16 we have established the throughput of the line. If we need
greater throughput, we might be better off with c = 12, even though the line will not be perfectly balanced
and even though there is more idle time. These issues are often not considered in LOB software.



Chapter 18 Capacity Management 667

Step 3. Determine the set of candidate tasks for assignment S. To be a candidate, two
conditions must be satisfied:

1. All predecessors of the candidate must be scheduled, or equivalently, the
candidate has no predecessors.

2. The performance time does not exceed the time available: t j ≤ A.

Step 4. Choose the task j from the set S, using the following two rules:

1. Choose the task that has the largest number of total successors.
2. Break ties by choosing the task with the longest performance time.

Place the task in T .

Step 5. Update the available time A ← A − t j . Remove task j from set S.

Step 6. Repeat steps 3, 4, and 5 until no candidate tasks remain (i.e., set S is empty).

Step 7. If there are tasks remaining, increment the station number and go to step 2.
Otherwise, stop.

To apply this algorithm to our example, we start with

N = 1 A = 16 S = {1, 2} T = φ

Set S contains tasks 1 and 2 only, since they are the only tasks without any predecessors. Since
task 1 has the most successors, we assign it first to station 1. We now have

N = 1 A = 11 S = {2, 3} T = {1}

Note that task 3 is now a candidate since its only precedence, task 1, has been scheduled. Since
task 2 has the most successors and fits within the available time, we schedule it next.

N = 1 A = 8 S = {3, 4} T = {1, 2}

Both tasks 3 and 4 are now candidates for the next slot. Here we see the importance (and arbitrari-
ness) of the heuristic rules. Since our rule is to select the task with the most successors, we select
task 4 which fits perfectly (using all eight time units remaining). If we had selected task 3, we
would have had time remaining at the station after the task assignments. More sophisticated LOB
algorithms would try all combinations of the tasks remaining and see if any are a perfect fit. This,
of course, increases the amount of computer time required. The status of the algorithm is now

N = 1 A = 0 S = φ T = {1, 2, 4}

There are no candidate tasks because the time remaining is zero. We must now move on to schedule
the second station. We reset A = c and note that there are now two candidate tasks

N = 2 A = 16 S = {3, 6} T = φ

Task 3 has the greatest number of successors and so is scheduled first at station 2. The status is
now

N = 2 A = 10 S = {5, 6} T = {3}

Tasks 5 and 6 both have three successors. However, task 5 is the longest task and just fits in the
time remaining. We finish station 2 with

N = 2 A = 0 S = {6} T = {3, 5}
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The remaining tasks all fit within the conveyor time c at station 3. 

T = {6, 7,8, 9} 

The schedule is optimal with b = O. 

Note how many times during the algorithm that we got lucky when tasks "just fit" in the 

time remaining. This is not typical and, in fact, would not happen when c = 12 or c = 24. Most 

commercial algorithms try many different values of c and different tie-breaking rules within the 

procedure. 

1. Why would anyone want to add capacity before demand has materialized? Why would 

anyone want to lag behind demand? 

2. Why is the unit cost usually less expensive in a large plant than in a small one? What might 

cause this not to be true? 

3. Why is the traditional view of capacity management inadequate? What law from factory 

physics speaks to this directly? 

4. Consider this statement: For a fixed budget, design the "best" facility possible. Provide a more 

specific problem statement in terms of cost, cycle time, throughput, and so on. 

5. Why is it appropriate to balance a paced assembly line but not a line of independent 

workstations? What is the bottleneck of a paced assembly line? 

6. Consider the line-of-balance problem. Why should the conveyor time c be greater than the 

maximum time assigned at any station? What might happen if it were not? 

7. What are some shortcomings of the traditional approach to designing factories in which we 

start with the size and shape of the plant, decide where the support facilities go, and then decide 

where to place the tools? What are some shortcomings of the Factory Physics approach? 

1. You are charged with designing a three-station flow line that must achieve a target throughput 

of 5 jobs per hour and a total cycle time of 3 hours or less. Each station must consist of a 
single machine purchased from a vendor who will construct it to your specifications, any 

speed you desire. However, the price depends on the speed as follows: [ 
1 Jb(i) K(i) = aCi) -. 

te(l) 

where KCi) is the (total) equipment cost at station i; teCi) is the effective process time of the 

machine at station i; and aCi) and b(i) are constants. Assume that the arrival coefficient of 

variation (CV) to the line is equal to one and that ceCi) = 1 for i = 1,2,3 (i.e., the process 

CV for all machines is equal to one, regardless of the speed). 

(a) Suppose that aU) = $10, 000 and b(i) = � for i = 1,2,3. Find the values of te(i) for 

i = 1, 2, 3 that achieve target throughput and cycle time with minimum total equipment 

cost. (Hint: The Solver tool in Excel is very handy for this.) Is the result a balanced line? 

Explain why or why not. 

(b) Suppose that a(l) = $1, 000, a(2) = $100, 000, a(3) = $10, 000, and b(i) = � for 

i = 1,2,3. Find the values of teCi) for i = 1,2,3 that achieve target throughput and cycle 

time with minimum total equipment cost. Is the result a balanced line? Explain why or 

why not. 
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Table 18.6 Possible Machines to Purchase for Each Work Center

Possible Machines (Speed (pieces/hour), CV, Cost ($000))

Station Type 1 Type 2 Type 3 Type 4

MMOD 42, 2.0, $50 42, 1.0, $85 50, 2.0, $65 10, 2.0, $110.5
SIP 42, 2.0, $50 42, 1.0, $85 50, 2.0, $65 10, 2.0, $110.5
ROBOT 25, 1.0, $100 25, 0.7, $120 — —
HDBLD 50, 0.75, $20 5.5, 0.75, $22 6, 0.75, $24 —

(c) Suppose that everything is the same as in part (a) except that now te(i) can only be chosen
in multiples of 0.05 hour (0.05, 0.1, 0.15, etc.). Find the values of te(i) for i = 1, 2, 3 that
achieve target throughput and cycle time with minimum total equipment cost. Is the result
a balanced line? Explain why or why not.

(d) What implications do the results of this simplified model have for designing realistic flow
lines?

2. Table 18.6 gives the speeds (in pieces per hour), the CV, and the cost for a set of machines for
a circuit board line. Jobs go through the line in totes that hold 50 panels each; this cannot be
changed. The CVs represent the effective process times and thus include the effects of
downtime, setups, and other common disruptions.

The desired average cycle time through this workstation is one day. The maximum
demand is 1,000 panels per day.
(a) What is the least-cost configuration that meets demand requirements?
(b) How many possible configurations are there?
(c) Find a good configuration.

3. Challenge: Consider the data in Table 18.1 along with the option of reducing the c2
e for station

3 as described in Section 18.3. Design a line with maximum throughput that has cycle times
of not more than 16 hours and an equipment budget of no more than $2,800,000.

4. Assembling a computer monitor requires a chassis, two main circuit boards and components,
a yoke, followed by a test. These are performed according to the following precedence
requirements:
� The chassis must be put down first. This takes 2 minutes.
� Board 1 requires only a chassis. It takes 3 minutes.
� Components 1 require that board 1 be in place. Placing these components on the board

takes 3 minutes.
� Board 2 requires that board 1 be in place. Board 2 takes 4 minutes to insert.
� Components 2 require that board 2 be in place. These take 2 minutes to insert.
� The yoke requires that all the boards and the components be in place and takes 3 minutes to

install.
� Testing, naturally, requires that all the assembly be finished and takes 5 minutes to perform.
(a) Draw a precedence diagram of the assembly of a computer monitor.
(b) What is the minimum conveyor time that could possibly result in zero balance delay?
(c) If the expected utilization is 0.85, how many monitors will be produced per hour using

the minimum conveyor time computed above?
(d) Assign the tasks to stations using the minimum conveyor time. What is the balance delay?
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19 Synthesis—Pulling

It All Together

This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of
the beginning.

Winston Churchill, November 10, 1942

19.1 The Strategic Importance of Details

We will be the first to admit that the treatment of manufacturing in this book has been
technical. Manufacturing is technical. It would be nice if we could just do what feels right,
get product out the door, and make a living. But there are fewer and fewer businesses in
which this is possible. Under the pressure of intense global competition, manufacturing
firms are forced to continually improve cost-efficiency, product quality, and delivery
responsiveness. Certainly a strategic vision is essential to foster an environment where
this kind of performance is possible. But it is only through careful attention to technical
detail that it can be achieved.

In the 1950s and 1960s America could afford to gloss over the details of manufac-
turing and concentrate on high-level marketing and finance issues. In the wake of World
War II, American manufacturers did not need to worry about costs or defect levels that
were a few percent too high. Customers had few alternatives and low expectations. In
the 1980s and 1990s, however, consumers began to see high-quality, reasonably priced
products from Japan, Germany, Korea, and many other places, and accordingly, they
grew to expect more from American manufacturers. As a result, today even a relatively
small gap in cost, quality, or customer service can drive a firm right out of a market.

The strategic value of details, however, goes well beyond their role in achieving
small but important performance improvements. The most important reason that we
need a deeper understanding of manufacturing systems is that the pace of technological
change in recent years has made trial-and-error solutions almost useless. Henry Ford
produced the Model T for an entire generation, so he could evolve systems and solutions
by observing and tinkering with the production line. In contrast, the typical life span of
a personal computer is less than 2 years, which means that modern PC manufacturers
must set up the facilities, ramp-up the volumes, attain the efficiencies needed to make
a profit, achieve the level of predictability needed to ensure good customer service, and
phase out the product, all in a very short time. Predicting and analyzing the behavior of
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a system before it is in place requires sound intuition and appropriate models, both of
which are premised on an understanding of the technical details of manufacturing.

19.2 The Practical Matter of Implementation

Having the proper analysis tools is a key prerequisite for making significant improve-
ments to a manufacturing system. But implementation is more than a matter of being
right. An effective manufacturing manager must pull together a coherent plan and nur-
ture it to fruition. This requires (1) addressing the right problem and (2) convincing
others that it needs to be solved. The first is the subject of systems analysis, while the
second deals with the human element of manufacturing management. Chapters 6 and
11 addressed these; but they are so central to the implementation process that we revisit
them briefly here.

19.2.1 A Systems Perspective

The laws and formulas of Factory Physics can help identify areas of leverage, build
intuition about why certain approaches work in certain environments, and evaluate and
compare specific policies. But they cannot generate original ideas. The managers of a
manufacturing system must determine what they want it to do before any tools can be
applied to the question of how to do it. Therefore, to fully exploit the strategic potential
of Factory Physics, it is important to use it in the larger problem-solving framework of
systems analysis.

Recall from Chapter 6 that the essential aspects of systems analysis (as well as the
modern variant of systems analysis, business process reengineering) are as follows:

1. A systems view. The problem is viewed in the context of a system of interacting
subsystems. The emphasis is on taking a broad, holistic view of the problem,
rather than a narrow, reductionist one.

2. Means-ends analysis. The objective is always specified first, and then
alternatives are sought and evaluated in terms of this objective. For instance, a
systems analysis project might use the objective “to deliver finished goods
swiftly and conveniently to customers,” but would not use the objective
“to improve the efficiency of processing purchase orders.” The latter is a
“means-first” approach, which could rule out potentially attractive
options—such as doing away with purchase orders under an entirely new
procedure.

In systems analysis, objectives are typically organized into a hierarchy of
objectives, which identifies the links between the fundamental objective and
various lower-level objectives. This helps identify conflicting objectives (e.g.,
low inventory and high fill rate) and highlights lower-level objectives that
support more than one higher-level objective (e.g., short cycle times allow for
better manufacturing quality as well as better customer responsiveness).

3. Creative alternative generation. With the objective in mind, the systems
approach seeks as broad a range of alternative policies as possible. For instance,
to reduce manufacturing cycle time, we should go beyond simply considering
how to speed up individual processes and think about basic causes of cycle
time. Many formalized brainstorming techniques have been developed to
encourage expansive thinking about nonobvious alternatives.
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4. Modeling and optimization. To compare alternatives in terms of the objective,
the project requires some kind of quantification. The modeling/optimization
step for doing this may be as simple as computing costs for each alternative and
choosing the cheapest one, or it may require analysis of a sophisticated
mathematical model. The appropriate level of detail will vary depending on the
complexity of the system and the magnitude of the potential impact.

5. Iteration. In every complex systems analysis project, the objective, alternatives,
and model are revised repeatedly. This is because, as we perform the analysis,
we learn more about the system. In Chapter 6, we formalized this procedure as
the “conjecture and refutation” process.

The systems analysis procedure helps focus attention on the correct problem (i.e.,
where major leverage exists), promotes insight into the system, and fosters a sense of
teamwork toward the project. As such, it is a vital starting point and frame of reference
for virtually any manufacturing improvement project.

19.2.2 Initiating Change

Systems analysis is valuable in generating and evaluating ideas. But no matter how good
an idea is, it will never be implemented if it cannot be communicated. All the Factory
Physics arguments in the world will not change a manufacturing organization unless the
people in it are convinced of the need for change and know what they must do to bring
it about.

Overcoming institutional momentum can be very difficult. As Machiavelli put it:

There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain
in its success, than to take the lead in the introduction of a new order of things.

The amount of effort required to put through a program of change depends on the
situation. If the manager of a production line has used her Factory Physics insight to
recognize that reducing setups on a particular machine would reduce WIP and cycle
time, and she has the authority to form a setup reduction team consisting of machine
operators and staff engineers, then she should probably go ahead and do it. No hoopla,
slogans, or revolutions are required to make small, incremental changes in the system.
And while such changes will not remake the company, they can be important parts in
the process of ongoing improvement.

Bigger changes, such as refocusing a plant as part of a time-based competition
strategy, require much more institutional support. Radically reducing customer lead
times by addressing the entire product delivery process—which involves sales, order
entry, manufacturing, customer service, and possibly many other functions—demands
the leadership of someone with sufficient clout to make the necessary changes. Depending
on the system, this might be the plant manager, or if influence beyond the plant is needed
(e.g., product development or component production), someone even higher, perhaps
the vice president for manufacturing or chief operating officer. Once the leader has been
assigned, it is critical for him/her to instigate the change and provide ongoing support
for it. If the leader gives a few fiery speeches and then disappears, momentum for change
will quickly evaporate.

An effective leader with the requisite authority can get people inspired to change,
but cannot actually carry out the change. Systems analysis teams are typically needed
to do the analysis and oversee the implementation required to actually reshape an
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organization. These teams can be configured and managed in many different ways (see
Hayes, Wheelwright, and Clark 1988; Hammer and Champy 1993 for examples). We
will not go into a great deal of depth about this, but we make the following observations
about systems analysis teams:

1. Teams should not be committees. That is, they should be small enough to
function aggressively. If the number of people on a team exceeds 10 or so, it
becomes so difficult to get everyone together that the team becomes ineffective.

2. The team should consist of key people from the major functional areas affected
by the change. For instance, a cycle time reduction effort should involve people
from sales, manufacturing, production control, and so on. These people must be
chosen to have a “big picture” attitude, so that they are not simply protecting
their turf. Alternatively, they could be assigned 100 percent to the systems
analysis team with the knowledge that after the team is dissolved, they will not
go back to their previous position. The idea is to motivate people to think in
terms of what is good for the overall system, not just for their part of it.

3. The team should include some outsiders, people not directly connected with the
system under consideration. These could be people from elsewhere in the
organization or independent consultants. The purpose of these outsiders is to act
as provocateurs who will challenge assumptions and traditions. It is altogether
too easy for a team of all insiders to mistake the way things are for the way
things must be.

When supported by an influential leader and well-chosen analysis team, a systems
analysis can be a powerful tool for bringing about dramatic change in an organization.

19.3 Focusing Teamwork

Often in modern manufacturing organizations, it is not the big failures that are most
damaging, but rather the small successes. A highly visible failure that occurs when a
firm attempts to push out the envelope of manufacturing practice is a noble effort and a
valuable learning opportunity. In the right environment (one that does not punish people
for taking good risks or become overly conservative in reaction to a failure), such failures
are necessary and positive steps on the road of continual improvement.

In contrast, small safe projects that make tiny improvements can ensure their leaders
of positive performance evaluations, but can steadily undermine the competitiveness of
a firm. The reason is that they sap the resources of the organization. A firm that devotes
too much energy to the easy marginal improvements is open prey to a competitor who
aims higher. In this era of intense competition, the “all safe” strategy is almost a sure
formula for failure.

This observation implies that a critical first step in setting up a systems analysis
team is to focus the team on a problem of real importance. One way to do this is to
make sure the original topic of a systems analysis study is sufficiently broad to allow
the team to identify the major areas of leverage for themselves. As illustration we offer
the example of a systems analysis in which the authors participated some years ago.
At the inaugural workshop, the objective was stated as increasing the efficiency of the
painting process. After listening to a great many details about the problems in painting,
we asked about the motive for improving painting and learned that manufacturing cycle
times were too long relative to the competition. But after we asked more questions,
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we were able to estimate that painting accounted for less than 1 day of a 10-week
cycle time. Eventually, we discovered that the single major determinant of cycle time
was the order entry process, which accounted for 4 weeks or more. Thus, although
we eventually arrived at an appropriate focus for the study, we would have gotten there
much more efficiently had the initial focus been on something broad like “remaining
profitable in the face of faster competition,” instead of the restrictive “improving painting
efficiency.”

19.3.1 Pareto’s Law

A basic tool for sifting through a complex manufacturing system and picking out the
most important aspects is Pareto’s law, also known as the 80-20 rule. Pareto originally
offered it as the law of economics that 80 percent of the wealth is owned by 20 percent
of the people. Applied more generally, it states that a large fraction of any problem (or
benefit) is caused by a small fraction of the constituents. For instance, a small percentage
of part numbers account for the majority of demand, a small number of maintenance
items account for the majority of the maintenance budget, a small number of customers
account for both a large fraction of sales as well as complaints.

Pareto’s law can be used as a management guide, suggesting the “important few”
be given separate treatment from the “less important many.” The few high-volume part
numbers might be dedicated to efficient flow lines, while the many lower-volume part
numbers are produced in a less efficient job shop environment. The few high-volume
materials might be delivered in daily just-in-time fashion, while the many low-volume
materials are purchased and stocked in bulk. The few machines accounting for a
large fraction of downtime may have dedicated repair kits and specialized procedures,
while the many machines causing less downtime are handled with routine maintenance
procedures. The few big customers might be (probably will be) given preferential treat-
ment relative to the many small customers. In each case, the idea is to allocate limited
resources to the places where they will do the most good.

Pareto’s law can also be used as a simplification tool. For instance, the routings in
a manufacturing plant may seem like a hopelessly intricate mess when all part numbers
are considered. But when only major families are considered, a much simpler pattern
may emerge. Studying this simplified system is likely to be tractable and to lead to an
understanding of the essential behavior of the overall system.

19.3.2 Factory Physics Laws

Once the system has been pared down to a manageable level using Pareto’s law, the fun-
damental tools at the disposal of a systems analysis team are the laws of Factory Physics.
First and foremost, these offer intuition about the way a manufacturing system will tend
to behave. Additionally, they provide analytical methods that can be supplemented by
many other modeling and analysis techniques as appropriate to the particular study.

The following is a summary of the key Factory Physics principles that have been
introduced in this book.

Law (Little’s Law):

WIP = TH × CT
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Law (Best-Case Performance): The minimum cycle time for a given WIP level w is
given by

CTbest =
⎧

⎨

⎩

T0 if w ≤ W0

w

rb
otherwise

The maximum throughput for a given WIP level w is given by

THbest =
⎧

⎨

⎩

w

T0
if w ≤ W0

rb otherwise

Law (Worst-Case Performance): The worst-case cycle time for a given WIP level w
is given by

CTworst = wT0

The worst-case throughput for a given WIP level w is given by

THworst = 1

T0

Definition (Practical Worst-Case Performance): The practical worst-case (PWC)
cycle time for a given WIP level w is given by

CTPWC = T0 + w − 1

rb

The PWC throughput for a given WIP level w is given by

THPWC = w

W0 + w − 1
rb

Law (Labor Capacity): The maximum capacity of a line staffed by n cross-trained
operators with identical work rates is

THmax = n

T0

Law (CONWIP with Flexible Labor): In a CONWIP line with n identical workers
and w jobs, where w ≥ n, any policy that never idles workers when unblocked jobs are
available will achieve a throughput level TH(w) bounded by

THCW(n) ≤ TH(w) ≤ THCW(w)

where THCW (x) represents the throughput of a CONWIP line with all machines staffed
by workers and x jobs in the system.

Law (Variability): Increasing variability always degrades the performance of a pro-
duction system.
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Corollary (Variability Placement): In a line where releases are independent of com-
pletions, variability early in a routing increases cycle time more than equivalent vari-
ability later in the routing.

Law (Variability Buffering): Variability in a production system will be buffered by
some combination of

1. Inventory

2. Capacity

3. Time

Corollary (Buffer Flexibility): Flexibility reduces the amount of variability buffering
required in a production system.

Law (Conservation of Material): In a stable system, over the long run, the rate out
of a system will equal the rate in, less any yield loss, plus any parts production within
the system.

Law (Capacity): In steady state, all plants will release work at an average rate that
is strictly less than the average capacity.

Law (Utilization): If a station increases utilization without making any other changes,
average WIP and cycle time will increase in a highly nonlinear fashion.

Law (Process Batching): In stations with batch operations or with significant chang-
eover times:

1. The minimum process batch size that yields a stable system may be greater
than one.

2. As process batch size becomes large, cycle time grows proportionally with
batch size.

3. Cycle time at the station will be minimized for some process batch size, which
may be greater than one.

Law (Move Batching): Cycle times over a segment of a routing are roughly propor-
tional to the transfer batch sizes used over that segment, provided there is no waiting for
the conveyance device.

Law (Assembly Operations): The performance of an assembly station is degraded
by increasing any of the following:

1. Number of components being assembled.

2. Variability of component arrivals.

3. Lack of coordination between component arrivals.

Definition (Station Cycle Time): The average cycle time at a station is made up of
the following components:

Cycle time = move time + queue time + setup time + process time

+ wait-to-batch time + wait-in-batch time

+ wait-to-match time
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Definition (Line Cycle Time): The average cycle time in a line is equal to the sum
of the cycle times at the individual stations, less any time that overlaps two or more
stations.

Law (Rework): For a given throughput level, rework increases both the mean and
standard deviation of the cycle time of a process.

Law (Lead Time): The manufacturing lead time for a routing that yields a given
service level is an increasing function of both the mean and standard deviation of the
cycle time of the routing.

Law (CONWIP Efficiency): For a given level of throughput, a push system will have
more WIP on average than an equivalent CONWIP system.

Law (CONWIP Robustness): A CONWIP system is more robust to errors in WIP
level than a pure push system is to errors in release rate.

Law (Self-Interest): People, not organizations, are self-optimizing.

Law (Individuality): People are different.

Law (Advocacy): For any program, there exists a champion who can make it work—at
least for a while.

Law (Burnout): People get burned out.

Law (Responsibility): Responsibility without commensurate authority is demoraliz-
ing and counterproductive.

19.4 A Factory Physics Parable

In this book we have introduced a host of widely varied concepts in order to develop the
perspective, intuition, and tools for designing and improving manufacturing systems.
To illustrate how many of these Factory Physics pieces might fit together in a systems
analysis project to improve a specific system, we now consider a case study. The scenario
is actually a composite of many different companies. Much of the data come from an
excellent case by Bourland (1992). However, any lack of literary merit is entirely the
responsibility of the authors.

19.4.1 Hitting the Trail

It was 6:20 on a Friday afternoon when Carol snapped her briefcase shut and stood up to
go. Her one thought was, Time to hit the trail! She had been promised a week’s vacation
when she joined Texas Tool and Die as manager of manufacturing engineering 4 months
ago. But every time she made plans, a plant crisis forced her to postpone. Not this time.
I’ve been wanting to go riding in west Texas for years.

Before she could reach the door, the phone rang. Not again! She knew she shouldn’t
answer it, but her travel agent had said he might call with some last-minute schedule
changes. So, gingerly, she picked up the phone.

“Carol Moura.”
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“Carol. Claude. Good thing you’re still here. Milling is out of control again, and
Bill wants us in his office now. I’ll come by.”

Carol clapped the phone into the receiver hard. This will never end! Not since her
freshman year as an engineering student at Michigan State, far from her tight-knit family
in Connecticut, had she felt so alone and depressed.

On the way to Bill’s office, Claude Chadwick, a production manager, chattered on
about the current situation, making sure to stress how critical Carol was to a solution.
Sure. All he wants is for someone to do his work so he can get out this weekend. Him and
his marketing MBA. He doesn’t care about the plant. It’s just a stepping stone to bigger
and better things. “Doing my time,” he says. As if the plant is a prison.

Carol’s jaw tightened as she spied the sign on the office suite—William Whyskrak,
Vice President of Manufacturing. Bill Whyskrak! “Wiss-krek” he pronounces it. He’s
forever finding ways to make me look bad. Like that time in printing. First he tells me my
cart-sharing idea for reducing cycle times is the stupidest thing he ever heard. Then he
gives me a royal chewing out for going ahead with it. But when it worked, he takes all
the credit. Worse, he tells Mr. Walker now he’d been trying to get me to do it for weeks
and that I had been dragging my feet. Mr. Walker told him to “keep up the good work,”
but only smiled at me. What did that mean? Well, I was looking for a job when I found
this one.”

In his office, this time Carol doesn’t even give Bill time to explain the latest crisis.
“Bill, I’ve postponed my vacation three times now. I deserve this time off. If I don’t

go now, I never will. See you in a week.”
That wasn’t so hard. On her way to the airport she began to forget the plant. It was

early May, the flowers were gorgeous, the weather clear and cool. She let herself relax
and started to enjoy the drive. A week with nothing but my horse, sleeping bag, slicker,
and hat to think about. My only problems will be food and water, and there’s plenty of
that on the wagon. It’s going to be a good week.

Carol spent the first 3 days on the trail trying not to think about the plant, and
mostly succeeding. But on the morning of the fourth day, it forced its way into her
consciousness. What have I really accomplished in 4 months? A few small things and a
lot of crisis management. But I haven’t turned things around by a long shot. Bill has no
faith in me. Maybe Mr. Walker doesn’t either—I can never tell with him. Maybe I won’t
have a job when I get back. I was looking hard for a job when I found this one.

Bob McAlister, the trail boss, broke her reverie by pulling up to ride alongside her.
“Good thing that horse knows where to go.”

“What do you mean?” So far, she had had little to do with Bob. He was usually busy
making sure everyone’s gear was right and had been quiet the rest of the time. Almost
all he had said to her was, “Mornin’ Ma’am.” Even when he checked her saddle girth,
all he did was pat the back end of her horse and tip his hat. Bob really seemed to fit the
image of the silent cowboy.

“What I mean is that you’re not here. You’re back there. If you’re going to spend
good money to get away from there, why do you want to bring it here?”

“You’re pretty smart,” Carol admitted.
“You got to have a PhD in psychology to be a trail boss—state law, you know.” Bob

was the kind of Texan who liked to make outrageous statements with a straight face and
see how long it took the non-Texans to catch on. “Trail ridin’ takes brains. Your horse
ain’t gonna tell you he’s goin’ lame, and that mama cow over there ain’t gonna e-mail
you she’s runnin’ dry. It’s clear that somethin’s botherin’ you. Why, you’re twitchin’ like
a long-tailed cat in a room full of rockin’ chairs.”

Carol laughed. “You’re right. I’ve been wondering if I’ll have a job to go back to.”
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“Maybe I can help. I know you’re some kind of big engineer at a plant. I’m no
engineer, but you never know, comin’ at it from a different angle, I might just see
somethin’. Anyway, we got a long way to ride today, and we might as well talk a spell.”

“All right, but I’m warning you, it’s technical. We make parts and assemblies for
aircraft. I’m responsible for making hubs. We get orders. . . ”

Carol talked for 10 minutes before Bob interrupted, “I don’t want to know all that.
I’m a simple cowboy—just give me the basics. You’re tryin’ to take one piece of metal
and turn it into a different piece, right?”

“Yes, but there are a lot of different pieces. . . ”
“And after you do it, you want to sell the right number of the right piece of metal to

the right customer, right?”
“Of course, but there are all kinds of. . . ”
“And you need to do all this with the equipment you got in your plant right now,

right?”
“Yes, but. . . ”
“And you want to do it without keepin’ your customers waitin’ or havin’ a lot of

extra stock layin’ around, right?”
“Yes, but it’s a complicated plant. The issues are just not that simple!”
“Who said they were? But I know one thing.”
“What’s that?”
“Details may not be simple, but principles are!” Bob pulled out his canteen, took a

drink and offered it to Carol.
Carol took a drink, wiped her mouth, and asked, “OK, what are the principles? I’ve

taken every short course there is and have come to the conclusion that for every expert
telling me to do one thing, there’s another expert telling me to do something else.”

“Well, I don’t really know.”
Carol rolled her eyes. “Great! Maybe I can get a job shoeing horses.”
“Wouldn’t recommend it. Too hard on your back. What I do know is that there are

principles and the important ones ain’t that hard. You know, like an apple fallin’ from a
tree. Sometimes the principle is just hidden. You can’t see the forest for the trees—that is,
if you got trees. Out here I guess it’s the hill for the rocks.” Bob surveyed the landscape
and continued.

“Anyway, a couple years ago, the Extension Service sent out this young expert to
make the local feed co-op more efficient.” Bob nearly spat out the word expert. “By the
time he was finished, the place was a mess. I was so mad, I stood up in a meetin’ and
said a ol’ cowpoke like me could’ve done a better job. Durned if they didn’t vote me
president that year. Well, I had to do somethin’ then. So, I went in, called a meetin’ and
asked a single question, just one: What in the world is it we’re tryin’ to do here?

“You should’ve seen the looks I got. They thought I was dumber than dirt. But when
folks started answerin’ the question, the place really heated up. We got somethin’ like
20 different answers and almost a fight or two. But folks got the picture. Nobody had
any idea what we were trying to do. So we sat down, agreed on some goals, and figured
out ways to make ’em happen. Actually, it was pretty simple once we got started.”

“But what were the principles?” Carol asked. But Bob wasn’t looking at her. He
was staring at one of the horses near the front of the line.

“Pardon, Ma’am, but it looks like we got a runaway. Talk to you later.” Bob spurred
his horse and took off after a galloping mare carrying a frightened boy.

Bob stopped the horse and returned the boy to his mother in short order. But his
horse had lost a shoe. It stumbled on the way back to the group and threw Bob to the
ground. His knee hit a rock and knocked a pin loose from an old rodeo injury. Jedidiah
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the cook took him to the first ranch house they came to and he was hurried to the hospital.
The damage turned out not to be serious, but Bob wouldn’t ride again for a month.

After the excitement had died down, Carol began to think about “principles.” If
only my problems were that simple. But then, I don’t think the co-op problem was all
that simple, no matter what Bob says. After all, the “expert” wasn’t able to solve it.
Maybe most people’s problems are just as hard as mine. Maybe everyone has to look for
principles of some kind. Like the apple falling from a tree. That’s physics. But I have a
factory to manage. . . Wait a minute, what about that Factory Physics I learned about in
B-school? Didn’t that have principles that are supposed to be relevant to factories?

For the rest of the trip, Carol continued to muse about using principles to figure
out what was wrong with the plant and fix it. She soon realized she would need help.
Jane Snyder—she was just promoted to manager of marketing—she seems sharp. And
Ed Burleson, the manufacturing engineer who came in with me, is a computer whiz. Both
strike me as go-getters. What principles do they use? Maybe I can get them together and
we can develop a plan. Of course, we can’t spend much money. Bill would never go for
that. But we could do pretty much whatever we want on the plant floor. No one really
pays attention to that—until the end of the quarter—or when customers are screaming.
I hear they’re going to sell the plant. But if we can make the operation run better, we
might just keep our jobs.

19.4.2 The Challenge

Texas Tool and Die, which was founded in the 1950s, makes components for the aircraft
industry at a single plant near Fort Worth, Texas. Two years prior to Carol’s arrival, TTD
had been bought out by an investment group that hoped to improve operations and sell it
for a profit. An immediate reorganization brought in Bill Whyskrak, a polished speaker
with management experience in several industries, and his assistant Claude Chadwick.
But despite the changes and a major influx of capital, profits had steadily declined in the
face of increasingly stiff competition from firms with lower prices and better customer
responsiveness.

The managing owner was a man named Sam Walker, who had started his career as
a design engineer and had worked his way into management. Sam was convinced that
they had to find ways to increase throughput (to lower unit costs so they would allow
more competitive pricing) and to reduce cycle times (so they could offer competitive
customer deliveries). He directed Bill to bring in more manufacturing talent—which led
to the hiring of Carol Moura, a manufacturing engineering manager with 10 years of
experience and an MBA in operations, and Ed Burleson, a manufacturing engineer with
a BS in industrial engineering. Two months after Carol and Ed came on board, things
had gotten so bad that some of the investors were at the point of wanting to sell the
company, take their losses, and move on. Sam convinced the other owners to give the
throughput enhancement and cycle time reduction efforts one more chance. The other
owners agreed to 6 more months of operations, with the stipulation that no large capital
expenditures be made.

19.4.3 The Lay of the Land

Historically, company policy had been to collect customer orders during the week and
group them into jobs every Friday. In its product catalog, TTD promised delivery 4 weeks
after the close of business on Friday. Unfortunately, the competition was offering 3-week
lead times and had been steadily reducing these each year. Worse, TTD had not been
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able to achieve even the 4-week target with regularity. Average cycle time for some parts
was well over 8 weeks.

Although average demand was still high, it was variable, to the point that there were
times when there was almost no demand for the week. Figure 19.1 shows the aggregate
demand for the previous year. Table 19.1 gives projected demand for the next year for
the four largest-selling products, which accounted for 90 percent of total demand, along
with the lot size for each product. Demand for other products was met by production
from a job shop separate from the part of the plant that produced hubs 1 through 4.

Several months before Carol and Ed had arrived, Bill and Claude had organized the
main processes for producing hubs 1 to 4 into a cellular layout in an attempt to reduce
cycle times by eliminating unnecessary material handling. The anticipated reduction
had yet to materialize. The cell consisted of three benches (which served as preparation
stations), four vertical lathes (VTL), one deburring station, four inspection stations, two
mills, two drills, and one rework station. All machines were subject to occasional break-
down. Table 19.2 gives data gathered on mean times to failure and mean times to repair.

There were 14 workers in the cell, with three prep workers assigned to the benches,
three repair operators assigned to the deburr and rework stations, three inspectors
assigned to the inspection stations, and five machinists assigned to the lathes, drills,
and mills. Figure 19.2 shows the layout of the facility, along with the labor assignments.

Table 19.1 Average Demand and
Lot Sizes

Average

Part Demand Lot Size

Hub 1 2,100 40
Hub 2 1,700 30
Hub 3 2,000 44
Hub 4 1,500 30
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Table 19.2 Equipment Data

Reliability
Equipment Number in Labor Group

Group Group MTTF (hour) MTTR (hour) Assigned

Bench 3 160 8 Prep
VTL 4 160 16 Machinist
Deburr 1 80 8 Repair
Inspect 4 40 8 Inspector
Repair 1 160 8 Repair
Mill 2 80 4 Machinist
Drill 2 160 4 Machinist

Figure 19.2
Cell layout.
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Figure 19.3
Operations and routings.
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Due to breaks—scheduled and unscheduled—workers were generally considered avail-
able only 90 percent of the time.

The sequence of operations (routing) for hub 1 is shown in Figure 19.3. Run times,
setup times, and labor times are given in Table 19.3. Because many of the operations
were automated, the labor time for some operations was less than machine time, so it
was possible for an operator to monitor multiple machines. The routings and process
times for the other products were similar to those for hub 1.1

As Figure 19.3 shows, an average of 15 percent of the hub 1 parts were found to
be defective at the inspection station. An average of two-thirds of these were sent to

1The details of all the parts are not central to our story. The interested reader is referred to Bourland
(1992) for other details of the case.
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Table 19.3 Operation Assignments and Process Times for Hub 1

Time at Equipment Labor Times

Setup Time Run Time Setup Time Run Time

Operation Equipment (minute) (minute/piece) (minute) (minute/piece)

Bench Bench 0 10 0 10
Rough turn VTL 180 17 180 15
Deburr Deburr 0 10 0 10
Finish turn VTL 120 26 120 20
Inspect Inspect 7 12 7 7
Rework Rework 90 32 90 32
Slot Mill 60 60 60 40

rework; the others were scrapped. In rework, an average of 20 percent were reworked
without success and were eventually scrapped. The remaining 80 percent were reworked
and sent back to inspect, where they might or might not be certified as good parts.

Each hub was composed of four to six mountings and a single sleeve. Each mounting
was composed of two brackets and two bolts. The brackets, bolts, and sleeves were all
purchased from outside suppliers. Since these parts were common to many assemblies,
TTD tended to keep ample stocks of them. Table 19.4 gives the process times for the
unpacking and inspection of the purchased parts. The assembly of the mounts, sleeves,
and hubs took place in the assembly area, which seemed to have sufficient capacity and
rarely failed to keep up with the cell.

19.4.4 Teamwork to the Rescue

Carol returned from her vacation rested but anxious. There were seven progressively
shrill calls from Bill Whyskrak on her voice mail. Big surprise. Before returning them,

Table 19.4 Operation Assignments and Process Times for Purchased Parts

Time at Equipment Labor Times

Setup Time Run Time Setup Time Run Time

Operation Equipment (minute) (minute/piece) (minute) (minute/piece)

Mounting
Unpack Bench 12 2 12 2
Inspect Inspect 0 3 0 3

Bracket
Unpack Bench 12 0 12 0
Inspect Inspect 10 0 4 0

Bolt
Unpack Bench 12 0 12 0
Inspect Inspect 12 0 4 0

Sleeve
Unpack Bench 12 3 12 3
Inspect Inspect 0 3 0 3



684 Part III Principles in Practice

she called Jane Snyder and Ed Burleson—who both agreed that the plant was in big
trouble—and asked them to meet her after work at the local watering hole. They agreed.
Then she called Bill and endured another haranguing.

No sooner had she hung up than Claude slithered into her office with his version of
the past week’s disasters and bitter complaints about having to work all weekend. About
time! When he had gone (Finally!), Carol moved the pile of unanswered mail to the side
of her desk (It’ll keep one more day), got out her old Factory Physics text (Dusty but it
still looks almost new), and began looking for “principles.” When it was time to go to
the bar, she was ready.

Principles. “What in the world is it that we’re trying do do?” Carol asked as she, Jane,
and Ed waited for the beer and nachos to arrive. After some discussion of basic concerns
like “keep our jobs,” the three agreed that two fundamental problems were driving costs
up and revenues down: insufficient throughput and excessive cycle times. If they could
make a significant difference in these, they believed TTD could be made profitable.

Carol had anticipated this and was armed with some principles from Factory Physics.
She began by pointing out that Little’s law shows that throughput and cycle times are
related:

Law (Little’s Law):

WIP= TH × CT

“Cool!” Ed observed. “If we can get throughput up to capacity and keep it there,
then reducing WIP will reduce cycle time.”

“Exactly!” Carol knew there was a reason she had asked Ed along. “Except that we
have to be careful about aiming for capacity.” She displayed her next Factory Physics law.

Law (Capacity): In steady state, all plants will release work at an average rate that
is strictly less than the average capacity.

“Okay. That’s what I meant, actually. Everyone knows that machines can’t run all
the time.”

“Oh yeah?” Jane raised her eyebrows. “How many times have you heard Bill scream-
ing for 100 percent utilization of the lathes? But if we’re going to talk about principles,
let’s leave Bill out of it.” Ignoring Ed’s groan, Jane went on. “Carol, I’m wondering
about that Little’s law. It looks like we can get the same throughput with small WIP and
small cycle times or big WIP and big cycle times. It’s pretty clear which category we
fall into, but what’s the difference?”

“I couldn’t have set it up better myself.” Carol smiled and presented her next law.

Law (Variability): Increasing variability always degrades performance of a produc-
tion system.

“And I found one more that follows up on the variability theme.”

Law (Variability Buffering): Variability in a production system will be buffered by
some combination of

1. Inventory

2. Capacity

3. Time
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“The book also refers to this as the pay-me-now-or-pay-me-later law,” she said.
“Nice name,” grinned Ed. “But what’s it mean?”
“It means we have either too much variability or too much WIP. But if we keep WIP

too low, we lose on throughput and so we have a capacity buffer,” Carol explained.
“How could we be keeping WIP too low? I thought we had too much WIP.”
“Whenever we turn off releases because WIP has gotten out of hand, we lose through-

put.”
“You mean like the week you were gone.”
“Uh huh. But before we can even talk about a reasonable target throughput, we need

to know what our capacity is.”
“How do we do that?”
“You guys up for a walk? Let’s go back to the plant,” Carol suggested, as she picked

up the check.
The scene at the manufacturing cell was all too familiar. The trio found WIP piled

high in front of the bench operation, vertical lathes, and the milling machines. Things were
so bad that the prep workers had just returned a load of materials to the storeroom to relieve
the congestion. The machinists were complaining that they were being overworked again
as the repair operators were “just sitting around.” When questioned, an idle repair operator
explained that his load was sporadic; he couldn’t help it if he sometimes ran out of work
to do.

“We’ve got our work cut out for us,” said Ed as they walked out to the parking lot.
“But where do we start?” asked Jane.
Carol reached her car first and unlocked the door. “I suggest we listen to the ma-

chinists. Maybe they are overworked. I’m going to run some numbers. Let’s talk about
it tomorrow, okay Ed? Night, Jane.”

“Night.”

Capacity Analysis. The next morning, Carol set up a spreadsheet and did a quick
estimate of the utilization levels of the machinists and repair operators. She did this by
calculating the total load generated by production needed to meet demand, including
setups, at the current lot sizes. This showed that the average workload of the machinists
was indeed higher than that of the repair operators. Ed determined that one repair operator
could be moved into the machinist pool without compromising the ability of the repair
operators to do their work. Fortunately, one of the operators had worked as a machinist,
was bored with his repair job, and welcomed the move. Since no one could come up
with a reason not to, Carol talked the foreman into making the switch that afternoon.

Cycle Time Analsyis. What to do next was not so obvious. Carol’s simple spreadsheet
did not suggest any more easy labor reassignments, and no one could offer a clear idea
of how variability was affecting the system. Almost for lack of anything else to do, Ed
volunteered to develop a simulation of the facility. After a week of coding, debugging,
and preliminary runs, he had a basic working model. He was pleased to be able to show
Carol and Jane that his simulation predicted extremely long (indeed unstable) cycle
times in the cell when staffed by three repair operators and five machinists. However,
if one repair operator were reassigned, so that there would be two repair operators and
six machinists, the simulated cycle times dropped to between 4 and 7 weeks, with hub
1 having the longest.

“It looks like we did the right thing,” he concluded with a grin. “Cycle times should
be coming down soon.”
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And for a while the system really did seem to be improving. Two weeks after
reclassifying the repair operator as a machinist, throughput was up noticeably. But cycle
times were still well above the levels predicted by the simulation. The team was puzzled
at the discrepancy and rechecked the process times on the machines. The times used in
the simulation were found to be, if anything, longer than those observed in the actual
system.

“It’s not the rate data.” Ed looked up from his keyboard. “What else could be making
the cycle times so much longer than the model says they should be? Do we have any
other data we could check?”

“Not many,” Carol admitted. “But we do have these WIP sheets. What does the
simulation say about WIP?”

“I don’t know. I’ll run it again and generate WIP-versus-time charts for the different
equipment groups.”

“Good. I’ll make up the same charts from these sheets. Let’s meet for coffee around
four. I’ll call Jane.”

Four o’clock found the team members hunched over a cafeteria table, studying the
two charts. They did not look anything alike. The simulation model predicted fairly mod-
est increases and decreases in WIP, while the actual WIP charts showed huge “bubbles”
of WIP that drifted through the plant.

“What’s causing that?” Jane asked.
“Queueing,” Carol answered.
“What’s that equation for queue time again?” Jane reached for the no-longer-dusty

copy of Factory Physics.
“Whoa!” Ed feigned falling out of his chair. “A marketing person asking for an

equation!”
“Give me a break! Marketing is quantitative, you know. Here it is.”

CTq = c2
a + c2
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Process time

Jane studied the formula carefully and mused, “Hmmm. Since our process times are
conservative, utilization must also be conservative, since the throughput is right.”

“Wow! I guess you marketing types do know your way around an equation,” said
Carol, obviously impressed.

“So it must be in the variability numbers,” Ed added swiftly, not wanting to be
outdone in the technical analysis department.

“Which one?” Jane asked.
“Well, the c-sub-e number could be big, but not that big. And I don’t see how the

c-sub-a number can get very big either,” Carol said with a puzzled look.
“What are c-sub-e and c-sub-a?” asked Jane.
“The c-sub-e is a measure of how variable the machine process times are, while the

c-sub-a measures the variability of arrivals,” Ed explained, a little relieved to have an
opportunity to display his knowledge.

“What does it mean for arrivals to be variable?”
“If they don’t come in one at a time, regularly, like clockwork, then they’re variable.”
“Well, of course they don’t come in like that. We release jobs in week-long batches.

It’s part of our marketing strategy,” Jane explained.
“Hello!” Ed grinned. “Maybe you better tell us more about that strategy.”
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“We publish a lead time to our customers. Any order we get during a given week will
be delivered four weeks later. The close-out day is Friday. Orders are batched over the
weekend and then sent to the floor on Monday. We’ve been doing it for years. Efficiency
considerations, you know.”

“Well, it might make things more efficient, but I’ll bet it’s driving the heck out of
cycle time. No wonder we see all these WIP bubbles.” Carol said and turned to Ed. “What
c-sub-a do we have in the model?”

“For lack of a better number, we used one, the usual exponential assumption.” Ed
sneaked a glance over at Jane to see if this technical talk was making her nervous. It
wasn’t.

“Probably way too low. My guess would be more like 10.”
“It might even be worse,” Jane added. “There’s a lot of variability in our demand as

well. Take a look at this.”
The chart (Figure 19.1) showed that total weekly demand for the past 12 months

averaged 146 pieces, but ranged between 6 and 284. Thus, while the capacity of the plant
was around 160 parts per week, it was faced with a “feast or famine” situation. Clearly,
this meant that in some weeks the plant was starved for work, while in others it was
completely swamped.

Ed stood up. “I’ve got to change the way I model demand. I’ll talk to you tomorrow.”
Carol accompanied Jane back to her office. “Jane, what would happen if, instead

of publishing a fixed lead time, we quoted delivery dates to our customers. And what if
those dates were closer in than 4 weeks?”

“Well, getting lead times below 4 weeks would be great. The competition is killing
us on that. And I guess most of our customers would probably like a quotation better—
provided we deliver on time. But some customers have their MRP system loaded with
our lead time. Could we have a fixed lead time for them?”

“I think so, at least most of the time. But when we’re really busy, we may not be
able to meet the fixed lead times.”

“Actually, now that I think of it, that might not be so bad. Usually, when we’re
swamped, so are our competitors.”

“Good point. The main thing, though, is that we’ll be able to quote shorter lead
times on average.”

“Our customers will like that. What do we need to do?”
“It’s called due date quoting, and we can do it for each of our product lines. This

gives some details.” Carol handed Jane the Factory Physics book. “See the chapter on
scheduling.”

“All right, I’ll get on it.”
The next morning, Ed was in Carol’s office early.
“Got it! I changed the arrival processes, and the simulation matches on cycle times

pretty well. Now what?”
“Now we get rid of those WIP bubbles.”
“How?”
“Well, I think a pull system will smooth the workload. I’ll work on that. You see if

you can find ways to reduce process variability. Okay?”
“Sounds like a plan.”
During the next month, Carol set up a CONWIP system in the cell. The mechanics

were simple, basically consisting of nothing more than laminated cards to limit WIP and
the standard work list to sequence releases. More challenging was breaking the tradition
of bulk releases. Carol carefully involved the operators in the implementation process,
and even shut down the cell for a 2-hour “all hands” orientation meeting. (She thought
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Bill was going to burst a vein over that!) To the operators, CONWIP seemed almost
obvious; after all, why release work into the cell until there is capacity to work on it?
A couple of people in production control, who were responsible for running the MRP
system that scheduled the bulk releases, initially raised some objections about having
their schedules overridden by the CONWIP system. But Jane helped Carol win them
over, by stressing the marketing value of shorter cycle times.

Meanwhile, Ed searched his simulation and the cell for large sources of variability
in effective process times. At first, the process times seemed extremely regular, since
processes were largely automated. Then he realized that he needed to consider the effect
of downtimes that averaged from 4 to 16 hours on the various machines. Ed performed
a Pareto analysis of previous failures and found that most of the maintenance calls were
the result of a small set of problems. He and the maintenance superintendent developed
efficient procedures for handling the most common problems and then documented them.
Where appropriate, they also installed field-ready replacement kits. The result was that
mean time to repair on all machines dropped to less than 4 hours. Although they would
not have data to document it for months, the beneficial effects on the line were felt almost
immediately.

After the blowup about Carol’s CONWIP meeting, Bill mysteriously emerged as a
convert to JIT. He gave Carol and Claude a popular JIT book and ordered Carol to install
a kanban system in the cell and Claude to implement JIT deliveries of raw material.
Carol ignored the book, but was careful to refer to her CONWIP system as a kanban
system whenever she spoke to Bill. Luckily for her, Bill didn’t have time to pay too much
attention to what she was doing because of problems with Claude’s policies.

With Bill’s blessing, Claude changed from purchasing commonly used pieces of bar
stock in 1-month supplies to having daily deliveries from a local vendor. Raw material
inventory dropped by 80 percent, but delivery charges went up dramatically as well. Bill
stepped in and threatened to cancel the contract because of the higher delivery cost. The
offended vendor responded by canceling the contract himself. The production schedule
was badly scrambled, and production came to a virtual halt for almost 2 days before Sam
Walker smoothed things over with the vendor and reestablished the supply.

Also at Bill’s instigation, Claude began a plantwide setup reduction program that
made use of single-minute exchange of die (SMED) techniques Ed had developed pre-
viously for a specific machine. Because these techniques did not apply universally and
because effort was spread over so many processes, Claude got off to a slow start. By
mid-July, after almost 2 months’ work, he had achieved significant setup reductions
only in the labeling area. However, about the time Claude’s program was beginning to
stall, Ed became convinced from his ongoing simulation study that setup reduction was
important on the VT lathe, drilling, and milling. He took over (unofficial) leadership of
this part of the program, and by the end of August they had reduced the setup times of
the VT lathe, drilling, and milling by 50 percent. With these and the other changes they
had made, Ed’s model predicted cycle times of 9 to 22 days, compared with the original
5 to 9 weeks.

At the next team meeting, Carol copied the basic cycle time equation from the
increasingly ragged copy of Factory Physics to the board:

Definition (Station Cycle Time): The average cycle time at a station is made up of
the following components:

Cycle time = Move time + queue time + setup time + process time
+ wait-to-batch time + wait-in-batch time + wait-to-match time
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“The way I see it, CONWIP and due date quoting have brought queue times down by
something like 80 percent. Process times and move times were never big. Wait-to-match
time doesn’t apply in the cell. So, the only remaining area to be addressed is wait-for-
batch time.” Carol sat down. “Ed, what move batch sizes are we using in the model?”

“The ones they use in the plant. They were computed by using the square root
formula. I think. Why?”

“So the batch sizes are the same for both move batches and process batches?”
“What do you mean by move batch and process batch?” Jane asked. “I’ve never

heard anyone here use those terms.”
“That could be our problem.” Carol answered. “The process batch is how many

parts we run between setups. The move batch is how many we move at once to the next
operation. They don’t have to be the same.”

“Why didn’t I think of that!” Ed began sliding his chair back. “Let me see what
happens in the model if we leave our process batch sizes alone but make all the move
batches in the cell equal to one.”

“Wait. Let me get this straight,” Jane jumped in before Ed could escape. “You mean,
like for hub 1, we process 40 units before changing over to another hub but move them
one at a time as soon as they’re done?”

“Exactly!”
Carol was confident that she knew what Ed’s simulation would show. Smaller move

batches would result in shorter cycle times. But while she was waiting for him to estimate
the size of the reduction, Carol began thinking about the process batch sizes. Since we
reduced setup times, we should be able to reduce batch sizes as well. But how much?
That silly EOQ formula won’t help because we have no idea what setup cost should be.
Besides, the interaction between the batch sizes of the various hubs is probably complex.
Wasn’t there something in the scheduling chapter about optimal batch sizing to minimize
cycle times?

She picked up the phone to call Ed, but he walked in before she had a chance to dial.
“Good news! The cycle times should drop another 30 percent by simply making the

move sizes equal to one. But I think we could do even better if we adjust the process
batch sizes, so I started reading in Chapter 15 about. . . ”

“Optimal process batch sizes! You’re reading my mind. I was just calling you to
suggest we fiddle with process batch sizes.”

Carol and Ed spent a few hours building an optimal batch-sizing model. Using it
along with some trial and error, they settled on the set of batch sizes shown in Table
19.5. The next morning Ed met with the shop superintendent, who readily agreed to the
changes in process and move batch size. Congestion in the cell steadily declined. By the
end of September, cycle times had fallen to between 4 and 7 days.

Table 19.5 Recommended Batch Sizes
and Resulting Cycle Times

Recommended Predicted

Part Batch Size Cycle Time

Hub 1 10 6.7
Hub 2 15 3.4
Hub 3 20 5.6
Hub 4 15 3.7
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19.4.5 How the Plant Was Won

October was judgment time. Sam Walker gave Bill responsibility for organizing an
overview of the improvement program at a meeting of the owners. Bill told Carol and
Claude that he’d handle the presentation himself. Carol made up some slides anyway,
just in case. Claude did not.

Sam began the meeting with a brief overview of how much output had increased,
cycle times had decreased, and customer relations had improved. He concluded with,
“And now I’m going to ask Bill to tell us just what was done to make this good news
possible. Bill?”

Bill was dressed to the nines and had slick color slides. A couple of owners even
laughed at his introductory jokes. He’s going to pull this off! All the work we did, and we
won’t get a shred of credit. Carol sighed as Bill moved into the core of his presentation.

“The key to our cycle time reduction program was recognizing what cycle time is.”
Bill put up his main slide, which showed:

Cycle time = Value-added time + non-value-added time

“Things like setup time, move time, unnecessary meeting time,” Bill emphasized
the last item with a glance at Carol, “are all waste. Or, as they say in Japan, muda.
Eliminate muda and you’ll reduce cycle times.” Bill flipped up the next slide. “One of
our most successful efforts was reducing setups through the use of SMED techniques.
Take labeling for instance. . . ”

“Wait a minute, Bill,” Sam interrupted. “Why do we want to reduce setup times in
labeling? We’ve got plenty of capacity there, and I’ve never seen much WIP in that area.
What’s the point?”

“Well, as I said, setups represent non-value-added time. They should be eliminated.”
“Is that what you were doing last winter in printing? I recall that once you got Carol

going, you eliminated a cart at each table and had the operators share a single cart. Seems
to me like you added quite a bit of walking around. Isn’t that non-value-added?”

Got Carol going! Carol’s heart sank. He thinks I’m in the way!
“Well, er, it depends. In this case. . . ,” Bill’s polished demeanor faltered just a bit.

“Claude, didn’t you want to say something about our lean manufacturing program to Mr.
Walker?”

Carol watched the panic rise in Claude’s face. Well, at least I’m not the only one Bill
makes look bad. But Claude covered neatly.

“Well, I think it’s pretty clear that the proof’s in the pudding. As you can all see, Bill’s
program has really turned things around.” Claude turned from Bill to Sam. “Regardless
of what you call it. After all, we’re here to run the plant, not name things.”

Some of the owners nodded in agreement. Sam was noncommittal and quickly
looked back to Bill. “Wasn’t there more to the program than setup reduction?”

“Yes. You’ll recall that we also implemented just-in-time deliveries.”
“I remember,” muttered Sam under his breath.
“And we installed a simple kanban system in the cell that increases efficiency by

pulling parts between machines and. . . ”
“Excuse me Bill,” Sam interrupted again. “I’ve been down to the cell and I believe

I’ve heard the operators referring to the new system as CONWIP, not kanban. Why is
that?”

“Oh! Well, . . . , it’s basically the same thing. Actually, Carol helped me quite a bit
with that part, so maybe we should ask her.”
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Carol swallowed hard and walked up to the projector.
“CONWIP stands for constant work in process and is not quite the same thing as what

most people mean by kanban. . . ” Carol gathered steam as she spoke. She rolled through
the importance of variability, the effects of batching, and even put up a few Factory
Physics graphs. She showed plots of the progressively shorter cycle times predicted by the
simulation model as improvements were incorporated. Her speech grew more rapid, her
gestures more animated. Before she knew it, she had spoken for 20 minutes without a sin-
gle interruption. She stopped and looked up anxiously for questions. The room was silent.

“Thank you, Ms. Moura.” Sam had a sly smile on his face.
What can that mean? I must have talked too much, and I shouldn’t have contradicted

Bill. Now I’ve done it!
“Thank you all. This is a fine piece of work. Now, if you’ll excuse us, I need to wrap

up with the owners.” Sam motioned them to the door.
As she filed out with Bill and Claude, Carol could hear the owners congratulating

Sam. One was shaking his hand, and Sam was smiling broadly.
“I think that went well,” said Bill as soon as they were in the hall. “Except for you

boring them with your quantoid stuff, Carol. Kanban, CONWIP—nobody cares! But at
least we’re still in business.”

“Yeah.” Carol didn’t want to join the post mortem with Bill and Claude. “I’ve got
to take care of some things. See you.”

Forty-five minutes later, back in her office, Carol was mechanically answering
e-mail when the phone rang. It was Sam. They wanted her back in the conference
room. Filled with dread, she went.

“Hello, Carol.” Sam offered her a seat. “We’ve been working on a few changes of
our own.” He flipped on the overhead projector, revealing an organization chart. Carol
hastily scanned it for her position. It was unfilled. Oh no! Well, I did it this time. Now I
am looking for a job! Me and my big mouth!

One of the owners said, “Congratulations, Carol!”
Congratulations!? Why that sarcastic. . . Carol looked back at the screen. In the

box labeled VP Manufacturing was her name. Next to it in the position of Manager,
Manufacturing Engineering was the name of Edward Burleson. Jane Snyder was listed
as VP Marketing for the division.

Sam read the question in her eyes. “We have already discussed matters with Mr.
Whyskrak, and he and Mr. Chadwick have decided to leave the company to form their
own concern.”

Carol sped down the hall in search of Ed and Jane. This called for more than beer
and nachos!

19.4.6 Epilogue

Carol was unpacking in her new office. She pulled out the battered copy of Factory
Physics, with its dog-eared pages and broken spine, and placed it gently on the shelf.
This is about to fall apart. I need a new copy. I sure hope it’s still in print.

When she had emptied and disposed of the boxes, she began sifting through her
mail. She spied a piece with a familiar name on it.

Whyskrak & Company

“We add value by eliminating waste.”

Sounds good to me! She tossed the flyer into the waste paper basket.
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Then she pulled an old card from her organizer and dialed the number. After a pause
she said, “Bob? This is Carol Moura from Texas Tool and Die. Remember our discussion
about principles?”

19.5 The Future

This book has focused on manufacturing management, within the scope of operations,
and using Factory Physics as the unifying perspective. It is fitting that we close with an
assessment of what Factory Physics is and what we can expect from it in the future.

1. Factory Physics is a start to a science of manufacturing. We have argued that a
science of manufacturing is needed to enable managers to judge which policies will
be effective in their system and which will not. In the past 30 years or so,
manufacturing has been besieged by one “revolution” after another—MRP, JIT,
TQM, TBC (time-based competition), BPR (business process reengineering), SCM
(supply chain management), and so on—each of which has undoubtedly contained
useful insights. But because each presents only a specific perspective, generally sold
in fire-breathing revolutionary rhetoric and justified primarily in terms of anecdotal
evidence, the manufacturing manager has no basis on which to choose between
them, combine features of different approaches, or develop a unique system adapted
to the particular environment. Only a science that describes the critical behavior and
interactions in a manufacturing system can provide the overarching understanding
needed for this.

Our efforts in this book at the development of a science of manufacturing are far
from complete. However, we feel that we have at least framed the problem in the
correct context. While we have relied on mathematical formulas, we have not
sought a “factory mathematics.” Our focus has consistently been on the physical
behavior of manufacturing systems; mathematics is simply the language for
describing this behavior precisely. For example, the basic factory dynamics
formulas of Chapter 7 were developed in response to the question, How do WIP,
throughput, and cycle time depend on one another? By making various assumptions
about the behavior of the plant (e.g., the best case, worst case, and practical worst
case), we were able to develop formulas for the curves of throughput versus WIP
and cycle time versus WIP. These relationships sharpened our insight into questions
like why many plants have excessive WIP levels, why variability reductions can
reduce cycle times, and how improvements in a production line can be
characterized. However, these formulas are certainly not the final word on the WIP,
throughput, and cycle time relationships. In Chapter 12, we returned to these curves
and showed that when scrap loss is considered, throughput may eventually decrease
in the WIP level—something that our cases in Chapter 7 did not allow.

Because manufacturing systems are complex and diverse, some systems
undoubtedly exhibit types of behavior that we have not described in this book.
Indeed, as we write this, considerable research is being devoted to describing many
different production systems (see Askin and Standridge 1993; Buzacott and
Shanthikumar 1993; and Graves, Rinnooy Kan, and Zipkin 1993 for good,
up-to-date summaries). Thus, in the next few years, we can expect the range and
depth of Factory Physics to expand significantly. Although advances in
manufacturing science will never enable manufacturing management to become
merely an analytical exercise, our hope is that it will become more like medicine
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(i.e., science-based, with a strong human element) and less like fashion (i.e., trendy,
without guiding principles).

2. Factory Physics is a pedagogical framework for conveying;
a. Basics
b. Intuition
c. Synthesis
To give precise descriptions of factory behavior under various conditions, we need
appropriate tools (e.g., statistics, queueing theory, reliability). In a Factory Physics
framework, therefore, these become important not just for their own sake, but as
building blocks for answering fundamental questions about how plants behave.

We have repeatedly stressed that sound intuition is perhaps the single most
important skill of the manufacturing manager, enabling him or her to focus attention
on the areas of greatest leverage. By describing the natural tendencies of
manufacturing systems, Factory Physics provides a structure within which to build
intuition. The manager who understands Factory Physics principles and can
interpret empirical observations in terms of them will acquire insight into the
behavior of a system far more rapidly than a manager without these skills.

We have also stressed that manufacturing systems are complex, multifaceted
organizations involving many different processes, people, and machines, and
multiple objectives. In such environments, the major opportunities for
improvements often lie at the interfaces (e.g., between sales and manufacturing, or
between product development and manufacturing). By providing a general
description of the manufacturing system, Factory Physics gives us a means for
evaluating the effects of external changes on plant behavior. As such, it represents a
linking mechanism between manufacturing and other business functions.

3. Factory Physics is a link between the process and systems views of manufacturing.
Manufacturing specialists tend to come in two varieties. One group focuses on the
specific processes involved in manufacturing, such as robotics, surface finishing,
grinding, injection molding. The other group (to which the authors belong) focuses
on systems, such as scheduling, inventory control, production planning. Clearly,
both sets of concerns are critical to effective operation of a plant. Unfortunately,
members of each group are inclined to act as if their view of manufacturing were the
only “correct” one. As a result, processes are chosen with little regard for systems
impact, and systems are designed with little detailed consideration of processes.
Factory Physics uses process-oriented descriptors (e.g., mean time to failure, mean
time to repair, setup time), condensed into logistics-oriented descriptors (e.g., mean
and SCV of effective processing times), to estimate systems-oriented measures
(throughput, WIP, cycle time). Thus, it provides a means for interpreting process
changes in systems terms.

4. Factory Physics is a collection of tools for quantifying trade-offs. As we have seen,
increasing capacity, reducing scrap, improving reliability and maintainability,
reducing or externalizing setups, upgrading the quality of purchased parts, more
frequent moves of smaller batches, and many other policies can have related
logistical effects. By combining the Factory Physics tools for evaluating these
effects with estimates of costs, we can examine the relative attractiveness of each.
Moreover, by using the plant-level measures provided by Factory Physics under
different configurations, we can generate cost versus performance curves (e.g.,
throughput versus cost or cycle time versus cost) and determine strategically
desirable targets.
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Finally, from an impact standpoint, it is difficult to overstate the importance of Fac-
tory Physics. Roughly one-half of the U.S. economy (jobs, as well as GNP) still depends
on manufacturing. Indeed, operational improvements in the manufacturing sector were
instrumental in the productivity gains that drove the economic boom of the 1990s. But
as competitiveness in the world of manufacturing continues to escalate, the ability to
deliver diverse products with high quality, low cost, swift delivery, and reliable service
is fast evolving from a recipe for success to a requirement for survival. In the past it
was possible to develop effective manufacturing practices by trial and error. In the future
there won’t be time. Only by sustaining a rapid cycle of continual improvement through
the use of principles to quickly develop practices that support strategy will firms be able
to keep pace. In the 21st century, mastery of the concepts of Factory Physics will be as
vital a core manufacturing competency as the concepts of mass production were in the
20th century.
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1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

Selected Percentiles

Cumulative probability �(z): .90 .95 .975 .98 .99 .995 .999

z: 1.282 1.645 1.960 2.054 2.326 2.576 3.090
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Notation 

General Conventions: 

• A subscript "a" indicates a parameter that describes interarrival times to a station. For example, ta 
represents the average time between arrivals to a station or line. 

• A subscript "e" indicates a parameter that describes "effective" process times at a station. For example, te 
represents the average process time at a station including detractors such as downtime, setups, yield loss, etc. 

• A parameter followed by Ci) indicates that the parameter applies to station i, as in THCi), CTCi), teCi), ceCi), 
and so on. 

• A superscript * indicates a parameter that describes an "ideal" system without detractors. For example, r; 
and To* are the bottleneck rate and raw process time for a line with no downtime, setups, yield loss, or other 

inefficiencies. 

• A superscript "P" indicates a parameter that describes a "practical" system. For example, r: and Tt are 

the bottleneck rate and raw process time for a line operating under realistic conditions. 

Mathematical Symbols: 

A availability, which is the fraction of uptime at a station. 

CV coefficient of variation of a random variable, which is the standard deviation divided by the mean. 

Co CV of natural (no detractors) process time at a station. 

Ca CV of the time between arrivals to a station. 

Ce CV of effective process time at a station. 

Cd CV of the time between departures from a station. 

Cr CV of repair times at a station. 

CTq average queue time at a station. For single machine stations: CTq = (c��c�) (l�u )te. 

CT cycle time, which is measured as the average time from when a job is released into a station or line 

to when it exits. (Where ambiguity is possible cycle time at station i is written as CTCi).) Note that 

CT = CTq + teo 

FOI finished goods inventory. For end items, FOI represents the store of final product waiting to be 

shipped to customers. For components, FOI can also represent "crib" inventory, which is stock in an 

intermediate location such as before an assembly operation. 

LT lead time, a management constant indicating the time allotted for production of a part on a given routing. 

m f meantime to failure of a machine or station. 

mr meantime to repair of a machine or station. 



re effective rate, or capacity, of a station. 

rb bottleneck rate of a line, defined as the rate of the station with the highest utilization. 

RMI raw material inventory, consisting of the physical inputs at the start of a production process. 

s service level. In make-to-order systems, s is measured as the fraction of jobs for which cycle time 

is less than or equal to lead time. In make-to-stock systems, s is measured as the fill rate, or fraction 

of demands that are filled from stock. 

(To standard deviation of natural (no detractors) process time at a station. 

(Te standard deviation of the effective process time at a station. 

(TCT standard deviation of the cycle time in a line. 

TH throughput, measured as the average output of a production process (machine, station, line, plant) 

per unit time. 

To raw process time, which is the sum of the mean effective process times of the stations in a line. 

to average natural (no detractors) process time at a station. 

ta average time between arrivals to a line or station. At any station, TH = l/ta. 

te mean effective process time (average time required to do one job) including all "detractors" such as 

setups, downtime, etc. It does not include time the station is starved for lack of work or blocked by 

busy downstream stations. 

u utilization, defined as the fraction of time a station is not idle for lack of parts. u = THte / m, where 

m is the number of parallel machines at the station. 

WIP work in process, which consists of inventory between the start and end points of a routing. 

WIP q average WIP in queue at a station. 

Wo critical WIP level for a line, which is the WIP required for a line with no variability to achieve 

maximum throughput (rb) with minimum cycle time (To). For a line with parameters, rb and To, 

Wo = rbTo· 
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